
© SoC, NUS

M
O
B
I
L
E

G
A
M
E
S

2D Games

Developing sprite based 2D games

9/1/2006 3:42:04 PM© SoC, NUS Slide 2

2D games

Objectives
Sprite based 2D games and its types
Game framework, Sprites, Event handling mechanisms
Sprite animation
collision detection
Layers: Tiled layers, Layer Management
2D SVG (new)

Source: Gamesoft.com

9/1/2006 3:42:04 PM© SoC, NUS Slide 3

2D games

J2ME Game API (JSR 118) www.jcp.org
Available from MIDP 2.0 (JSR 118, Lead by Motorola)
Package
– javax.microedition.lcdui.game.*

Contains five classes
– GameCanvas
– Layer
– Sprite
– TiledLayer
– Layer Manager

9/1/2006 3:42:04 PM© SoC, NUS Slide 4

2D Games

GameCanvas & Event Handling
The GameCanvas class provides the basis for a game
user interface.
It is a Displayable object.
Provides graphics object for drawing and supports
double buffering.
Provides facility to repaint selected region in the entire
Canvas.
Provides methods for key polling.
Provides methods to flush graphics buffer to screen.

9/1/2006 3:42:04 PM© SoC, NUS Slide 5

2D games

Game Canvas

Constructor:

protected GameCanvas(boolean suppressKeyEvents)

– Creates a new instance of a GameCanvas. A new buffer is
also created for the GameCanvas and is initially filled with
white pixels.

– suppressKeyEvents - true to suppress the regular key event
mechanism (key event callback method) for game keys,
otherwise false.

Q: What is key-event call back methods?

9/1/2006 3:42:04 PM© SoC, NUS Slide 6

2D games

Key Polling
For example, the following code grabs the key states and
checks whether the right game key is pressed.

int keyStates = getKeyStates();
if ((keyStates & RIGHT_PRESSED) != 0)

// do something
This is attractive for game because it gives your application
more control. Instead of waiting for the system to invoke the
key callback methods in the Canvas, we can immediately find
out the state of the device keys.
Multiple-key events can be easily handled

Q: Compare key interrupt and key polling.

9/1/2006 3:42:04 PM© SoC, NUS Slide 7

2D Games

Structure of a typical Game-Loop
» The following code snippet illustrates the structure of a

typical game loop:

9/1/2006 3:42:04 PM© SoC, NUS Slide 8

2D games

Method Purpose

flushGraphics() Flushes the off-screen buffer to the display.

flushGraphics(int x, int y,
int width, int height)

Flushes the specified region of the off-
screen buffer to the display.

getGraphics() Returns the Graphics object for rendering a
GameCanvas.

getKeyStates() Gets the states of the physical game keys.

paint(Graphics g) Paints this GameCanvas.

GameCanvas Methods

Also supports the inherited methods from Canvas class.
Eg. setFullScreenMode(boolean true/false),

repaint(), repaint(x,y,w,h)…

9/1/2006 3:42:04 PM© SoC, NUS Slide 9

2D games

Handling Images
PNG (Portable Network Graphics) is the only image type
supported by MIDP 1.0 and MIDP 2.0 specifications.
Implementations can support other image types (.gif,
.jpg..) -- http://www.w3.org/TR/PNG/

Images can be Mutable or Immutable
Creating a mutable image
– Image img = Image.createImage(int width(), int height());

– Creates an empty mutable image with white pixels for
off-screen drawing.

– Use draw methods of the Graphics class to draw the
image.

Getting graphics object for off-screen drawing
– Graphics g = img.getGraphics();

9/1/2006 3:42:04 PM© SoC, NUS Slide 10

2D games

Handling Images
Creating a immutable image from a image file (PNG).
IMPORTING IMAGE
– Image img = Image.createImage(image source);

– Source : relative path to the source file.
Converting “immutable image >> mutable image”
– g.drawImage(img);

– Where g is a Graphics object.
– The drawImage() method of the Graphics class allows

you to display interactive, editable images called
mutable images on a the low-level Canvas screen.
Mutable images can be modified by all the methods
provided by the Graphics class.

MIDP 2.0 supports alpha processing (transparency) for
immutable images.
A fully transparent pixel in the source data will result in a
fully transparent pixel in the new image.

