
Applicability of Group Communication for Increased
Scalability in MMOGs

Knut-Helge Vik
University of Oslo

knuthelv@ifi.uio.no

Carsten Griwodz
University of Oslo

griff@ifi.uio.no

Pål Halvorsen
University of Oslo

paalh@ifi.uio.no

ABSTRACT
Massive multiplayer online games (MMOGs) are today the
driving factor for the development of distributed interactive
applications, and they are increasing in size and complex-
ity. Even a small MMOG supports thousands of players,
the biggest support hundreds of thousands of concurrent
players. Since they are typically built as strict client-server
systems, they suffer from the inherent scalability problem of
the architecture. Computing power and bandwidth limita-
tions close to the server limit the possible number of players.
Also, the latency of communication between players through
the server will be higher than using direct communication.
In the paper, we address these issues and investigate im-
provement options.

A typical MMOG consists of a virtual world with a con-
cept of time and space that is similar to the real world. In
it, players are represented by avatars. Only subsets of these
avatars interact with each other at any given time. This
allows us to divide them into groups, and communication
among group members becomes a multi-party communica-
tion problem. Thus, to reduce resource consumption, we
compare the performance of several algorithms for group
communication with the current central server approach.
We use overlay multicast as the means of providing group
communication, and research algorithms for creating short-
est path trees, spanning trees, delay-bounded spanning trees
and, more specific, applying Steiner tree heuristics.

Our experimental results indicate that different approaches
are useful to reduce resource consumption while achieving
a good perceived quality under varying conditions, such as
frequent changes in group membership and the demand for
low latency.

1. INTRODUCTION
Massive multiplayer online games (MMOGs) are today

the driving factor for the development of distributed inter-
active applications. Game companies are maintaining cen-
tralized systems for their games (single server or clustered)

in spite of scalability problems. They do it because of the
advantages of this architecture. Compared to distributed
architectures, they are easier to manage, the game state re-
mains consistent, cheating is easier to detect and prevent,
and clients remain anonymous from each other while being
known to the game company.

However, most current MMOGs do not optimize event
distribution. There are no proxy servers, and clients are not
interconnected with each other at all. The server collects
and processes game events generated by clients, and uses
unicast communication for the distribution of game state
updates to all the clients. The overhead of handling all
communication among clients through the server can result
in long delays and a large amount of consumed networking
resources. The traffic concentration at the server is also vul-
nerable to network performance problems. The game traf-
fic must compete with all other traffic in the network, and
it is usually implemented using standard protocols. While
resource-wasting already today, such a system will have se-
vere scaling issues when the number of clients and amount
of data (e.g., streaming audio and video in future games)
increase. We are therefore looking for resource-reducing op-
tions while maintaining centralized control wherever it is
relevant. Improving the gaming experience in MMOGs is
tightly linked to reducing latency, and also making better
use of available resources in general.

In a typical MMOG, clients move avatars (in-game char-
acters) around in a virtual game world. The physical lo-
cation of a client is independent of the virtual location of
the avatar(s) it controls. Consequently, the virtual location
in the MMOG is the most important factor to determine
whether clients are interacting. Client interaction occurs
when avatars (in the virtual world) influence each others’
gameplay, i.e., by triggering game events such as shooting,
talking etc. Game events happening virtually far away from
where a client is controlling an avatar are usually irrele-
vant for its gameplay. And, to address this problem, it is
standard practice to define areas of interest (AoI) in the vir-
tual world. Figure 1 illustrates virtual and actual location
of clients in an MMOG. Each AoI region contain several
avatars controlled by clients. Clients sharing an AoI region
receive the game events that happen within that particular
virtual region, i.e., avatar position update.

We can derive that clients located in the same AoI will
benefit from communicating with each other. Furthermore,
group management for AoI regions may save resources like
CPU cycles and bandwidth for a typical MMOG.

While alleviating server load by increased group communi-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Netgames'06, October 30–31, 2006, Singapore.
Copyright 2006 ACM 1-59593-589-4. $5.00.

1

Figure 1: Location in the real world, and area of interest in the virtual world.

cation would be helpful, even more resources would be saved
if physical distance could be taken into account in group
maintenance. To better understand the relation of physi-
cal and virtual proximity, we have therefore taken a closer
look at an anonymized tcpdump file of a game trace. This
trace, kindly provided by Funcom, contains all anonymized
and encrypted packets from one of a few hundred game re-
gions of their popular MMORPG Anarchy Online [14]. Only
avatars that are located on the same game field may share
an AoI. In the one hour trace, we found connections to 175
concurrent clients. We considered that clients who shared a
network path to the server would be physically close to each
other. To determine whether clients were likely to share a
path, we examined the probability that the RTTs of their
messages share a probability distribution1. The result is
shown in figure 2. It visualizes the results of a Wilcoxon
test of connection pairs that checks whether clients’ RTT
values stem from the same RTT base value set. Every dot in
the graph shows two connections that share common RTTs
with a likelihood of 80% or higher. We observed that many
clients shared a network path to the server, and concluded
from this that it is worthwhile to examine local distribution
and local sub-distribution.

The observations regarding AoI group management and
the Wilcoxon test led our focus to one efficient means to
improve both aspects, namely multicast. And in this paper,
we research application level multicast for current central-
ized game server architecture as a first step towards a more
efficient game system architecture. The rest of the paper is
organized as follows: Section 2 looks at game traffic and mo-
tivates our use of application layer multicast. In section 3,
we introduce our experiments using reduced graphs in re-
lation with tree algorithms and present results. Section 4
discusses and highlights the practical values of the statis-
tics. Finally, we conclude and give directions for further
work in section 5.

