
Gamasutra - Features - "Dead Reckoning: Latency Hiding for Netwo... http://www.gamasutra.com/features/19970919/aronson_01.htm

1 of 6 11/14/06 3:36 PM

| | | |

By Jesse Aronson
Gamasutra
September 19, 1997

Features

Dead Reckoning:
Latency Hiding for Networked Games

Programmers who attempt to develop games for network play quickly discover the
problems of dealing with network latency. Latency is, quite simply, the time it takes
packets of information to get from one computer to another across the network
and is a function of the path traveled by packets passing between the computers.

Latency is not a problem for playing slow moving, turn-based games such as
chess or Go across a network. On the other hand, games that require high levels
of fast-paced interaction between players, known as "twitch" games, can be
severely degraded by typical WAN or even LAN latencies. This becomes
problematic, as players expect the level of performance of distributed games to
approximate that of single computer, single player games--and players want
twitch games.

Current commercial solutions from Internet gaming vendors for the most part rely
on dedicated network segments to provide end-to-end latencies in the 150 to 200
ms range. Dedicated networks are a viable solution to the problem, however it
would be better if networked games operated in a fluid and responsive fashion in a
standard Internet environment, where latencies are less predictable and generally
larger.

Fortunately, your tax dollars have been at work developing technical solutions for
networked games. The Dept. of Defense has invested heavily in distributed
simulation for military training, most notably in the development of the Distributed
Interactive Simulation (DIS) protocol, which developed out of the Defense
Advanced Research Project Agency's (DARPA) SIMNET project.

DIS contains a technique for latency hiding and bandwidth reduction. That
technique, called "dead reckoning," has been widely implemented and has been
expanded in DARPA's Advanced Distributed Simulation architecture project into the
notion of "predictive contracts." DIS originated as an environment for networking
together tank simulators, and many DIS applications share common characteristics
with twitch games.

The Dead Reckoning Concept

Dead reckoning is a form of replicated computing in that everyone participating in
a game winds up simulating all the entities (typically vehicles) in the game, albeit
at a coarse level of fidelity. The basic notion of dead reckoning is agreement in
advance on a set of algorithms that can be used by all player nodes to extrapolate
the behavior of entities in the game, and an agreement on how far reality should
be allowed to get from these extrapolation algorithms before a correction is
issued.

Under DIS, when a vehicle or entity is created, the computer that owns the entity

Gamasutra - Features - "Dead Reckoning: Latency Hiding for Netwo... http://www.gamasutra.com/features/19970919/aronson_01.htm

2 of 6 11/14/06 3:36 PM

sends out what is called an entity state protocol data unit (PDU) to all other
computers on the network. The entity state PDU contains information that uniquely
identifies the entity; information that describes the current kinematic state of the
entity, including position, velocity, acceleration and orientation; and other
information, such as the entity's damage level.

Last, the entity state PDU contains an identifier that tells all other nodes on the net
which dead reckoning algorithm to use for this entity. When other computers
participating in the distributed simulation receive this PDU, they create local
copies of the specified type of entity. Thus, every node on the net begins to see
this entity. After this, entity state PDUs are sent out at a minimum of one every five
seconds.

Without some sort of extrapolation algorithm, the single entity state PDU sent at
start-up would cause the entity to appear remotely, but the remote entity would be
static; it would only move as additional PDUs describing its updated parameters
were sent out. Thus, the motion of remote entities would seem choppy; they would
stay still until the next PDU was received, and would jump to the location specified
in the new PDU. This choppiness can be lessened by decreasing the time between
PDUs, but this approach quickly exhausts available network bandwidth in
scenarios with large numbers of entities.

With dead reckoning, however, after receipt of the first entity state PDU for an
entity, each node on the net begins moving the entity by applying the
agreed-upon dead reckoning algorithm. As long as the entity continues to move in
a predictable fashion, it appears in a consistent, synchronized way on all nodes
on the net with no further network traffic required.

Of course, simulation entities don't always move in a predictable fashion. The
instant a player controlling an entity moves the control stick, the vehicle deviates
from a smooth, algorithmically definable path. Under DIS, this is detected and
handled by the computer that owns the entity.

The owner of an entity remembers the last time it put out an entity state PDU and
also runs the dead reckoning algorithm based on that PDU. Thus, it has a copy of
what all the other nodes on the network are seeing as well as the true, latest value.

The owning simulation compares the dead reckoning values to the true state of the
entity as controlled by the player. If the dead reckoning and true state values differ
by an amount that exceeds the agreed-upon dead reckoning threshold, a new
entity state PDU is sent out to update the other nodes on the net. All nodes update
their copies of the entity to reflect the new entity state PDU values, and dead
reckoning begins again with the new data point.