Further reading: MIDP 2.0 API reference

9/1/2006 3:42:04 PM© SoC, NUS Slide 11

2D Games

Sprites
A Sprite is a basic visual element that can be rendered
with one of several frames stored in an Image.
Different frames can be shown to animate the Sprite.
Several transforms such as flipping and rotation can also
be applied to a Sprite to further vary its appearance.
A Sprite's location can be changed and it can also be
made visible or invisible.

9/1/2006 3:42:04 PM© SoC, NUS Slide 12

2D games

Creating a Sprite (without animation]

Image flightImage = null;
try{

flightImage = Image.createImage("/mustang.png");
}catch(IOException e) {}

Sprite mFlight = new Sprite(flightImage, 36, 18);

A sprite can be created from another sprite : Sprite(Sprite s)

mustang.png

9/1/2006 3:42:04 PM© SoC, NUS Slide 13

2D Games

Reference Pixel of a Sprite

defineReferencePixel and setReferencePixel

9/1/2006 3:42:04 PM© SoC, NUS Slide 14

2D games

Sprite Transformations
Various transforms can be
applied to a Sprite.
The available transforms
include rotations in multiples
of 90 degrees, and mirrored
(about the vertical axis)
versions of each of the
rotations.
A Sprite's transform is set by
calling
setTransform(transform).

Q: How about rotating in other angles?

9/1/2006 3:42:04 PM© SoC, NUS Slide 15

2D Games

Collision Handling
Game API supports two techniques
– Collision of Bounding Rectangles
– Pixel level collision detection

Bounding rectangle / Collision rectangle
– Sprite has a collision rectangle. It is defined by the

coordinate system of the Sprite itself, like the reference
pixel.

– By default the collision rectangle is located at (0,0) with the
same height and width as the Sprite.

– We can change the collision rectangle using the following
method.

– Public void defineCollisionRectangle(int x, int y, int
width, int height);

9/1/2006 3:42:04 PM© SoC, NUS Slide 16

2D Games

Collision Handling
– Sprite’s collision with other Sprites, TiledLayers, and Images

9/1/2006 3:42:04 PM© SoC, NUS Slide 17

2D Games

Basic Sprite Methods
collidesWith(Image image, int x, int y,
boolean pixelLevel)
– Checks for a collision between this Sprite and the specified

Image with its upper left corner at the specified location.
collidesWith(Sprite s, boolean pixelLevel)
– Checks for a collision between this Sprite and the specified

Sprite.
collidesWith(TiledLayer t, boolean pixelLevel)
– Checks for a collision between this Sprite and the specified

TiledLayer.
defineReferencePixel(int x, int y)
– Defines the reference pixel for this Sprite.

setRefPixelPosition(int x, int y)
– Sets this Sprite's position such that its reference pixel is

located at (x,y) in the painter's coordinate system.

FYORP

9/1/2006 3:42:04 PM© SoC, NUS Slide 18

2D Games

Basic Sprite Methods (…)
getRefPixelX()
– Gets the horizontal position of this Sprite's reference pixel in

the painter's coordinate system.

getRefPixelY()
– Gets the vertical position of this Sprite's reference pixel in

the painter's coordinate system.

paint(Graphics g)
– Draws the Sprite.

setImage(Image img, int frameWidth, int frameHeight)
– Changes the Image containing the Sprite's frames.

setTransform(int transform)
– Sets the transform for this Sprite.

Refer to MIDP 2.0 API doc for full list

FYORP

9/1/2006 3:42:04 PM© SoC, NUS Slide 19

2D Games

Animated Sprite
try{
spriteImage =

Image.createImage("/midp2proj/bird.png");
}catch(IOException e) {}
mSprite = new Sprite(spriteImage, 31, 61);
mSprite.setPosition(getWidth()/2,getHeight()/2);
mSprite.defineReferencePixel(15, 30);

- parameters 31,61 represents the frame width and height

bird.png with 3 frames

9/1/2006 3:42:04 PM© SoC, NUS Slide 20

2D Games

Frame Control
The developer must manually switch the current frame in
the frame sequence. This may be accomplished by calling
setFrame(int), prevFrame(), or nextFrame().