1The first thought was loss correlation but the number of
packets per stream is so thin that packet loss correlation is
invisible

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180

co
nn

ec
tio

n
in

de
x

connection index

Figure 2: Path sharing matrix.

2. RELATED WORK
Most of the initial network-related research on multiplayer

games was aimed at understanding the characteristics of
game traffic [26, 8, 3, 29, 6, 11, 7, 4]. The research in-
cludes insights on latency and bandwidth issues. In games
where players control every action of their avatars, latency
becomes detectable at about 100 ms and makes game play
impossible at approximately 200 ms [26], whereas, real-time
strategy games can tolerate higher latencies [8] and have no
particular latency or bandwidth requirements [3, 29]. The
bandwidth requirements between a game server and every
individual client is generally very low [16]. Furthermore, the
traffic is bursty and shows a correlation of inter-arrival times
on the minute scale within individual streams [7].

Concrete solutions for improving the scalability of games
are less frequent. Several architectures based on proxy servers
[2, 24] or a peer-to-peer (P2P) architecture [18, 20] have
been proposed. Yamamoto presented distributed event de-
livery to peers [37], and admission control has been proposed
presented for a simple, wireless game [5].

P2P architectures are very successful, but, using a pure
P2P model would make it very hard to keep a consistent

2 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

game state. P2P would distribute the game state among
peers and have no central server. Hierarchical architectures
using proxies are an alternative that may be more suitable
for MMOGs. They include central servers and a set of dis-
tributed proxy servers [34].

Nevertheless, independently of the choice of distributed
architecture, communication among players should be han-
dled efficiently. We are therefore investigating group com-
munication mechanisms that are appropriate for game traf-
fic. However, we are not specifically investigating event dis-
tribution for P2P or central architecture, but rather compar-
ing different multicast distribution tree organizations and
relating them to possible game architectures.

2.1 Group communication
In this paper, we look at alternatives to a centralized com-

munication architecture, because centralized systems are used
for MMOGs today. As mentioned, AoIs in MMOGs define
groups of clients that benefit from communicating directly
with each other. We understand this as a group communica-
tion problem. One efficient means to provide group commu-
nication is multicast. Ideally, IP Multicast could be used.
However, group maintenance would require a large number
of addresses, and as it is not widely available anyway, we
focus on application-layer group communication. There is
not much work in this area of research that is specific for
games. One of the few examples include Vogel et al. [35] who
propose a priority function combined with Dijkstra’s short-
est path tree (SPT) and minimum spanning tree (MST) al-
gorithms, that can build trees with more direct paths, or
longer paths depending on the input priority. Their graphs
use priorities to achieve low latency, but they do not con-
sider a maximum end-to-end latency. Neither are minimal
tree cost, tree generation time or dynamic group manage-
ment covered. Unfortunately, all these are very important
to online games.

On the other hand, there is a considerable body of work on
multicast group maintenance, both at the network and ap-
plication layer. Several studies have been performed aiming
for efficient overlay tree construction and maintenance. For
example, Yoid [13] provides an architecture for both space-
and time-based multicast. NICE [1] arranges group mem-
bers into a hierarchy of layers and proposes arrangement and
data forwarding schemes. In Narada [12], end systems self-
organize into an overlay structure using a fully distributed
protocol. Further, end systems attempt to optimize the effi-
ciency of the overlay by adapting to network dynamics and
by considering application level performance. ALMI [27] is
an application level group communication middleware, tai-
lored toward support of multicast groups of relative small
size with many to many semantics. These proposed mecha-
nisms are starting points, but none of these approaches sup-
port constraints such as the latency constraints demanded
by games. Furthermore, none of them has an understanding
of maintaining subsets of a larger set of nodes. An approach
that looks at the maintenance of subgroups within a larger
set of overlay or P2P nodes is PartyPeer [23]. This sys-
tem creates subgroups by forming overlay multicast groups
as subtrees of a tree that covers the entire set. However,
the approach taken can lead to degrading performance since
subgroups are always created as subtrees of a single tree for
the entire application.

2.2 Graph algorithms
The related work on multicast group maintenance include

many different graph algorithms. In our research, we apply
basic tree building and graph algorithms to group commu-
nication in MMOGs. In particular, we focus on basic tree
algorithms solving the problems of finding the shortest path
tree (SPT), minimum spanning tree (MST) and Steiner min-
imal tree in networks (SMT) [15, 19].

An SMT is a cost-minimized tree connecting a subset of
vertices within a larger weighted graph, and SMTs can add
vertices that are not a part of the group (receivers), i.e., this
makes it usefull for MMOG multicast. These extra vertices
are called steiner points, and they are used to minimize the
cost of the tree. An SMT with no steiner points is equal to
an MST.

These algorithms can build trees with diverse properties,
and MMOGs have situations that call for different algo-
rithms. For example, the same MMOG may have first-
person fighting scenes with frequent group membership changes,
regional updates (weather, economy) with a slow update fre-
quency, and global chat channels with membership changes
only when players enter and leave the game. It is also com-
mon that one MMOG needs different communication styles
for different events, such that all-to-all, many-to-many and
one-to-many styles are required within the same application.
Thus, several trees for different subsets of players with dif-
ferent optimization goals are often desirable in an MMOG.