Figure 1 shows an example of dead reckoning. At time t0, a simulation of an
aircraft, shown on the left, first puts out a PDU informing all the computers on the
network of the aircraft's existence and location. At this time, the position of the
aircraft is synchronized at all computers on the network. From this point forward,
all the computers on the network begin displaying the aircraft, and move it forward
based on an agreed-upon algorithm. This is shown as a dashed line.

The owner of the aircraft, however, also moves the aircraft based on inputs from
the user (for example, via a joystick). This is shown as the thick solid line on the
left. The player controlling the aircraft sees motion along the thick solid line, while
all other players on the net see motion along the dashed line. As long as the
dead-reckoned position and the true position stay within a predefined threshold,
shown via the thin black lines, no additional information is sent out on the
network. Network bandwidth is conserved and remote computers show smooth
motion based on the dead reckoning algorithm.

Gamasutra - Features - "Dead Reckoning: Latency Hiding for Netwo... http://www.gamasutra.com/features/19970919/aronson_01.htm

3 of 6 11/14/06 3:36 PM

However, a small discrepancy between the owning simulation and all other
simulations on the net exists. When the discrepancy gets bigger than the dead
reckoning threshold, as at time t1, a new PDU is sent out. At this point, all
computers on the network immediately resynchronize their copies of the aircraft to
the new PDU data and reset their dead reckoning algorithms, as shown at t1'. Dead
reckoning then begins again, as shown at t1' and beyond.

It is easy to see from the exaggerated view shown in Figure 1 that large dead
reckoning thresholds can result in noticeable jerkiness of motion when new PDUs
are received. On the other hand, small dead reckoning thresholds force more PDUs
to be sent. The optimal values for dead reckoning thresholds are dependent on the
type of application.

DIS simulations also typically use smoothing algorithms to lessen the apparent
jerkiness as entities are updated from dead reckoned positions to new updated
true positions. DIS simulations also typically apply dead reckoning to vehicle
orientation as well as position. Orientation extrapolation uses a different set of
algorithms from position extrapolation, although the two are based on identical
concepts.

Figure 1. Dead Reckoning

Dead Reckoning Algorithms

Next, let's look at the actual dead reckoning algorithms DIS implements. There are
nine standard algorithms, though two effectively shut off dead reckoning and
several others duplicate each other, only using different coordinate systems. We'll
examine the three most typical.

Figure 2 shows three DIS dead reckoning algorithms. These algorithms flow from
basic physics. The first algorithm maintains an entity at the position specified in
the entity's entity state PDU from t0. The second algorithm extrapolates the entity
forward from its known t0 position based on its velocity at t0. The third algorithm
also extrapolates forward from the entity's last known position, but uses both
velocity and acceleration in the extrapolation.

The three algorithms shown in Figure 2 work well for extrapolating position. More
sophisticated algorithms used in DIS also consider orientation (roll, pitch, and
heading) of entities and even extrapolate moving parts of entities. For example, a
tank that scans its turret back and forth while patrolling could make use of dead
reckoning for both the tank's position and the angle of the turret on the tank.

Figure 2. DIS Dead Reckoning Algorithms

Gamasutra - Features - "Dead Reckoning: Latency Hiding for Netwo... http://www.gamasutra.com/features/19970919/aronson_01.htm

4 of 6 11/14/06 3:36 PM

Putting Dead Reckoning to Work

Listing 1 shows a fragment of a program that receives entity state PDUs from other
programs on the network and displays all the entities it knows about, using dead
reckoning algorithm 2 from Figure 2. The code is C++ style, though the class
definitions, program initialization, and other details are not shown.

The program's primary loop first checks to see if there are any new packets
available from the network (#1). DIS uses UDP for its communications, and so here
we use a Java-like UDP socket class to access UDP packets. Next, the raw packets
are parsed and converted to entity state PDU objects, which contain information
about remote entities' position, velocity, and identity.

If this entity is already known to the program (that is, its ID exists in TankList), the
position and velocity for the entity are updated. Otherwise, a new entry in the
TankList table is created (#3). The time of receipt is stored in the remote vehicle
table (ctime is a function that returns the current time); this is required for dead
reckoning.

After the new packet is received, the locations of all entities in TankList are
updated using dead reckoning (#4) and are displayed on the screen (#5). Dead
reckoning does not overwrite the received position, which may be needed for
further dead reckoning at a later time.

Listing 2 shows a fragment of a program that sends information to the network
about a tank it's simulating. It follows the rules of dead reckoning as well. The
program repeatedly updates vehicle myTank based on inputs from the joystick
controller. After each update, it checks to see if the dead reckoning threshold has
been exceeded. If it has, it sends out a new PDU describing the updated state. The
program sends one entity state PDU at startup to let other players on the network
know that the vehicle myTank exists and that the program must remember the last
state information and time it sent out.