Other Methods
– getFrame()

– Gets the current index in the frame sequence.
– getFrameSequenceLength()

– Gets the number of elements in the frame sequence.
– getRawFrameCount()

– Gets the number of raw frames for this Sprite.
– setFrameSequence(int[] sequence)

– Set the frame sequence for this Sprite. Each integer
represents the frame number, which starts from 0.

9/1/2006 3:42:04 PM© SoC, NUS Slide 21

2D Games

Layer
– Using layers, one can logically separate the distinct

components in the game and the order in which they are
drawn. A game can have as many layers as required.

– GAME API defines an abstract Layer class, which serves as a
base for two types of Layers (Sprites and TiledLayers)

– Each Layer has position (in terms of the upper-left corner of
its visual bounds), width, height, and can be made visible or
invisible.

– Layer's (x,y) position is always interpreted as painter's
coordinate system.

9/1/2006 3:42:04 PM© SoC, NUS Slide 22

2D Games

Essential Layer Methods
FYORP

9/1/2006 3:42:04 PM© SoC, NUS Slide 23

2D Games

Tiled Layer
A tiled layer is made from sets of equally sized graphics
(tiles), just as set of decorative tiles to create a pretty
design next to the bathtub.
The tiles come from a single image (mutable or
immutable) that is divided into equal-sized pieces to fill
the TiledLayer’s cells in desired order.
By arranging (and repeating) these tiles, you can present
proportionally large areas small source images.
This technique is commonly used in 2D gaming platforms
to create very large scrolling backgrounds.

9/1/2006 3:42:04 PM© SoC, NUS Slide 24

2D Games

Tiles and Tiled Layer (Different arrangement of a tile set in an image)

– Each tile is assigned a unique index number. The tile located
in the upper-left corner of the Image is assigned an index of
1. (Follows ROW major order)

Source: GameAPI doc. (sun.com)

Question to ponder: Can you observe any difference in indexing
when compared to Java indexing schemes?

9/1/2006 3:42:04 PM© SoC, NUS Slide 25

2D Games

Creating Tiled Layer
try{

bkImage = Image.createImage("/midp2proj/background.png");
}catch(IOException e) {}
int[][] map = { //Two-D Array showing TiledLayer Map/cells

{3,3,3,3,3,3,3,3},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{1,2,2,1,2,1,1,2}

};
mBackground = new TiledLayer(8,4,bkImage,48,48);
for (int i=0; i<4; i++) //ROWS
for (int j=0; j<8; j++) //COLUMNS

mBackground.setCell(j, i, map[i][j]);

9/1/2006 3:42:04 PM© SoC, NUS Slide 26

2D games

Background for Multiple Levels of Game

Create a new tiled layer each time.

If the size of the tiled layer is same, GAME API provides ,
– setStaticTileSet(Image image, int tileWidth, int tileHeight)

Method to change the TileSet.

The number of rows and columns can not be changed.

Filling single tile for entire Tiled Layer
fillCells(0,0,T1.getRows(), T.getColumns())

– Where T1 is the TiledLayer

Question: Pros and Cons of Using Tiled layer instead of one single
image as background.

9/1/2006 3:42:04 PM© SoC, NUS Slide 27

2D Games

Animated Tiles in Tiled Layer
GAME API provides facilities to define several animated tiles.
An animated tile is a virtual tile that is dynamically associated with a
static tile; the appearance of an animated tile will be that of the static
tile that it is currently associated with.

setAnimattedTile(-1,5)

setAnimattedTile(-1,7)
Source: GameAPI doc. (sun.com)

9/1/2006 3:42:04 PM© SoC, NUS Slide 28

2D Games

Creating Animated Tiles
try{

bkImage = Image.createImage("/midp2proj/background.png");
}catch(IOException e) {}
int[][] map = {
{3,3,3,3,3,3,3,3},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{1,2,2,1,2,1,1,2}

};
mBackground = new TiledLayer(8,4,bkImage,48,48);
for (int i=0; i<4; i++) //ROWS
for (int j=0; j<8; j++) //COLUMNS

mBackground.setCell(j, i, map[i][j]);

mAnimatedIndex = mBackground.createAnimatedTile(4);
mBackground.setCell(3,1,mAnimatedIndex);
mBackground.setCell(5,1,mAnimatedIndex);
……
Changing frames/tiles for animation (in GAME loop)
mBackground.setAnimatedTile(mAnimatedIndex,aniTiles++);
if (aniTiles > 6) aniTiles = 4;

