
Load Balancing for Massively Multiplayer Online Games

Fengyun Lu
Newcastle University

School of Computing Science
UK

+44 191 2227105
Fengyun.Lu@ncl.ac.uk

Simon Parkin
Newcastle University

School of Computing Science
UK

+44 191 2226053
S.E.Parkin@ncl.ac.uk

Graham Morgan
Newcastle University

School of Computing Science
UK

+44 191 2227983
Graham.Morgan@ncl.ac.uk

ABSTRACT
Supporting thousands, possibly hundreds of thousands, of players
is a requirement that must be satisfied when delivering server
based online gaming as a commercial concern. Such a
requirement may be satisfied by utilising the cumulative
processing resources afforded by a cluster of servers. Clustering
of servers allow great flexibility, as the game provider may add
servers to satisfy an increase in processing demands, more
players, or remove servers for routine maintenance or upgrading.
If care is not taken, the way processing demands are distributed
across a cluster of servers may hinder such flexibility and also
hinder player interaction within a game. In this paper we present
an approach to load balancing that is simple and effective, yet
maintains the flexibility of a cluster while promoting player
interaction.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems - Artificial, Augmented, and Virtual
Realities C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Massively Multiplayer Online Games (MMOGs) provide gaming
arenas within which hundreds of thousands of players participate.
There are a number of MMOGs that have gained commercial
success based on the premise of charging players to participate in
large scale persistent virtual worlds. In such virtual worlds players
may assume alternate identities and “live out” scenarios of their

own choosing while participating in game play regulated by
MMOG vendors. These types of MMOGs are commonly termed
massively multiplayer online role-playing games (MMORPGs).
MMORPG implementations are server based, allowing vendors to
regulate the provision of ever evolving alternate realities to
maintain player interest and, most importantly, restrict
participation to subscribed players. Player consoles connect to a
server which provides players access to a virtual world. As
revenue is generated on a per-player basis, the more players that
can be supported by a MMORPG the more revenue may be
generated. Therefore, scalability of a server, in terms of number of
players supported, is of great importance to ensure commercial
success.
To satisfy the demand for processing resources to provide scalable
MMORPGs, clusters of servers are employed to cumulatively
maintain game play by managing player interactions. The
additional processing resources required to support an increase in
player numbers is satisfied via the addition of servers to a cluster.
A major challenge in constructing scalable server side solutions
for MMORPGs is the need to provide players with mutually
consistent views of the gaming arena in a timely manner to allow
fair game play. However, when a virtual world contains hundreds
of thousands of players the required consistency cannot be
achieved in a timely manner without localised game play. By
identifying localised instances of game play the consistency of the
gaming arena becomes a more manageable problem of ensuring
consistency between subsets of interacting players.
The problem of satisfying the processing requirements of
localised game play over a number of servers in a cluster needs to
be tackled efficiently: load balancing techniques are required to
ensure processing resources are allocated within a cluster to make
best use of available servers. An ideal solution would be to ensure
such load balancing techniques allow: (i) equal distribution of
resources - prevent exhausting available processing resources on
one server while there is spare capacity on other servers; (ii)
flexible configuration - may afford the addition of servers during
runtime to accommodate additional players with minimum
disruption to game play; (iii) promotion of game play - does not
hinder game play by overly restricting player interaction within a
virtual world.
Our earlier work [1] demonstrated an approach to modelling
localised game play within a virtual world that does not hinder the
interaction requirements of players. This work was subsequently

 Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Netgames'06, October 30–31, 2006, Singapore.
Copyright 2006 ACM 1-59593-589-4. $5.00.

1

implemented using a network of servers and was demonstrated to
be scalable [2]. In this paper we tailor our system for deployment
over a cluster of servers and present a series of experimental
results. We demonstrate that load may be efficiently balanced over
a server cluster. In addition, our approach uses standard load
balancing mechanisms common in many Internet based
applications, allowing improved consistency via the addition of
servers to handle increasing numbers of players with minimum
disruption to the gaming experience of players.
The paper continues with a description of server side solutions to
load balancing techniques that may be deployed in MMORPGs
that use clustering of servers to gain scalability. Section 3
provides an abridged description of our approach to
regionalisation, its implementation using server clustering and
how we economically make use of existing load balancing
techniques. A series of experiments and associated results
demonstrating the usefulness of our approach is presented in
section 4. Section 5 draws conclusions from our work and
indicates future directions we expect to take in this line of
research.

2. BACKGROUND
The technologies that combine to provide scalable online games
supported by server clustering are determined by design choices
made in the areas of virtual world regionalisation (with respect to
identifying instances of localised game play), server clustering,
and load balancing. Design choices made in each of these areas
cannot be considered in isolation. For example, the choice of how
to regionalise a virtual world will influence how server clustering
and load balancing is achieved. Alternatively, the design of a
server cluster will feedback into the manner with which
regionalisation of a virtual world may be achieved. In existing
literature one or more of these design choices are assumed,
resulting in a narrowing of the available solutions. Therefore, in
this section we afford a degree of detail we believe is a necessity
for gaining a clear understanding of the possible solutions
available to developers.

2.1 Regionalisation
There are two extremes when determining how to sub-divide a
virtual world for the purposes of modelling player interaction
(localised game play) and providing manageable consistency:

• Geographic – world divided into regions at initialisation
time to reflect the structure of a virtual world.

• Behavioural – virtual world sub-divided to reflect the
interaction patterns of players.