2.2.1 Steiner Minimal Trees (in Networks)
The physical distance between clients within an AoI is po-

tentially very large. It is beneficial to use an SMT because it
can add steiner points (usually well connected nodes) to min-
imize the total cost of the tree. Those steiner points could
simply be chosen from the set of all active clients whenever a
recomputation of the multicast tree becomes necessary. This
would, however, require a rather complex evaluation func-
tion that takes more properties of a client into account than
just the latency that is introduced by the links that connect
it to other clients. To mind come available host resources,
bandwidth (in particular uplink bandwidth), location, and
stability of the client, which would be dominated mainly by
the average duration of a gaming session of that client. In-
stead of using a complex evaluation function, the MMOG
provider could pre-select potential steiner points based on
those properties, reduce the size of the problem, and simplify
the cost function. One way of doing this is for the provider to
establish strategically placed nodes that are well connected
and offer only these as potential steiner points in SMT algo-
rithms. Such nodes could be proxy servers that are placed
in hosting centers which are frequently well-connected as
well. Another way is to select clients that have beneficial
properties as steiner points.

No matter what approach to steiner point selection is cho-
sen, the latency-critical flows in MMOGs that are related to
movement and action are very thin (they consume very little
bandwidth) and the groups are short-lived, such that graph
algorithms may not choose any steiner points because of the
latency penalty. On the other hand, in an MMOG that
includes audio or video streaming, such nodes may fit well.

2.2.2 Tree Algorithms
In our experiments, we used nine different tree algorithms

(Table 1), including five SMT algorithms. We apply the

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 3

SMT problem in an undirected network G = (V, E, c), where
V is the number of vertices (|V | = n), E is the number of
edges (|E| = m), c : E → R is the edge cost function,
Z ⊆ V is a subset with |Z| = p. The objective is to find
a minimum cost connected subnetwork GZ = (VZ , EZ , c) of
G with Z ⊆ VZ . The SMT heuristics we have implemented
are:

• Delay Constrained Shortest Path Tree (DCSP) [10],
has a time complexity of O(n2). It is based on Di-
jkstra’s shortest path algorithm. A constrained mini-
mum cost tree and a shortest delay path tree are cre-
ated in parallel. They are combined to find a delay-
constrained shortest path tree.

• Shortest Path Heuristic (SPH) [33], has a time com-
plexity of O(pn2). It is based on Prims’s MST algo-
rithm [15]. The tree is built from a source, and for each
iteration, SPH connects the next Z-vertex through the
minimum cost path to the tree. Waxman [36] showed
that SPH is only performing 5% worse than the opti-
mum SMT on average.

• Delay Constrained Shortest Path Heuristic (DCSPH),
is based on SPH, only it uses a delay constraint in
addition to cost. It creates a delay constrained tree
using the same approach as DCSP.

• Distance Network Heursitic (DNH) [22], has a worst
case time complexity of O(pn2). DNH starts by build-
ing a distance network graph using only Z nodes. It
then replaces the individual edges in the distance net-
work graph with the original paths in the input graph.
Finally, a MST is run from the source to find the DNH
SMT.

• Average Distance Heuristic (ADH) [28], has a worst-
case time complexity of O(n3). ADH starts with a
forest of trees, each containing only one vertex, and
iteratively connecting them using the minimum cost
path until there is one tree spanning all Z-vertices.

In addition, we tested Minimum Diameter Degree Bounded
Spanning Tree (MDDBST) [31]. It is a heuristic of the Min-
imum Diameter Degree Limited (MDDL) problem. It has a
time complexity of O(n3), and is based on Prim’s MST al-
gorithm. It creates a tree of minimum diameter and uses a
degree bound to limit the number of out-edges from a node.
Further, we used Prim’s Minimum Spanning Tree (MST)
and Dijkstra’s Shortest Path Tree (SPT) [15]. Moreover,
to test centralized event distribution we defined Server-SPT
(SSPT), an SPT where the server is always the root node.

3. EXPERIMENTS
To test and evaluate different apporaches, we implemented

an application layer multicast simulator, SimALM. It simu-
lates group communication in an MMOG using a centralized
server architecture. In the following subsections, we intro-
duce SimALM, describe our test setup and present results.

3.1 The SimALM Simulator
SimALM uses a fully meshed (complete) shortest path

graph (SPG) to simulate group communication. The SPG
is an application layer graph, where all the nodes are clients.

Algorithm Span. Optimization Constr. Time
tree goal compl

DCSP no src/dst hop-cnt dist O(n2)
SPH yes sum of dist – O(pn2)
DCSPH yes hop-cnt dist O(pn2)
DNH yes sum of dist – O(pn2)
ADH yes sum of dist – O(n3)
MDDBST yes min-diam. dist out-deg O(n3)
MST yes sum of dist – O(n2)
SPT no src/dst dist – O(n2)
SSPT no server/dst dist – O(n2)

Table 1: Algorithms implemented in SimALM .

The underlying router topology is invisible from the point
of view of the SPG.

It has been argued that the topology generator BRITE [25]
generates Internet-like topologies [21, 17], and we have used
it to generate router networks. For our experiments, we used
flat undirected Waxman topologies [36] with 200 routers,
where the router placement was random in a plane of size
1000 × 1000 units. The placement in the plane is used by
BRITE to calculate the edge weights between the routers
(maximum possible edge weight is 16.77 deci units). We
assume that every router has one client connected to it.

Next, the BRITE network graph is translated into an
undirected fully meshed SPG on the application layer, G =
(V, E, c), where V the set of clients in the MMOG, E is the
set of undirected shortest path edges connecting the clients,
and the edge cost function c : E → R that is the sum of the
edge weights on the shortest paths from the BRITE network
layer graph.