Initial Tile

9/1/2006 3:42:04 PM© SoC, NUS Slide 29

2D Games

Basic Methods of TiledLayer

createAnimatedTile(int staticTileIndex)
– Creates a new animated tile and returns the index that refers to

the new animated tile.
fillCells(int col, int row, int numCols, int numRows,
int tileIndex)

– Fills a region cells with the specific tile.
getAnimatedTile(int animatedTileIndex)

– Gets the tile referenced by an animated tile.
getCell(int col, int row)

– Gets the contents of a cell.
getCellHeight()

– Gets the height of a single cell, in pixels.
getCellWidth()

– Gets the width of a single cell, in pixels.
getColumns()

– Gets the number of columns in the TiledLayer grid.

FYORP

9/1/2006 3:42:04 PM© SoC, NUS Slide 30

2D Games

Basic Methods of TiledLayer (…)

getRows()
– Gets the number of rows in the TiledLayer grid.

paint(Graphics g)
– Draws the TiledLayer.

setAnimatedTile(int animatedTileIndex,
int staticTileIndex)
– Associates an animated tile with the specified static tile.

setCell(int col, int row, int tileIndex)
– Sets the contents of a cell.

setStaticTileSet(Image image, int tileWidth,
int tileHeight)
– Change the static tile set.

FYORP

9/1/2006 3:42:04 PM© SoC, NUS Slide 31

2D Games

Layer Manager
The LayerManager manages a series of Layers (z-order).
The LayerManager simplifies the process of rendering
appropriate region of Layers.
Layers have an index, which indicates their position top to
bottom. A position (index) 0 is on top.
The indices are always contiguous; that is, if a Layer is
removed, the indices of subsequent Layers will be
adjusted to maintain continuity.
Simple constructor.

– LayerManager()
Adding Layers

– append(Layer l) [at bottom, highest index]
– insert(Layer l, int index)
– paint(Graphics g, int x, int y)

» Renders the LayerManager's current view window at
the specified location.

9/1/2006 3:42:04 PM© SoC, NUS Slide 32

2D Games

Layer Manager – View window
– View window - rectangular portion of the scene that will be

drawn / painted / rendered.
– By Default, the view window has its origin at 0,0 and is as

large as it can be (Integer.MAX_VALUE for both width and
height).

– setViewWindow(int x, int y, int width, int height)
method is used to set the view window. Usually fixed at a
size that is appropriate for the device's screen.

– Scrolling, panning, controls the size for users view.

Source: GameAPI doc. (sun.com)

9/1/2006 3:42:04 PM© SoC, NUS Slide 33

2D Games

Layer Manager
FYORP

9/1/2006 3:42:04 PM© SoC, NUS Slide 34

2D Games

Summary
GameCanvas
Layer – Sprite, TiledLayer
LayerManager

Demo of 2D Games

9/1/2006 3:42:04 PM© SoC, NUS Slide 35

2D Games

Low Level Graphics API support (Graphics object)
Creating Graphics object for off-screen drawing (Full
screen Graphics object)

– Image img = Image.createImage(getWidth(), getHeight());
Graphics g = img.getGraphics();

g.<primitive drawing methods>

9/1/2006 3:42:04 PM© SoC, NUS Slide 36

2D Games

Graphics object – drawing methods
Method Purpose

drawString(String text, int
x, int y, int anchor)

Draws the specified String at the
given position using the current font
and color.

drawImage(Image image,
int x, int y, int anchor)

Draws the specified image at the
given position.

drawLine(int x1, int y1,
int x2, int y2)

Draws a line between the coordinates
(x1,y1) and (x2,y2) using the current
color and stroke style.

drawRect(int x, int y,
int width, int height)

Draws the outline of the specified
rectangle using the current color and
stroke style

fillRect(int x, int y,
int width, int height)

Draws a filled rectangle with the
current color.