Geographic approaches are suited to virtual worlds that contain
barriers to interaction that do not look out of place. For example,
rooms in a building may be regions and only players that share a
room may influence each other. Behavioural approaches are
determined not by static virtual world constraints such as walls
and ceilings, but by the ability of a player to express influence and
other players to express interest. For example, a fighter aircraft
may exert a greater degree (area) of influence than a foot soldier.
When it is not convenient to use virtual world structures to define
regions of a virtual world for use in a geographic approach, a
behavioural approach is more appropriate.
Work on the regionalisation of a virtual world for attaining
scalability and manageable consistency finds its origins in

academic research commonly termed interest management.
Regionalisation of the virtual world for interest management was
first demonstrated in NPSNET, original version presented at
SIGGRAPH 1991 [3] with regionalisation added in 1993/4 [4].
NPSNET divided the virtual world into static geographic regions
of regular sizes (not necessarily reflecting structures in a virtual
world), restricting interaction between players that exist within the
same or neighbouring regions.
The aura/nimbus approach, used by MASSIVE in the mid 90s [5],
modelled influence on a per player basis [6]. An aura describes
the area of a virtual world a player may exert influence with a
nimbus identifying an area of the virtual world a player may
express interest. Although this approach is still reliant on the
notion that players interact if they are geographically close to each
other in a virtual world, more accurate modelling of interaction
between players is possible compared to the NPSNET approach.
However, the additional processing resources required to
determine each player influence individually made this approach
not as scalable as the region based approach [7] [8]. Attempts
have been made to reconcile the scalability of regions with the
accuracy of auras with some success [9, 10]. However, the
scalability required for commercial MMORPGs is not achieved by
such systems.

2.2 Server Clustering
Popular games in the MMORPG genre (e.g., EverQuest, Asher’s
Call, Ultima Online, City of Heroes, and Star Wars Galaxies) all
employ clustered server solutions to achieve scalability while
managing consistency. The techniques used to implement their
interest management solutions in a server cluster is not described
in detail in a published article for general viewing (which is to be
expected for a commercial enterprise in a competitive market).
However, there is an article describing EverQuest’s approach in
general terms: a mixture of regions and “duplicate worlds” with
each duplicate world supporting approximately two to three
thousand players with each world divided into regions based on
the geography of the virtual world [11]. As regionalisation is
associated to virtual world geography, this approach is closely
related to geographic virtual world sub-division schemes.
In EverQuest a duplicate world is itself supported by a cluster of
servers, with regions used to aid in allocating the processing
requests originated from player actions amongst such servers as
and when required. Due to the similarities in game play and the
existence of duplicate worlds; one may assume that all other
commercial MMORPGs approaches to implementation of interest
management are similar, conceptually, to that of EverQuest.
Duplicate worlds and geographic influenced regionalisation
present a three step approach to reducing the consistency problem
to a manageable size: (i) players do not interact across different
duplicate worlds; (ii) players do not interact across different
regions; (iii) Players interact intricately with other players they
specifically target (e.g., click on with mouse). This approach
provides two distinct forms of interaction: (i) a general, viewing
type style, where players can see the actions of others in their
region (assuming appropriate line of sight); (ii) an intricate
manner where players directly interact with each other in a user
directed way. The latter form of interaction requires consistency
to be greater as ordering of events are usually crucial in intricate
game play (the server must resolve player interaction). The
consistency can be weaker in the general style of interaction as

2 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

summary information could be propagated between players. For
example, in a fight between two players in a virtual world attacks
must be regulated (e.g., ordered, not lost in transit) between
engaged players (e.g., spells, hitting, shooting) to provide an
outcome (e.g., decreased health, loss of inventory). However, for
players watching a fight between other players there is only a need
to view a series of fighting moves and the end result (that may or
may not reflect the actual fight moves as enacted between the fight
participants).
Commercial MMORPGs aside, there are a number of other works
in the area of scalable server side solutions that may be
appropriate for MMORPGs. A notable contribution is work
carried out by IBM. IBM has produced region based services that
are capable of supporting MMORPGs [12] that attempt to make
use of standards such as Web/Grid services. Regions are again
used in this work, providing a platform that would allow a similar
approach to implementation that would be expected in the
commercial MMORPGs already discussed. Other works (e.g.,
RING [16]) do employ multiple servers, allocating regions of
virtual worlds to different servers, providing a similar approach to
scalability (regions to servers) as advocated in commercial
MMORPGs.
There are a large number of academic works that have advocated
the client/server approach to virtual world implementation that,
with tailoring, may be suited to MMORPGs. BrickNet [15] is an
example of academic work that employs a server side solution.
However, in such works scalability is limited without the ability
to support server clustering.

2.3 Load Balancing
Load balancing is a term used to describe an attempt to efficiently
distribute an application’s processing requirements across a
number of servers. Considering server clustering for MMORPGs,
there are two ways of achieving load balancing:

• Player – Players are allocated to different servers (or
mini-clusters of servers) as and when they join a game.

• Interaction – Servers manage allocation of processing
recourses based on the interaction patterns of players.