The nodes in the SPG are now clients, and the edges are
shortest paths connecting each client pair. These shortest
paths between clients include a varying number of routers,
that are invisible from the application layer. Each edge in
the SPG has two cost values associated to it. One is the edge
weight distance, the other is the network layer hop count.
They are calculated from the BRITE router network graph,
by summing the edge weights on the shortest paths, and the
resulting hop count. Remember, each router in the BRITE
network graph was transformed to a client in the SPG. Fig-
ure 3 shows how a BRITE network graph is converted to
an SPG. Furthermore, relaying packets through intermedi-
ate nodes contributes to the end-to-end delay, thus, a relay
penalty is added for each intermediate router on the shortest
path.

3

2

4

1

5

3

4

2

2

1

1

4

3

4

6

4

6

2
1

3

2

4

1

5

3

4

2

2

1 Convert to
Application Layer

SPG

SPG Application Layer GraphBRITE Network Layer Graph

Figure 3: A BRITE (router) network layer graph is
converted to an application layer SPG.

From the SPG, we choose the best connected client to
act as the MMOG server. The remaining are clients con-

4 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

trolling an avatar in the MMOG. These avatars roam the
virtual world, where they enter and leave AoIs, and they
are simulated using a random walk model on a torus. The
torus is divided into |V | squares, where each square repre-
sents an AoI. At the start of a simulation, each AoI contain
one avatar. When an avatar changes AoI, the client sends
enter and leave group requests to the central server. The
central server maintains one distribution tree for each AoI,
such that when it receives a group request for an AoI, it
updates the group information, creates a new tree and dis-
tributes it to the new members of the AoI. For every enter
and leave request that is received by the central server, tree
statistics are calculated for the group tree that is created.
The central server stores the state for all the groups in the
MMOG. Figure 4 illustrates how SimALM works.

In our simulations, the number of clients is fixed, but
an MMOG has a varying number of clients playing at any
given time. However, we still have unpredictable dynamics
in group membership. For now, we assume that member dy-
namics are handled and that the server always has the latest
member view. In addition, we assume that sufficiently good
latency estimation for all clients is available to the server.
When we drop either of these conditions in future work,
we must reconsider this simplification. Furthermore, we are
aware that building a new tree for each request is an over-
head if there are frequent AoI changes and/or low latency
requirements2. However, the main purpose of our experi-
ments is to investigate how suitable each algorithm is for
different group sizes and game-dependent conditions. We
evaluate graph and tree algorithms to determine how well
they can be applied in games under different conditions.

3

2

4

1

5

3

4

2

2

1

1

4

3

4

6

4

6

2

3

3

2

4

1

5

3

4

2

2

1

1

Reduced graphSPG

Figure 5: SPG is reduced to a graph with fewer
edges.

The speed of the tree algorithms is highly influenced by
the input graph. As previously explained, an application
layer graph is fully meshed. This is an advantage in terms
of connectedness, but the number of edges in a fully meshed
graph is a permutation of pairs of vertices, i.e., a graph
with 10 vertices has 45 edges, a graph with 45 vertices has
990 edges. Thus, tree algorithms will become considerably
slower when the number of vertices increases. Reducing the
number of edges in the input graph will improve the com-
putation time, and SimALM supports a set of strategies for
creating subgraphs. They are introduced in section 3.4. Fig-
ure 5 shows an example of reducing an input graph.

The distribution trees are created using the tree algo-
rithms listed in table 1. They are introduced in section 2.2.2.
DCSP and DCSPH both produce trees even if delay con-
strained paths cannot be found.

2Our ongoing work address this issue

3.2 Performance Metrics
We used several metrics to compare the variety of tree

algorithms. In our investigation, we mainly consider these
four metrics:

• Total cost is the sum of all the edge weights in a tree.

• Maximum pair-wise distance is the maximum distance
in terms of edge weights between any two nodes in the
tree.

• Execution time is the time in milliseconds (ms) that
the computation of the tree takes.

• Out-degree is the number of direct neighbors in the
resulting tree.

The total cost of an AoI distribution tree is especially im-
portant considering the current centralized server approach
that the vast majority of MMOGs use. They apply an SSPT
where all the clients are leaves and the server is the source.
The resource usage on the server is very high, which is why
the MMOG provider must scale up the central server cluster
when the number of players increase. Thus, as the total cost
can give an indication of the required resource consumption,
we aim for a mechanism minimizing the total cost .

Another important aspect in group communication is the
maximum pair-wise distance. It is particularly important
when the event distribution is many-to-many within a mul-
ticast tree, as often in MMOGs. The current situation with
a centralized server does have drawbacks when it comes to
maximum pair-wise distance. The location of the server in
relation to the location of the clients, has a significant effect.
I.e., a central server cluster in North-America, gives the low-
est maximum pair-wise distance for clients located in North-
America, but higher for clients in, for example, Europe. A
distribution tree with vastly different maximum pair-wise
distance may give unfair playing conditions. Keeping the
maximum pair-wise distance as small as possible should be
a goal.

The execution time of an algorithm provides an estimate
of its performance when the group size increases, but also
how it behaves when the group membership changes fre-
quently. The time it takes to create a new AoI distribution
tree, must be a function of the expected dynamics in an AoI,
i.e, if avatars join/leave rapidly, a distribution tree must be
configured fast. In our experiments we investigate how the
tree algorithms are usable. The execution time affects the
game play if there is fast group changes.