9/1/2006 3:42:04 PM© SoC, NUS Slide 37

2D Games

Graphics object – drawing methods

For full-list: refer MIDP 2.0 API/Graphics object

Method Purpose

setColor(int red, int green,
int blue)

Sets the current color to the specified
RGB values

setFont(Font font) Sets the font for all subsequent text
rendering operations

setGrayScale(int value) Sets the current grayscale to be used
for all subsequent rendering operations

setStrokeStyle(int style) Sets the stroke style used for drawing
lines, arcs, rectangles, and rounded
rectangles

9/1/2006 3:42:04 PM© SoC, NUS Slide 38

2D Games

Graphics object: Coordinate System
The coordinate system represents locations between
pixels, not the pixels themselves.

9/1/2006 3:42:04 PM© SoC, NUS Slide 39

2D Games

Graphics object: Coordinate System
The origin of the coordinate system can be changed using
the translate (int x, int y) method. It will add the
coordinates (x,y) with all the subsequent drawing
operations automatically. For example,

g.translate(getWidth()/2,getHeight/2)

»will cause the center point of the
screen to be the origin for the
subsequent drawings.

9/1/2006 3:42:04 PM© SoC, NUS Slide 40

2D Games

Graphics object: Clipping
A clip is a rectangle region in the destination of the Graphics
object that responds to the subsequent drawing operations. There
can be one clip per Graphics object.

Method Purpose

setClip(int x, int y,
int width, int height)

Sets a new rectangle clip region
specified by the coordinates.
Subsequent drawings will be effective
only inside this region. Any drawing
outside this region will be ignored.

getClipX(), getClipY(),
getClipHeight(),
getClipWidth()

Returns the X offset, Y offset, height
and width of the current clipping area.

9/1/2006 3:42:04 PM© SoC, NUS Slide 41

2D Games

Graphics object: Clipping

g.setColor(255,255,255);
g.fillRect(0,0,getWidth(), getHeight());
g.setColor(0,0,0);
g.drawArc(30,30,130,100,0,360);
g.setStrokeStyle(g.DOTTED);
g.drawRect(40,40,110,80);
g.setClip(40,40,110,80);
g.setColor(0,255,0);
g.fillArc(30,30,130,100,0,360);

9/1/2006 3:42:04 PM© SoC, NUS Slide 42

2D Games

Graphics object: Drawing Texts (Fonts)
The method g.drawString() is used to draw text on the
screen.
g.setFont() sets the font for subsequent text rendering to
the Font passed as parameter to the g.setFont() method.
Font class
– To create a Font object, the lcdui defines a Font class with

the getFont() method which takes three parameters: Size,
Style and Face.

– getFont(int face, int style, int size)

Parameter Constants

Face FACE_SYSTEM, FACE_MONOSPACE,
FACE_PROPORTONAL

Style STYLE_PLAIN, STYLE_ITALIC, STYLE_BOLD,
STYLE_UNDERLINED

Size SIZE_SMALL, SIZE_MEDIUM,SIZE_LARGE

9/1/2006 3:42:04 PM© SoC, NUS Slide 43

2D Games

Graphics object: Drawing Texts (Anchor points)

9/1/2006 3:42:04 PM© SoC, NUS Slide 44

2D Games

Drawing Images (Anchor points)
g.drawImage() – displays mutable images.

9/1/2006 3:42:04 PM© SoC, NUS Slide 45

2D Games

The Canvas
Super-class of GameCanvas
Requires implementation of paint method. It will be
called when the Canvas is shown on the screen. (When it
becomes current object of the Display)

protected void paint(Graphics g) {
g.<primitive drawing methods>

…….

}

9/1/2006 3:42:04 PM© SoC, NUS Slide 46

2D Games

The Canvas… (Key interrupt)
Key interrupt handling
– Key events return a Key Codes, which are directly bounded

to the physical keys. The mapping from key to key code is
device dependent.

– MIDP defines the following key codes, which represents the
keys on a ITU-T standard keypad: KEY_NUM0, KEY_NUM1,
KEY_NUM2, KEY_NUM3, KEY_NUM4, KEY_NUM5,
KEY_NUM6, KEY_NUM7, KEY_NUM8, KEY_NUM9, KEY_STAR,
KEY_POUND.

– Canvas defines another method getKeyName() which
returns the name of the key for the given key code.