The player oriented approach to load balancing is similar to
standard load balancing techniques in many server based
applications found on the Internet (e.g., search engines, shopping
carts, and auctions). These approaches rely on a network address
translator (NAT), or software equivalent, to allocate clients to
servers efficiently using a number of load balancing techniques
(e.g., round robin). The NAT “remembers” which server a
particular client is attached to and directs all requests from a client
to the same server during the lifetime of a session. A session is
simply an application dependent classification of related client
requests. The term sticky session is used to describe how a session
should “stick” to the same server throughout its duration. In
MMORPG a session may be identified as a prolonged period of
unbroken game play of a player.
Using a NAT alone for load balancing is most viable given the
ability of a single server to satisfy all a client’s requests
(homogenous approach to server clustering). Using this approach
to load balancing allows servers in the cluster to be removed for

maintenance or added as and when required without hindering
players on other servers. In MMORPGs, allocation of players to
duplicate worlds (and associated mini-clusters) is a close relation
to this form of load balancing, apart from the fact that the players
themselves, not a NAT, chooses which duplicate world they will
visit.
Once players are allocated to a duplicate world, there is still a
need to balance load across the server cluster supporting such a
world. If players are allocated to servers, as in the player centric
approach to load balancing, there would be a need for servers to
inter-communicate as players hosted on different servers interact
with each other. This increase in server side message exchange
may exhaust available bandwidth and processing resources if an
attempt is not made to limit such message exchange. This is where
the use of interest management becomes pivotal in the role of load
balancing for MMORPGs: interest management may identify
interacting players and be used to limit inter-server
communications while still allowing player interaction to occur.
The geographic approach of virtual world duplication and
regionalisation found in MMORPGs lends itself to load balancing
as design time decisions can be made as to which servers may
satisfy the processing requirements of different regions of a virtual
world. In this approach there is no requirement for inter-server
communications to model player interactions as all players will be
located in the same region, and therefore, be on the same physical
server. In addition, convenient breaks in game play (e.g., set piece
animation of travelling through a tunnel) can be introduced to
hide the delay encountered when a player crosses geographic
boundaries and associated processing resources are handed over
to different servers.
Due to the ease with which the geographic approach to interest
management may be mapped to processing resources there has
been little interest in mapping the behavioural approach to
servers.

2.4 Crowding
Allocating processing resources to different geographic regions of
a virtual world can result in crowding. Crowding is a phenomenon
that occurs in online gaming when the number of players that
congregate in the same area of a virtual world inhibits the
successful execution of interest management in a timely manner.
The effects of crowding may be a slowdown in game play or, in
worst case scenarios, a complete inability to enact player
interaction. This may be considered the same problem of
consistency management that regionalisation is attempting to
alleviate: without regionalisation the virtual world itself (single
region) may become populated by a sufficiently large number of
players as to make the consistency problem unmanageable.
In the presence of server clustering, there is an opportunity to
alleviate the crowding problem by dynamically associating
processing requirements generated by player actions during
runtime. This takes the form of load balancing player activities
across servers with respect to regions. The literature provides a
number of solutions to load balancing across server clusters
suitable for MMORPGs. Regions may be reduced in size by sub-
dividing them further (allocating servers to these additional sub-
divisions) [17]. Other methods distribute responsibility for region
execution to a particular server at runtime based on the volume of
players in a region [18], while other methods dynamically resize

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 3

regions during runtime [19]. Such approaches may be fine tuned
further to ensure that the cost of moving responsibility for
execution to another server is minimised [20].
EverQuest also describes runtime allocation of resources from
within small clusters of servers responsible for a duplicate virtual
world. Although no great technical detail is provided on how this
is achieved [11], the premise of this approach appears to be player
driven: when player enacts a particular action (e.g., opening a
door, entering into battle) processing resources are allocated to
satisfy the increased processing requirements.

2.5 Discussion
We find a contradiction in the direction of research concerned
with the approach to server side load balancing in MMORPGs: (i)
is based on geographic regionalisation to minimise server side
inter-communications to promote scalability; (ii) requires inter-
server communications to alleviate process exhaustion due to
crowding.
The behavioural approach to interest management has been
overlooked as it did not lend itself to load balancing in the same,
obvious manner, as geographic approaches to interest
management. However, with the problem of crowding we
encounter the same need for inter-server communication, yet
without the intricate game play afforded by behavioural
approaches to interest management. In addition, the allocation of
server resources dependent on interactions in a virtual world
requires quite elaborate techniques compared to the traditional
NAT load balancing approaches that are commonplace, increasing
processing resources required for the load balancing mechanism.
We compare the geographic approach to load balancing using the
three points relating to an ideal solution for load balancing
described in the introduction of this paper:

(i) equal distribution of resources – crowding can exhaust
server resources on one server while other servers are
lightly loaded;

(ii) flexible configuration – as virtual world geography is
linked to server configuration, removing or adding servers
is not straightforward (even if no players exist, re-
allocation of server responsibilities regarding virtual
world geography is required within a cluster when servers
are added or removed).

(iii) promote game play - geographic regionalisation is not as
appropriate as behavioural approaches when modelling
player interaction. Requiring additional “highlight by
click” intervention of a player.

2.6 Contribution of Paper
We wish to clarify and simplify an approach to load balancing for
MMORPGs and other, similar, games that depend on clustered
server solutions for scalability. We believe that online games that
gain scalability from server clustering will inevitably require
communications between servers, irrelevant of what techniques
are used for load balancing. Therefore, deriving ever more
elaborate techniques for mapping geographic regionalisation to
server allocation in a bid to prevent inter-server communications,
we believe, is not the appropriate avenue to take. We make this

statement for two reasons: (i) geographic regionalisation does not
afford the greatest potential for game play (player interaction); (ii)
the eventual cost, in terms of processing overhead, of elaborate
techniques of allocating processing resources in this manner
comes at a high price (process intensive).
In previous work we developed behavioural type approaches to
interest management that can scale [1] and be implemented in a
distributed server model (where servers are geographically
separated) [2]. We now advance this work into the area of
clustered server solutions.
We disregard all load balancing techniques based on mapping
geographic regions to servers. Instead, we restrict ourselves to
only using standard, “off the shelf”, sticky session type load
balancing common with a NAT based infrastructure. This allows
our technique to be economically employed with existing load
balancing technologies. Furthermore, as our technique is
behaviourally based, it affords more opportunity for introducing
rich interaction into game play than a geographic approach to
interest management. This added bonus may improve game play
substantially as players can more naturally interact with each other
without having to point and click at other player/artefacts to
invoke intricate game play. We demonstrate that our approach is
scalable via a series of experiments.
An additional contribution this paper makes to the community is
to provide a comprehensive overview of the state of the art in
scalable load balancing techniques for MMORPGs (described in
this section). We do this by clarifying, via categorisations, the
topics of interest management and load balancing in MMORPGs.
These two topics are intricately linked, and a clear understanding
of both is a necessity for any researcher in this area.