Until now, out-degree has not been a concern in MMOGs
because flows are small. But, more resource-intensive audio-
video streams are features that MMOGs will soon support.
A client-server architecture would have scalability problems.
In a distributed approach where also clients forward streams,
their out-degree needs to be limited, because each link con-
sume limited client resources.

In our experiments, the DCSP and DCSPH algorithms
used a delay constraint of 5, and MDDBST a degree con-
straint of 4 throughout the simulations. Due to time con-
straints, we did not vary these parameters. Moreover, every
tree algorithm was tested for each network, and every ex-
periment was run 10 times on Pentium 4 CPUs. Finally, the
graph and tree algorithms are implemented using the Boost
graph library [32].

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 5

4

5

4

3

4

6

4

6

2

3

2

4
1

5

3

4

2

2

1

1

4. AoI distribution tree.2. Server updates AoI. 3.Tree Algorithm.

1. Avatar leaves/joins AoI. 5. Distribute to clients in AoI tree.

Clients’ location in the real world.

Clients’ AoI in the virtual world.

� �� �� �
� �

�

��� �� �

� �	 	

�

���

��� �
� �

�

��� �� �

Figure 4: SimALM - 1) An avatar changes AoI and the client sends leave/join requests to a central server,
2) the central server updates the AoI group, 3 and 4) the server creates new AoI-trees, 5) the new trees are
distributed to clients in AoI tree.

In the next sections, the results from the experiments we
performed are presented. First, we performed experiments
using the entire SPG as input to the tree algorithms for
each group request (section 3.3). Second, we used graph
reduction algorithms to reduce the number of vertices and
edges in the input graph (section 3.4).

3.3 Complete Graph
The next results are from experiments that used the full

SPG as input to the tree algorithms. Every input graph had
200 clients, and was fully meshed. This is a massive over-
head, but provides a benchmark when we later test reduced
graphs. The experiment parameters are listed in table 2.

3.3.1 Results with complete graphs
Figure 6 presents the average total cost for the AoI groups.

It is computed by adding all the edge weights in the trees.
We observe that the spanning tree algorithms (MST, SPH,
DNH and ADH) produce considerably cheaper trees than
the shortest path algorithms SPT, SSPT, and DCSP. DC-
SPH is a spanning tree algorithm based on SPH. Along with
DCSP, it optimizes for network layer hops (calculated from
the BRITE graph) within the delay constraint. Each edge
has an associated network layer hop (cost), and edge dis-
tance (weight). such that the total cost is increased. MD-
DBST produces the minimum diameter tree, within the de-
gree constraint. If MDDBST had no degree constraint (in-
finity), it would produce a tree where some clients have
a much higher out-degree, and the tree would resemble a
shortest path tree.

Figure 7 show snapshots of some actual group trees from
the simulations. The figures illustrate how results can differ
so much. Figure 7(a) (SSPT) visualizes what a group tree
using the current centralized architecture looks like. The
server is at the center, and all group members are leaves.
This increases the total cost of a tree, since it is only the
shortest path from the source that is considered. Figure 7(b)
shows DCSP, which is based on Dijkstra’s shortest path al-
gorithm, and the example tree shows this influence by con-
necting a large number of group members to the center node.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

Figure 6: SPG: Average total cost of the AoI distri-
bution trees.

Figure 7(c), DCSPH, is a spanning tree algorithm with a de-
lay constraint of 5, and we observe that the tree is fairly com-
pact, although it is a spanning tree algorithm. Figures 7(d)
and 7(e) are based on the spanning tree algorithms SPH
and ADH, respectively. They are longer and do not have
a clear center, because they optimize for the sum of edge
weights. This fact makes the resulting trees likely to have
longer maximum pair-wise distances within the tree, thus
affecting many pairwise connections.

Figure 8 plots the average maximum pair-wise distance
between leaf clients in AoI distribution trees. As expected,
spanning tree algorithms contain node-pairs with a higher
average maximum pair-wise distance than the shortest path
tree algorithms. Spanning tree algorithms optimize for total
cost, whereas, shortest path algorithms optimize for source-
destination distance. Thus, shortest path algorithms pro-
duce a more stable (even) maximum pair-wise distance. In
spanning trees there will be node-pairs with a much higher
distance. Among the SMT algorithms we observe that ADH
has the lowest maximum pair-wise distance. Furthermore,
the delay constrained algorithms DCSP and DCSPH can be

6 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

(a) SSPT (b) DCSP (c) DCSPH (d) SPH (e) ADH

Figure 7: AoI group-tree snapshots. Group members are dark, well connected clients are light.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

Figure 8: SPG: Average maximum pair-wise distance

between leaf clients in the AoI distribution trees.

tuned according to the delay constraint, such that with a
loose (high) delay constraint, the resulting tree will have a
higher maximum pair-wise distance. We would expect DC-
SPH to have a lower maximum pair-wise distance. But, it
is a spanning tree algorithm that optimizes for hop count
and ignores edge delays. This combined with a loose delay
constraint results in higher pairwise distances.

The execution time is measured in milliseconds, and is
how long a tree algorithms requires to create a new AoI
group tree. Figure 9 shows the average execution time of
the AoI distribution trees. We observe that ADH is by far
the slowest algorithm. It takes on average 37 seconds to
create a new distribution tree. Two new trees are created
for each group change (leave/join) operation, hence we can
deduct that ADH is not suitable for dynamic AoI group
management. The reason ADH is so expensive lies in the
algorithm details. It calls Floyd-Warshall [15], an O(n3)
algorithm, and has very expensive table update routines.
This makes the execution time of ADH very dependent on
the input graph. And, in the case of SPG the input graph
size is fixed. However, ADH is an alternative if the groups
are static and/or not time-critical.