Listing 1. Receiver Simulation with Dead Reckoning

main(){
 //Receiving Simulation
 DataGramSocket socket1;
 DataGramPacket packet1;
 EntityStatePDU espdu1;
 TankList remoteTanks;
 int i;

// Initialization code: open socket, etc.
// ... (Not shown here)

// Enter a loop, receiving and processing remote
// information forever
while(1){
//Receive a new packet
if (socket1.packetAvailable()){ #1
 socket1.receive(&packet1);
 espdu1.convertFromRawPacket(&packet1); //#2
 if (TankList.member(espdu1.entityID()) //#3
 TankList.update(espdu1,ctime());
 else
 TankList.addEntity(espdu1,ctime());

Gamasutra - Features - "Dead Reckoning: Latency Hiding for Netwo... http://www.gamasutra.com/features/19970919/aronson_01.htm

5 of 6 11/14/06 3:36 PM

 }
...

Listing 2. Sending Simulation with Dead Reckoning

main(){
 //Sending Simulation
 Joystick stick1;
 DataGramSocket socket1;
 EntityStatePDU espdu1;
 tank myTank(initPosition);
 int i;

 // At init time, send a PDU and save info
 espdu1.initializeWithPosition(myTank.Position());
 socket1.send(espdu1.convertToRawPacket());
 lastStateSent = myTank;
 lastTimeSent = ctime();

 while(1){
 //Update my tank based on joystick
 myTank.calcNewPosition(JoyStick.read());

 //Calculate Dead Reckoned Position
 myTank.setDRposition(lastStateSent.position() +
 lastStateSent.velocity() * (ctime() - lastTimeSent);

 //Only send an update if DR threshold exceeded
 if (abs(myTank.position() - lastStateSent.position() > thresh){
 socket1.send(espdu1.convertToRawPacket());
 lastStateSent = myTank;
 lastTimeSent = ctime();
 }
 }
}

Extensions to Dead Reckoning

DIS uses dead reckoning primarily as a means to extrapolate position and
orientation of vehicles, and it does so via polynomial algorithms. DIS applications
have extended dead reckoning in one way to allow extrapolation of articulated
parts of vehicles (for example, turrets on tanks).

The DARPA ADS architecture study recognized the value of dead reckoning and
extended the concept to apply to all attributes of objects on the network and to a
larger class of extrapolation. Extrapolations using these expanded definitions are
referred to as predictive contracts.

For example, in a tank battle simulation, a predictive contract called "drive along
road to waypoint" could be defined. Under this predictive contract, a computer
simulating a tank would only have to send out one piece of information about a
vehicle: it was at a certain position on a road, and it was going to drive down that
road to a specified point.

As long as all other computers on the network agree on what it means to "drive
down a road" (for example, that you drive on the right) and all the computers on
the network know the definition of the road the tank is on, all the computers on the
network can create consistent views of the tank without requiring any network
traffic. Of course, if the tank deviates from its planned path or changes state in any
other unpredictable way, new state information for the tank would be sent out on
the network. Additional predictive contracts could define when the tank turns its

Gamasutra - Features - "Dead Reckoning: Latency Hiding for Netwo... http://www.gamasutra.com/features/19970919/aronson_01.htm

6 of 6 11/14/06 3:36 PM

sensors on and off, when it sends out radio reports, and other attributes of the
tank's behavior.

The advent of the Java model of distributed object computing allows a further
refinement of predictive contracts. In the DIS model all dead reckoning algorithms
are defined at compile time; there is no way for a simulation to create new dead
reckoning algorithms at run time. With languages such as Java, however, a
simulation could distribute updated predictive contracts across the network at will.

Make the Most of Dead Reckoning

Dead reckoning and predictive contracts offer dual benefits for networked
simulations and games. They hide the latencies inherent in the network, and they
offer the additional benefit of keeping traffic off the network by allowing
simulations to transmit information only when really needed. In DIS, dead
reckoning also allows entity state information be transmitted via best-effort
communications (such as UDP/IP) rather than more expensive, reliable (such as
TCP/IP) mechanisms. This is because dead reckoning can be used to smooth over
gaps when packets are lost, albeit with some loss of synchronization across the
network.

Dead reckoning is not free. It requires that every computer on the network run an
algorithm to extrapolate each entity in the simulation scenario. Also, if all the
entities in a simulation behave unpredictably all the time, dead reckoning offers
little gain. However, it has been the experience in DIS that dead reckoning offers
significant advantages in large scenarios with many computer-generated entities.
In such situations, and where processor cycles can be traded off to reduce
network use and apparent latency, dead reckoning can be a very effective
optimization technique.

Jesse Aronson is a Principal Software Architect at Science Applications
International Corp. He has been an active participant in defining the Dept. of
Defense's next-generation architecture for modeling and simulation, and is
currently technical director of a project to create a networked training
simulation with hundreds of computers simulating thousands of vehicles. He
can be reached at jaronson@std.saic.com.

join | contact us | advertise | write | my profile
news | features | companies | jobs | resumes | education | product guide | projects | store

Copyright © 2003 CMP Media LLC

privacy policy | terms of service