3. IMPLEMENTATION
We now describe our approach to clustered server deployment of
our system. We start by describing our approach to load balancing
and then continue with descriptions of our interest management
and server clustering implementation. We provide descriptions in
this paper only in sufficient detail to understand how our
approach is deployed over a cluster of servers. Extended
descriptions of our interest management scheme and its
implementation may be found in [1] [2], only the changes that
have been made to accommodate server clustering are highlighted
here.

3.1 Load Balancing
Our approach to load balancing is typical in the area of clustered
server solutions and relies on the allocation of client machines
(player consoles) to servers. We allow servers to communicate
player actions to each other as and when required but do not move
responsibility for processing player actions from the server they
are initially allocated. The diagram in figure 1 describes our server
cluster implementation.
In figure 1 a player’s console (C1) connects to the server cluster
via a load balancer (NAT), and is then associated to a particular
server in the application tier (e.g., S1) for the duration of this
session of interaction (sticky session). The application tier
satisfies the runtime requirements of game play. Via the database
tier, an application server may gain access to persistent artefacts
that constitute a gaming arena (e.g., virtual world constructs,
players’ statistics). A load balancer may exist between the
application tier and the database tier, presenting a single “image”

4 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

of a database to the application tier, simplifying the
implementation of the application tier (no need for application tier
to be concerned with database load balancing).

S1

S2

S3

C1

Application
logic tier

Data store
tier

Load
balancer
(NAT)

Server
cluster

technologies

C2

Load
balancer
(NAT)

Figure 1 – Server clustering in n-tier systems

We assume that the load balancers that are present (client-to-
application and application-to-data) are standard “off the shelf”
NAT type load balancers. Any load balancing scheme may be
enacted, however, we assume a simple round robbin approach that
attempts to equally distributed players to servers.

3.2 Interest Management
Our interest management scheme, predictive interest
management, may be considered behavioural in its approach, as
player interactions are associated to player expressiveness as
apposed to static geographic regionalisation of the virtual world.
We use auras (as described in [5]) for determining when players
should exchange messages. For clarity, we describe predictive
interest management by describing inter-player interaction only.
For a more detailed description of predictive interest management
the reader is directed to [1] [21]. Our scheme does not rely on the
presence of a server (acting as an oracle) and is suitable for peer-
to-peer deployment. We use the term avatar to denote a player’s
representation in a virtual world.
The aura of an avatar describes an area of the virtual world
enclosed by a sphere (Figure 2). The radius of an aura is specified
on a per avatar basis and is fixed at avatar creation time. Avatars
have the ability to influence each other when their auras collide
via the exchange of messages.
A predicted area of influence (PAI) identifies the extent of an
avatar’s aura over a period of time given the distance an avatar
may travel in a straight line in any direction (assuming an
avatar’s maximum speed).
Based on how PAIs and auras are overlapping in the virtual world
we may regulate message exchange between avatars:

• Aura overlap – aura overlap indicates interacting
avatars requiring high frequency positional update
messages (PUMs) to be exchanged between them.
PUMs carry positional information of the sending
avatar, but may also carry other game dependent data.

• PAI overlap – if PAIs overlap but not auras then there
is a possibility that such avatars may interact in the near
future, requiring admin PUMs (APUMs) to be
exchanged between them at a frequency that relates to
the degree of PAI overlap witnessed.

• No aura or PAI overlap – avatars exchange APUMs at
a low frequency, allowing for possible PAI/aura overlap
in the future to be realised.

In summary, the more PAIs overlap (but not auras) the higher the
frequency of message exchange. This provides a model where
avatars increase their message exchange frequency gradually until
auras overlap, when they continue by exchanging high frequency
messages. Alternatively, avatars decrease their message exchange
frequency gradually until they only exchange low frequency
messages.

Obj

Aura at time tclt

Aura at time tclt+ft

Distance travelled
between tclt and tclt+ft

Predicted area
of influence

Figure 2 – Defining Predicted Area of Influence (PAI).

Two avatars may come close to each other over time in a virtual
world (resulting in increased APUM exchange), but never
encounter aura overlap. This message exchange overhead is
accepted by us as necessary to avoid missing when avatar auras
are overlapping. In effect, we spread the processing requirements
related to the detection of aura overlap over a longer period of
time to avoid non-detection of aura overlap and promote a more
realistic interaction.

3.3 Server Clustering Implementation
Our concern, for this paper, is on clustering technologies related
to predictive interest management. Therefore, we perceive the data
store as a commercial database (e.g., Oracle) that comes complete
with its own load balancing technologies and concentrate our
discussion on the application tier.
Player consoles (clients) periodically send PUMs to the load
balancer. As a client may manage multiple avatars (we provide
flexibility in our approach in that we do not limit a client to a
single player representation in the virtual world), a single message
may contain multiple PUMs. These messages are synchronous
calls (implemented as RPC), with the return part of the message
containing one or more PUMs relating to avatars that are hosted
on other clients. A server may send PUMs to clients that have not
sent PUMs for a substantial length of time (i.e., due to player
inactivity – timeout determined by client). Our approach to
client/server interaction eases client participation in a virtual
world as clients only need send PUMs, not APUMs: the burden of
interest management implementation is solely within the
application server tier.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 5

Between servers individual APUMs are periodically combined
into single messages and distributed on a per-server basis.