The fastest SMT algorithm is DCSP, because it consists
mainly of two calls to Dijkstra’s shortest path algorithm.
The remaining SMT algorithms (SPH, DNH and DCSPH)
have the same complexity (table 1) and close to the same
execution times.

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70

m
ill

is
ec

on
ds

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70

m
ill

is
ec

on
ds

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

Figure 9: SPG: Average execution time (ms) of the
AoI distribution trees.

From the results shown in figure 10, we see that SPT,
SSPT and DCSP have an average out-degree that is much
higher than the other algorithms. The out-degree of delay
constrained algorithms is expected to increase as the delay
constraints are loosened, and we can see this tendency in
DCSP and DCSPH. However, DCSP is based on Dijkstra’s
SPT, and thus, has a higher maximum out-degree. The re-
maining spanning tree algorithms (SPH, DNH, ADH and
MST) all have lower out-degree on average. The out-degree
of MDDBST is always four because it was the degree con-
straint.

3.4 Reduced Graph
The previous experiments used SPG as input to the tree

algorithms. Here, we introduce subgraph algorithms that
reduces the number of edges and vertices, i.e., with the AoI
members as a minimal set of vertices. The reduced graph
is then used as input to the tree algorithms. Such a reduc-
tion has effects on the output tree quality and especially the
algorithm execution time.

An SPG holds all the MMOG clients. However, the num-
ber of vertices can be reduced by allowing only AoI mem-
bers in a reduced graph. Moreover, when we apply SMT
algorithms, we allow a set of well-connected clients to enter
the reduced graph. We will refer to them as well-connected
clients, but they may just as well be proxy nodes from the
MMOG provider [34]. However, in our experiments, all

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 7

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

ou
t-

de
gr

ee

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

ou
t-

de
gr

ee

Number of AoI Clients

SPH
DNH
ADH
MST
SPT

SSPT
DCSP

DCSPH
MDDBST

Figure 10: SPG: Average out-degree of the AoI dis-
tribution trees.

nodes are also clients controlling an avatar in the MMOG.
By applying these simple techniques, the number of ver-

tices in the reduced graph is bounded by the number of
members in the AoI (Z) and the number of well-connected
clients we choose to include. The result is the vertex subset
VZ of G, where VZ − Z is the set of well-connected clients.
The number of well-connected clients for each input graph
can, for example, be a server-set parameter. In our experi-
ments, the total number of well-connected clients is fixed to
30 (in the entire network) and the number of non members
for each input graph is |Z| ∗ 0.25. The selection criteria is
based on the relative location of the clients.

The fully meshed SPG has a permutation of pairs of ver-
tices. In our experiments, SPG includes |V | = 200 and
|E| = 19, 900. However, the resulting tree will contain only
|EZ | = |VZ |−1. We use the graph pruning algorithm k-best-
links (kBL) [38], to reduce the number of edges in the input
graph. It works as follows: 1) For each member vertex, in-
clude the k best out-edges that are not yet included, 2) For
each well connected non-member vertex, include an edge to
each member vertex. Step 2 was added to the original kBL
to ensure connectedness of the reduced graph. kBL produces
a graph with |E| = k∗|Z|+ |nonmembers|∗|Z|. Suppose we
have 50 vertices, where 40 are member clients, and 10 are
well connected non-member clients. A fully meshed graph
has 1225 edges, while kBL, with k = 2, produces a graph
with 2 ∗ 40 + 10 ∗ 40 = 480 edges. After applying kBL we
are left with the subset S(Z, G) of G, where S(Z, G) is the
subset of edges of G that contain a node in Z. The final
subgraph is then GZ = (VZ , S(Z, G), c).

The well connected clients are, in our experiments, con-
tained in a fixed size pool. They are available to the server
at the start of the simulation, and are selected to be in the
pool based on the relative location in the SPG. A well con-
nected client that is included in an AoI distribution tree is
most likely beneficial to keep longer in the tree. Such that,
the well connected clients already in a distribution tree are
kept in the input graph when the next group change oc-
cur. We test both keeping well connected clients across AoI
reconfigurations, and selecting new ones for each time.

The above observations form the foundation of the ex-
periments using reduced graphs as input to tree algorithms.
Next, we list the subgraph creation algorithms that we used
in our experiments:

Description Parameter

Number of nodes in SPG n = 200
Delay constraint (DCSP and DCSPH) 5
Degree constraint (MDDBST) 4
k-Best Links (kBL) k = 2
Well connected nodes, pool size (fixed) 30
Non-members in (if appl.) reduced graph |Z| ∗ 0.25
Test computers P4 CPU

Table 2: The configuration of the experiments.

• CM, the Complete Member (CM) graph, (Z, S(Z, G), c),
is a fully meshed graph with only members from an
AoI.

• RR-CM, a CM graph, pluss s non-members selected
in a round-robin manner from a pool of well connected
clients. The set s is new for each tree creation.

• F-CM, same as RR-CM, only now the set s of non-
members include, non-members from the previous in-
stance of the tree, and from a FIFO queue.

• RR-kBL, is an RR-CM with reduced number of edges,
using kBL.

• F-kBL, is an F-CM with reduced number of edges,
using kBL.