– Canvas provides the following key event callback methods:
keyPressed(), keyReleased(), and keyRepeated().

Compared the key polling, it is easier to deal with key-
released and key-repeated events through key
interrupt methods

9/1/2006 3:42:04 PM© SoC, NUS Slide 47

2D Games

The Canvas… (Game Action)

Applications, which need only game related events and arrow key
events, can use the game actions rather than key codes to
maximize portability.
MIDP has defined the following game actions: UP, DOWN, LEFT,
RIGHT, FIRE, GAME_A, GAME_B, GAME_C, and GAME_D. The
game actions are mapped to one or more keys.
Portable applications can call the getGameAction() method to get
the game action represented by the given key code.

Listing 4.4 events and game actions

9/1/2006 3:42:04 PM© SoC, NUS Slide 48

2D Games

The Canvas… (Pointer Interrupt)
Pointing devices – mouse, touch screen, stylus and
trackball, etc.
Canvas class provides three methods to handle pointer events:
pointerPressed(), pointerDragged(), and pointerReleased().

Example : Listing 4.5 Pointer events.

9/1/2006 3:42:04 PM© SoC, NUS Slide 49

2D Games-SVG

Vector Graphics in Mobile Devices

Vector graphics Vs Raster graphics
– Technology of choice for scalable image and animation.
– Scalability
– Animation
– Interactivity
– Search-ability

Images source: svg.org

9/1/2006 3:42:04 PM© SoC, NUS Slide 50

2D Games-SVG

Scalable Vector Graphics
SVG is a XML based language for describing two-dimensional vector
graphics and graphical applications.
Specification: http://www.w3.org/Graphics/SVG/

– SVG 1.1, 1.2 for web
– SVG Basic and SVG Tiny for Mobile Devices (Phones and PDAs resp.),

Released Jan 2003 [Mobile SVG profiles]
– SVG Print for printing and achieving SVG
– sXBL is a binding language for SVG content

Filename extension .svg
SVG spec has three types of graphical objects:

» vector graphics shapes
» images
» Text

SVG specification includes a DOM (Document Object Model) API to
allow high-level manipulation of content.
Different from Vector Graphics used in Flash. (SWF format, is not XML
based)
Various Tools for Authoring:

– eg. “Ikivo Animator SVG-T tool (SVG Tiny)” special free offer for Sony
Ericsson Developers - http://developer.sonyericsson.com

9/1/2006 3:42:04 PM© SoC, NUS Slide 51

2D Games-SVG

Phones with Built-in SVG
Nokia: 3250, 5500 Sport, 6265, 6233, 6234, 6280,
6282, 7370, 7710, E50, E60, E61, E70, N70, N71, N72,
N73, N80, N90, N91, N92, N93
Sony Ericsson: D750, F500, K300, K310, K500, K508,
K510, K600, K608, K610, K700, K750, K790, K800,
M600, P990, S600, S700, S710, V600, V630, V800,
W300, W550, W600, W700, W710, W800, W810, W850,
W900, W950, Z500, Z520, Z530, Z550, Z710, Z800
Motorola: C975, C980, E770V, E1000, i870, V3X, V975,
V980, V1050
http://svg.org/special/svg_phones - full list of SVG
phones

9/1/2006 3:42:04 PM© SoC, NUS Slide 52

2D Games-SVG

JSR 226: Scalable 2D Vector Graphics API for J2ME

JSR 226 headed by Nokia in the Java Community Process
(JCP) www.jcp.org
Based on Tiny SVG specifications. New, phones with SVG
API are yet to be released.
The API supports,
– loading and rendering of scalable vector images, stored in

SVG/Tiny SVG graphics format.
– low-level graphics primitives
– supports Graphics Overlay and Layering

9/1/2006 3:42:04 PM© SoC, NUS Slide 53

2D Games-SVG

SVG Demo

More on SVG in future sessions …..

	2D Games
	2D games
	2D games
	2D Games
	2D games
	2D games
	2D Games
	2D games
	2D games
	2D games
	2D Games
	2D games
	2D Games
	2D games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games
	2D Games-SVG
	2D Games-SVG
	2D Games-SVG
	2D Games-SVG
	2D Games-SVG