Collision detector Message handler

Predictive interest
manager

Inter-Server Communications
Manager

Server instance

Message aggregator

PUMs

description
of interest

Figure 3 – Components of a server instance.

Figure 3 describes the main server components that contribute to
satisfying the interest management requirements:

• Message handler - receives and returns messages to load
balancer. If necessary, registering new player information
using data store tier.

• Predictive interest manager - uses predictive interest
management to construct appropriate APUM messages.

• Collision detector - identifies aura and PAI overlap to aid
predictive interest manager in constructing appropriate
APUM messages.

• Message aggregator - composes single messages from
multiple APUM messages for distribution to other servers.

• Inter-Server Communications Manager - supports
message exchange between servers.

The message handler receives PUMs from the load balancer and
returns to the load balancer descriptions relating to player
interests. The interest manager implements the predictive interest
management scheme and calls on the collision detector to identify
aura and PAI overlap. The collision detector implements a
collision detection algorithm that we specifically designed for use
with predictive interest management [22]. The interest manager
constructs APUMs and passes them to the message aggregator,
which in turn composes single messages from multiple APUMs on
a per server basis and passes such messages to the appropriate
servers via the inter-server communications manager
(implemented at socket level).
APUMs are received at a server’s message aggregator and are
passed to the predictive interest manager to aid in determining the
interest of avatars. Information relating to the interest of avatars is
passed to the message handler by the predictive interest manager.
The message handler then informs the load balancer of updated
avatar interests.
Our peer-to-peer approach to interest management has been
directly mapped to the application server tier in our clustering

solution. Message aggregation is used to conserve bandwidth
between servers, and so aid scalability.

4. Performance Analysis
In this section we present a series of experiments to determine the
suitability of our approach to load balancing and interest
management to satisfy the requirements of an MMORPG. The
requirement we are specifically interested in is that of scalability:
can our approach scale to a level similar to that found in
commercial MMORPGs while satisfying timely and consistency
requirements.
Typically, when a server nears exhaustion of its processing
resources due to excessive client induced load a slowdown in
server performance is witnessed. If client load is increased further
server failure will follow. As we have strict timely requirements
we wish to avoid such a slowdown in a server: it would be
misleading to indicate that a server is supporting many thousands
of players when such support is ineffective due to real-time
requirements not been met. Therefore, as soon as a server cannot
satisfy the real-time requirements of its clients a server fails.
Failure of a server is apparent in the graphs when a line stops
short of the maximum number of players supported (denoted by
the x axis).
We measure the percentage of messages dropped by a server and
place a finite size on a server’s message queues. In this approach,
a server may maintain real-time requirements at the expense of
dropping messages. The percentage of messages dropped by such
queues forms the basis of our measurements in the experiments
presented in this paper.

4.1 Testing Environment
This testing is based on 20 useable machines on the same LAN
segment. Each machine has a 2GHz Intel Xeon processor
(equivalent of 2x2GHz Pentium 4 processors with Hyper
Threading) with 1GB RAM running Red Hat Linux 7.2.
Servers are located on different machines on the same LAN
segment. Client (simulated player) machines are located on
different machines outside this server cluster (but connected via
100 Mb Ethernet to the LAN cluster). Using the client machines,
synthetic networking traffic for representing players is created.
Player numbers are increased in increments of 500 from 500 to
6000 (depending on experiment), with measurements taken at
each increment.
Each experiment’s duration was one hour to ensure the
initialisation overhead does not skew the results (e.g., player
registering and stream socket setup). Additionally, the machines
used for this experiment are a shared resource. As such, the
performance of the machines and the available network bandwidth
can vary considerably depending on the number and nature of the
processes running on each machine at the time each experiment.

4.2 Experiments
Four experiments have been conducted to test different aspects of
the system:

1. Single Server - The maximum number of players which
can be supported by one server;

6 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

2. Player Interaction - The upper bound of message
frequency a player console can send PUMs to the cluster;

3. Prediction Overhead - The overhead of APUM in the
predictive interest management scheme compared with a
traditional aura-based interest management scheme;

4. Scalability - The scalability of the system in terms of the
number of players that can be supported simultaneously.

5.
The first two experiments’ results can be used to assist game
developers to estimate appropriate system variables (PUM
frequency, number of servers, maximum number of players
supported) to provide acceptable performance. For example, given
a threshold maximum drop rate and a PUM transmission
frequency, the results of the first two experiments can be used to
estimate the number of servers required to achieve acceptable
performance for a given number of players.

As mentioned in section 3.2, predictive interest management is a
peer-to-peer approach and so relies on message exchange to
realise when aura overlap occurs. To ensure this is achieved in a
timely manner additional messages are sent when auras near
overlap, producing a message overhead beyond that of a simple
aura based approach. Experiment 3 determines the cost of such an
overhead. To encourage a like-for-like comparison we make use
of the same message aggregation techniques used in predictive
interest management for our standard aura approach (we simply
identify an avatar’s PAI to be the same size as an avatar’s aura).

The fourth and final experiment is to determine the overall
scalability of the system. Additional servers are added to
determine if player numbers can be maintained. In the EverQuest
article [11], individual clusters of servers may support 2500 –
3000 players. Therefore, we are seeking to surpass this figure. We
admit to not providing the detailed game play as EverQuest (we
are a proof of concept academic work), but we at least hope to
demonstrate scalability in the same league as commercial games.