The experiment parameters are listed in table 2.

3.4.1 Results with reduced graphs
We observed in section 3.3.1 that using the complete SPG

as input to a tree algorithm is a massive overhead in terms
of execution time. Next, we use reduced graphs that are
created from the SPG. It is important that a reduced graph
does not decrease the quality of the resulting tree, in terms
of the performance metrics (section 3.2).

Figure 11 shows the average total cost of trees with AoI
size between 40-50, using SPG, F-CM and F-kBL. As ex-
pected, SPG does have the lowest total cost . However,
the reduced graph approaches are surprisingly close, i.e.,
reducing the input graph has little influence on the total
cost. DCSP and DCSPH optimize for hop-count and not
distance, thus a clear tendency cannot be extracted. How-
ever, the motivation for using reduced graph algorithms in
relation to tree algorithms is clearly there. Furthermore,
CM is the most basic reduced graph algorithm, because it
only includes the group members as vertices. When CM
is used, it is only useful to apply the non-SMT algorithms,
since SMT reduces to an MST problem when p = n (|Z| =
|N |). The non-SMT algorithms are faster, but they do not
support adding potential well connected clients to the tree.
Figure 13 shows the total cost improvement with (F-CM)
and without (CM) well connected clients. As we observe
the total cost improvement using well connected clients is
not particularly high.

Table 3 shows the average execution time of AoI distribu-
tion trees with 40-50 members. We observe that, among the
SMT algorithms, DCSP is much faster. This is expected,
when looking at the complexity of the algorithms. The ex-
ecution time drops considerably using the reduced graphs
CM, F-CM and RR-CM, compared to SPG. ADH, now only
uses half a second, while SPH, DNH and DCSPH uses within

8 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

 50

 60

 70

 80

 90

 100

 110

 120

 130

D
C

S
P

H

D
C

S
P

A
D

H

D
N

H

S
P

H

di
st

an
ce

AoI size 40-50

SPG
F-CM
F-kBL

 50

 60

 70

 80

 90

 100

 110

 120

 130

D
C

S
P

H

D
C

S
P

A
D

H

D
N

H

S
P

H

di
st

an
ce

AoI size 40-50

SPG
F-CM
F-kBL

Figure 11: Average total cost variation of applying
the heuristics to SPG, F-CM and F-kBL. AoI size
40-50.

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70

m
ill

is
ec

on
ds

Number of AoI Clients

F-CM SPH
F-CM DNH
F-CM ADH

SPG SPH
SPG DNH
SPG ADH

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70

m
ill

is
ec

on
ds

Number of AoI Clients

F-CM SPH
F-CM DNH
F-CM ADH

SPG SPH
SPG DNH
SPG ADH

Figure 12: Average execution time (ms) improve-
ment using reduced graph F-CM compared to SPG.

200 milliseconds. Figure 12 illustrates the execution time
between SPG and F-CM as the number of AoI members in-
crease. Also, we notice that the SMT algorithms increase
the execution time slightly, when well-connected clients are
added to the input graph. When the edge pruning algorithm
kBL is applied in F-kBL and RR-kBL, we observe that the
execution time drops to 100 ms, for SPH, DNH and DCSPH,
while ADH still uses about half a second. Figure 15 illus-
trates the execution time variation of applying the heuristics
to F-kBL instead of F-CM.

As was explained previously, RR-CM does not keep well
connected clients across tree reconfiguration while F-CM
does. This makes the the distribution trees more stable

Test SPH DNH ADH DCSP DCSPH

SPG 2600 3250 37510 140 2720
CM 140 140 300 10 160

RR-CM 170 180 530 10 190
F-CM 170 190 520 20 180

RR-kBL 100 110 470 10 100
F-kBL 80 100 480 10 90

Table 3: Average execution time in milliseconds for
AoI distribution trees of size 40-50.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

CM MST
F-CM SPH

F-CM DNH
F-CM ADH

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

CM MST
F-CM SPH

F-CM DNH
F-CM ADH

Figure 13: Average total cost improvement with (F-
CM) and without well connected clients (CM).

across several group requests. As shown in figure 14, it has
a positive effect on the average tree cost, but the improve-
ment is only slight. When we apply F-kBL and RR-kBL we
see from figure 14 that the total cost does not suffer much.
This is, again, a clear indication that the total cost of the
trees is not heavily influenced by kBL. DCSP and DCSPH
optimize for hop-count with a delay constraint and actually
have a lower total cost.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

RR-CM SPH
RR-CM DNH
RR-CM ADH

F-CM SPH
F-CM DNH
F-CM ADH

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

RR-CM SPH
RR-CM DNH
RR-CM ADH

F-CM SPH
F-CM DNH
F-CM ADH

Figure 14: Average total cost improvement when
chosen well connected clients are kept across group
events.

Figure 16 compares the maximum pair-wise distance be-
tween FF-CM and F-kBL. We observe that there is no no-
ticeable effect on the maximum pair-wise distance when the
edge pruning strategy (kBL) is applied.

Table 4 shows that the number of well connected clients in
the AoI distribution tree increase when they are kept across
tree reconfigurations (RR-CM vs F-CM). In addition, a no-
ticeable increase is detected when kBL is used. Previously,
we observed that the total cost suffered only slightly when
kBL was used. Remember, kBL connects every well con-
nected client to each AoI member, and the effect is that the
well connected clients are more likely to be included in the
AoI distribution tree.