4.3 Virtual World Simulation
To avoid the need to manually manipulate each individual player
avatar in a virtual world we simulate avatar movement. We
attempt to re-create the phenomena of periodic crowding
throughout an experiment to identify that our approach is suitable
in such scenarios. Deriving a suitable simulation of avatars to
exhibit the type of behaviour expected in a virtual world is not
documented in the literature. Therefore, we afford a reasonable
description of our technique to allow reproduction of our
experiments by others.
A program, called RandomWayPointWorld, is used to simulate
the movement of player’s avatars. A number of static points in the
virtual world are generated, markers, at virtual world creation
time. Each player’s avatar chooses a marker at random and moves
towards the marker for a random amount of time, termed marker
selection time (MST). During MST, the avatar’s position is
updated at the same frequency as the PUM messages sent to the
cluster of servers. Once the MST has been exceeded, an avatar
selects another marker at random, and continues the process. Each
marker remains at a position for a random amount of time, called
marker relocation time (MRT). Once MRT is exceeded a marker
relocates to a new position in the world. In order to determine the
MST and the MRT, four values are used to calculate the minimum

and maximum range of MST and MRT. As the x, y and z
dimensions are identical in a cubic world; the diagonal size of this
world can be calculated as:

23 sizedia WSize =

MRTlower is the lower bound of the MRT and it is defined as the
time taken for an avatar travelling with its maximum speed to
cover a distance equal to half the diagonal size of the world.
MRTupper is the upper bound of the MRT. Compared with the
MRTlower, MRTupper is the time taken for an avatar travelling a
distance, which is the same as the full diagonal size of the world,
with its top speed. These two variables are represented as the
formulas below:

)()
2
1(topSpeedSizeMRT dialower ∗=

)(topSpeedSizeMRT diaupper =

MRT is a random time selected within the range [MRTlower,
MRTupper] and can be decided based on the formula below:

))(
()(()

lowerupper

lower

MRTMRT
RandomMRTeCurrentTimMRT

−∗
++=

CurrentTime() is a function to get the current time of the system;
Random() returns a decimal number uniformly distributed
between 0 and 1. After the previous selected MRT has passed, the
MRT is recalculated. The process will repeatedly occur during the
lifetime of an avatar. This selection ensures that the time a marker
remains in a given position is a sufficient time, with respect to the
size of the world, to avoid markers repositioning too frequently. If
markers reposition too frequently, the avatar’s movement towards
the markers exhibits strange behaviour: when the avatars are
initialised, they are uniformly distributed within the virtual world
but, as time passes, the majority of the avatars crowd together in
the centre of the world. This is because, once an avatar reaches the
centre of the world, the direction they travel changes sufficiently
rapidly that it is unlikely they will be able to move to the
extremities of the world before they change direction
MST is chosen within the range of [MSTlower, MSTupper]. MSTlower
and MSTupper should be less than MRTlower and MRTupper
respectively. Therefore, an avatar can trace one marker and
change to a different marker before the marker relocation happen.
MSTlower and MSTupper can be defined as below:

4)(upperlowerlower MRTMRTMST +=

2)(upperlowerupper MRTMRTMST +=

Based on the calculated MSTlower and MSTupper, MST can be
determined:

))(
()(()

lowerupper

lower

MSTMST
RandomMSTeCurrentTimMST

−∗
++=

As the same as the MRT, MST will dynamically change during the
lifetime of the avatar.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 7

In order to simulate the movement of an avatar, the trajectory can
be predicted based on a set of formulas, which are used to
calculate the current position, velocity and acceleration of the
avatar according to the previous relevant information. Given a
fraction time (dt), if the distance (dis_marker_obj) between the
avatar and the marker is less than the distance (dis_travelled) an
avatar can travel based on the previous velocity, the position of
the avatar is set as the marker position and the velocity is set as 0.
The avatar will stay at the marker once its’ position is set as the
marker and it remains still until next marker is selected. This will
give an avatar variable speed before its speed reaches its
maximum speed. If dis_marker_obj is larger than dis_travelled,
the avatar is still moving towards the selected marker, the new
position and velocity of this avatar is required to be calculated. To
simplify the calculation process, the acceleration is set as a fixed
value, 10 meters per second in each dimension.

4.4 Single Server
This experiment is intended to determine the number of players
(represented as avatars) a server can support simultaneously. Due
to physical restrictions, such as CPU speed and the amount of free
memory, the number of players a server can support
simultaneously has a limit.

Single Server (3 Messages per Second)

0

10

20

30

40

50

60

500 1000 1500

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
D

ro
pp

ed

1 Server

Figure 4 – Single server

According to Figure 4, the message drop rate increases steeply as
the number of players increases. As can be seen from the graph,
with 500 players, the drop rate was just 1.96%; with 1000 players,
the drop rate increases to 16.9%; with 1500 players, the drop rate
reaches 54.8%. The performance of the system sharply degrades.
The reason for this is that the server received more messages than
it can handle per second. Therefore, under the current test
conditions, the maximum number of players a server can support
is 1500 players. However, considering the percentage of dropped
messages, player numbers of less than 1000 would be more
appropriate.

4.5 Player Interaction
The frequency a client sends PUM messages to a server must be
limited to some extent to avoid intolerable drop rates. Therefore,
the purpose of this experiment is to determine the maximum
acceptable frequency a node can send PUMs to a server cluster
that is of a fixed size. We compare server cluster sizes consisting
of 1, 2 and 3 servers.

2 Messages per Second

0
5

10
15
20
25
30
35
40

500 1000 1500 2000 2500

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
D

ro
pp

ed 1 Server
2 Servers
3 Servers

Figure 5 – 3 Servers, 2 messages per second

3 Messages per Second

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
D

ro
pp

ed 1 Server
2 Servers
3 Servers

Figure 6 – 3 Servers, 3 messages per second

4 Messages per Second

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
D

ro
pp

ed 1 Server
2 Servers
3 Servers

Figure 7 – 3 Servers, 4 messages per second

8 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

5 Messages per Second

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
D

ro
pp

ed 1 Server
2 Servers
3 Servers

Figure 8 – 3 servers, 5 messages per second

As can be seen from Figures 5 through 8 inclusive, the message
drop rate increases when the PUM transmission frequency is
increased. In order to analyse the results, only the tests with the
largest number of players for each number of servers will be
discussed (1500, 2000 and 2500 players for 1, 2 and 3 servers
respectively):

• 1 Server: at 2 messages per second transmission rate, a
single server with 1500 players drops less than 40% of the
messages. At 3 messages per second, a single server was
observed to drop 53% of messages. At 4 messages per
second, the server was observed to drop 56% of messages.
At 5 messages per second, the server dropped 60% of
messages.

• 2 Servers: the average drop rate observed with two
servers and 2000 players were 24%, 33%, 31% and 36%
for 2, 3, 4 and 5 messages per second respectively. The
deviation between 3 and 4 message per second from the
expected trend can be attributed to variations in the
external processing demands on the test machines.

• 3 Servers: the trend in drop rate is obvious in the 3 server
tests. The message drop rates grow proportionally to the
frequency of message transmission. The drop rates were
12%, 20%, 23% and 29% for 2, 3, 4 and 5 messages per
second respectively.

We show that when more servers are present fewer messages are
dropped, irrelevant of the frequency of PUM message exchange.
However, there is an anomaly present with 2 servers exhibiting
similar drop rates for 3 and 4 messages per second. We put this
anomaly down to external machine usage when the series of
experiments was recorded for 2 servers.

4.6 Prediction Overhead
This experiment is designed to determine the overhead of APUM
message exchange. As mentioned previously, the difference
between the predictive interest management approach and a
traditional aura-based interest management system is predictive
interest management’s utilisation of an additional message,
APUM, to pre-empt detection of potential aura intersections.
However, this additional message exchange may degrade the

system’s performance. Therefore, it is necessary to determine to
what extent the additional message, APUM, affects performance.

Standard Aura (3 Messages per Second)

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
D

ro
pp

ed 1 Server
2 Servers
3 Servers

Figure 9 – Standard aura, 3 messages per second

Predicted Interest Management (3 Messages per
Second)

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
D

ro
pp

ed 1 Server
2 Servers
3 Servers

Figure 10 – Predictive Interest Management – 3 messages per second

Figure 9 and figure 10 present the results of standard aura and
predictive interest management respectively. In both approaches,
the drop rate decreases as server numbers increase. However,
compared with the aura-based system, the message drop rate in
predictive interest management is higher. This indicates that there
is an overhead in our approach to interest management compared
to when the standard aura approach is used. This overhead is
directly related to the servers assuming responsibility for
generating, sending, receiving and processing APUMs. The drop
rate differences between the two ranges (for minimum and
maximum player numbers recorded per server) are [0.9% to
5.18%] in the 1 server experiments, [1.77% to 10.13%] in the 2
servers experiments and [0.03% to 8.22%] with 3 servers.
In the single server scenario, as there are no inter-server
communications involved, one may assume the overhead arises
due to the processing required to determine PAI overlap and
identify the appropriate frequency of APUM exchange.
With 2 and 3 servers the overhead increases above that of the
single server, however, in the worst case scenario the additional
overhead incurred by predictive interest management (2 server

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 9

2000 players) overhead is only 10% for maximum number of
players supported.
The increase in the drop rate, compared with the traditional aura-
based interest management system, does appear detrimental to the
appropriateness of predictive interest management on first
inspection. The overhead is tolerable (it is not that great in that the
system is unusable) and the addition of servers can alleviate the
overhead (which is the purpose of clustering).

4.7 Scalability
According to the results displayed in the first experiment in this
section, the maximum number of players a server can support
simultaneously is 1500 under our test conditions. In the following
experiments, the number of players our system may support is
increased as more servers are made available.

Scalability (3 Messages per Second)

0

10

20

30

40

50

60

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

Number of Players

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s
Dr

op
pe

d

1 Server
2 Servers
3 Servers
4 Servers
5 Servers
6 Servers
7 Servers
8 Servers
9 Servers
10 Servers

Figure 11 - Scalability

Figure 11 shows the performance results for up to 6000 players on
10 servers. The ideal trend should show the following when
servers are added to a cluster: (i) the drop rate decreases or
remains constant for a specific number of players; (ii) additional
players may be supported. From observations of the graph shown
in figure 11 we can see that what we consider to be an ideal trend
has been achieved. With ten servers present our system can
support 6000 players with drop rates of less than 10%.

5. CONCLUSIONS AND FUTURE WORK
We have presented an approach to integrating behavioural style
interest management and off the shelf load balancing techniques
to provide an efficient approach to scalable online gaming using
clustered server solutions. By taking a behavioural approach to
load balancing we are affording a greater degree of interactivity
while minimising the problem of crowding commonly found when
geographic regionalisation is used for governing player
interaction. In addition, our approach is less complicated
(application dependent) than related works associated to mapping
load balancing to virtual world regionalisation. Our series of
experiments demonstrate that our approach is scalable while
maintaining real-time requirements.
Our discussion of interest management, clustered server solutions,
and load balancing provides a comprehensive description of how
different techniques and technologies combine to provide scalable
server side solutions for MMORPGs. We provide clarification of

the techniques available, how they relate to each other, and their
justification for use. As such, we believe such a discussion
provides clarity of understanding for researchers new to this area
by providing a focus of detail that is difficult to attain in any one
co-located piece of text. This in itself, we believe, is a
contribution to the research community.
There is a need to conduct much more research to derive ideal
load balancing techniques for use in clustered server solutions for
MMORPGs. Techniques that are based on geographic
regionalisation may appear an appropriate approach to allocating
processing resources/servers and have been explored at length.
However, we have demonstrated that there are other opportunities
available to achieve similar results without using geographic
regionalisation.
Our future work will concentrate on extending the use of
behavioural interest management techniques to derive greater
scalability. We acknowledge that geographic regionalisation is not
without its merits. Therefore, we intend to explore combining
geographic and behavioural techniques to provide a unified
approach to efficient load balancing, suitable for a wide range of
different online gaming scenarios.

6. ACKNOWLEDGMENTS
This work is funded by UK EPSRC EP/D037743/1 “Networked
Computing in Inter-Organisation Settings” and UK EPSRC Grant
GR/S04529/01: “Middle-ware Services for Scalable Networked
Virtual Environments”.

7. REFERENCES
[1] G. Morgan, F. Lu, “Predictive Interest Management: An

Approach to Managing Message Dissemination for
Distributed Virtual Environments”, Richmedia2003,
Switzerland, 2003.

[2] F. Lu, K. Storey, G. Morgan, “Message Oriented Middleware
Services for Networked Games”, In Proc. of the I3D 2005.
ACM Symposium on Interactive 3D Graphics and Games,
Washington DC, 2005

[3] M. J. Zyda and D. R. Pratt, “NPSNET: A 3D visual
simulator for virtual world exploration and experience”, In
Tomorrow’s Realities Gallery, Visual Proceedings of
SIGGRAPH 91, p. 30, USA, July 1991

[4] M. R. Macedonia, D. R Pratt, and M. J. Zyda, "A Network
Architecture for Large Scale Virtual Environments,"
Proceedings of the 19th Army Science Conference, Orlando,
Florida, June 1994.

[5] C. M. Greenhalgh, "Awareness Management in the
MASSIVE Systems", Distributed Systems Engineering, Vol
5, No 3, September 1998, pp. 129-137, IOP Publishing.

[6] C. Greenhalgh, S. Benford, “MASSIVE: a distributed virtual
reality system incorporating spatial trading”, In Proc.
International Conference on distributed computing systems
(DCS 95), Vancouver, 1995.

[7] S. Singhal and M. Zyda, “Networked Virtual Environments,
Design and Implementation”, Addison Wesley, 1999.

[8] S. E Parkin, P. Andras, G. Morgan, “Managing Missed
Interactions in Distributed Virtual Environments”, to appear

10 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

in Eurographics Symposium on Virtual Environments,
Portugal, May 2006

[9] J. W. Barrus, R. C. Waters, D, B. Anderson, “Locales:
Supporting Large Multiuser Virtual Environments”, IEEE
Computer Graphics and Applications, 16,6, p 50-57, Nov
1997.

[10] S. Han and M. Lim, "ATLAS-II: A Scalable and Self-
tuneable Network Framework for Networked Virtual
Environments," In Proc. The Second Young Investigator's
Forum on Virtual Reality (YVR’03), Kangwon Province,
Korea, 2003.

[11] D. Kushner, “Engineering Everquest”, IEEE Spectrum
Magazine, July 2005.

[12] A. Shaikh et al, “On Demand Platform for Online Games”,
IBM Systems Journal, Vol 45, No1, 2006

[13] A. Bharambe, J. Pang, S. Seshan, “A Distributed
Architecture for Interactive Multiplayer Games”, In CMU
CS Technical Report Number CMU-CS-05-112, 2005

[14] D. Bauer, S. Rooney, P. Scotton, “Network Infrastructure for
Massively Distributed Games”, In Proc. of the 1st workshop
on Network and system support for games, Germany p. 36 –
43, 2002

[15] G. Singh, et al., “BrickNet: Sharing object behaviors on the
net”, In Proc. of the IEEE Virtual Reality Annual
International Symposium, pp 19-25. Los Alamitos CA, IEEE
Computer Society Press

[16] T. A. Funkhouser, “RING: A Client-Server System for
Multi-User Virtual Environments”, Computer Graphics
(1995 SIGGRAPH Symposium on Interactive 3D Graphics),
pp 85-92, Monterey, CA, 1995

[17] B. De Vleeschauwer, et al., “Network and System Support
for Games”, Proc. of 4th ACM SIGCOMM workshop on
Network and system support for games, pp 1 – 7, Hawthorne,
NY, 2005

[18] T. Das, et al., “NEtEffect: A Network, Architecture for Large
Scale Multi-User Virtual Worlds”, Proc. ACM VRST, pp.
157-163, 1997.

[19] M. Hori, et al., “Scalability Issues of Dynamic Space
Management for Multiple-Server Networked Virtual
Environments”, Proc. IEEE Pacific Rim Conf. on
Communications, Computers and Signal Processing, pp.
200-203, 2001

[20] J. Chim, R. Lau, H.V. Leong, and Antonio Si, "CyberWalk:
A Web-based Distributed Virtual Walkthrough
Environment," IEEE Transactions on Multimedia, 5(4):503-
515, Dec. 2003.

[21] F. Lu, “Monitoring Middleware for Distributed Virtual
Environments”, PhD Thesis, May 2006, Newcastle
University

[22] K. Storey, F. Lu, and G. Morgan, “Determining Collisions
between Moving Spheres for Distributed Virtual
Environments”, In Proc. of the Computer Graphics
International (CGI '04), pp. 140-147, June 16-19, 2004

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 11