Finally, we observe from figure 17 that there is no sig-
nificant effect on the out-degree when we compare F-CM,
F-kBL and SPG, except for DCSP which benefit from kBL.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 9

 0

 100

 200

 300

 400

 500

 600

D
C

S
P

H

D
C

S
P

A
D

H

D
N

H

S
P

H

m
ill

is
ec

on
ds

AoI size 40-50

F-CM
F-kBL

 0

 100

 200

 300

 400

 500

 600

D
C

S
P

H

D
C

S
P

A
D

H

D
N

H

S
P

H

m
ill

is
ec

on
ds

AoI size 40-50

F-CM
F-kBL

Figure 15: Average execution time (ms) variation of
applying the heuristics to F-kBL instead of F-CM.
AoI size 40-50.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

F-CM SPH
F-CM DNH

F-CM DCSP
F-kBL SPH

F-kBL DNH
F-kBL DCSP

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70

di
st

an
ce

Number of AoI Clients

F-CM SPH
F-CM DNH

F-CM DCSP
F-kBL SPH

F-kBL DNH
F-kBL DCSP

Figure 16: Average maximum pair-wise distance

variation of F-CM and F-kBL.

4. DISCUSSION
We believe that an optimized centralized architecture will

be the next natural step in the evolution of MMOGs. Al-
though such an approach involves the clients to a fairly small
degree, clients will need an application layer multicast imple-
mentation that handles packet forwarding. To look at such
a scenario, we have performed simulations that compare a
set of graph algorithms for their efficiency of maintaining
multicast groups in an MMOG scenario. The experiments
simulate group communication with a centralized approach
to group management. All computations are performed by
a central game server that creates a new multicast tree for
each AoI involved in a join/leave operation.

From the results, we observed that using a large fully
meshed graph as input to tree algorithms increases the exe-
cution time substantially. In particular, ADH suffered when
it used the full SPG as input. A reduced graph approach
did not decrease the quality of the distribution tree, in any
particular way. The out-degree and maximum pair-wise dis-
tance stayed about the same, and the total cost only slightly
increased, but the execution time dropped considerably. We
saw the same effect when the pruning strategy kBL was ap-
plied, and the execution time still dropped. Moreover, the
number of well connected clients increased in the AoI distri-
bution tree. Of the tree algorithms, we saw that the SMT

Test Stat SPH DNH ADH DCSP DCSPH

RR-CM Ave 0.62 0.76 2.98 2.14 0.87
Med 1.0 1.0 2.0 3.0 0.0

F-CM Ave 1.33 1.6 5.17 3.39 1.63
Med 2.0 3.0 7.0 4.0 2.0

RR-kBL Ave 1.92 2.14 3.55 4.83 3.42
Med 3.0 3.0 3.0 4.0 3.0

F-kBL Ave 2.84 3.35 5.66 5.87 4.63
Med 4.0 5.0 5.0 4.0 7.0

Table 4: Number of non-members (well-connected
clients) in AoI distribution trees of size 40-50.

 5

 10

 15

 20

 25

 30

 35

 40

D
C

S
P

H

D
C

S
P

A
D

H

D
N

H

S
P

H

ou
t-

de
gr

ee

AoI size 40-50

SPG
F-CM
F-kBL

 5

 10

 15

 20

 25

 30

 35

 40

D
C

S
P

H

D
C

S
P

A
D

H

D
N

H

S
P

H

ou
t-

de
gr

ee

AoI size 40-50

SPG
F-CM
F-kBL

Figure 17: Average maximum out-degree using SPG,
F-CM and F-kBL.

algorithms SPH and DNH performed well, and had a toler-
able execution time of about 100 ms when kBL was used.
DCSP, DCSPH and MDDBST needs to be tested with vary-
ing constraints before a proper evaluation can be made.

Thus, the results show us that the various event streams
in MMOGs, with different requirements and characteristics,
could use distribution trees from most of the tested algo-
rithms because of their varying properties. For example,
some algorithms produce low cost trees, but are complex
and thus time consuming to execute (like ADH), i.e., such
an algorithm could be used for static groups like a multi-
party team play audio conference. On the other hand, an
algorithm with lower execution time (like DCSP) is required
for rapidly changing AoIs, with the tradeoff of higher total
cost.

For the tests presented in this paper, we have generated
a new tree for each change in the AoI. However, in most
cases, this is not neccessary, and our ongoing research in-
clude algorithms to add and remove clients dynamically to
AoI distribution trees, without a total reconfiguration. In
addition, we are looking at subgraph reconstruction, where
only parts of the tree is reconfigured. The reconfiguration
can be done by applying the graph and tree algorithms pre-
sented in this paper.

For the group management, we have chosen to use graph
algorithms instead of overlay multicast approaches known
from the literature. The latter are frequently distributed
and may seem more appropriate for the distributed systems
problem that we want to solve. However, MMOGs are cen-
tralized today, such that we have not considered it a major
limitation. Additionally, we do see the advantage of start-

10 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

ing with well-known heuristics from graph theory that have
known performance properties, even though they were usu-
ally not intended for ”degraded graphs” such as the fully
meshed graph that we have available at the application layer.
The basic algorithms have provided us with implementation
options for cost optimized trees and delay constrained trees,
both of which are separately applicable to the various com-
munication needs of MMOGs.

Our experiments used reduced graphs as input to tree
algorithms. The reduced graphs included group members
and (optionally) additional well-connected clients, that were
chosen based on the relative location to the group members.
We propose that a central server in an MMOG has a pool
of proxy servers or selected clients it can use in the group
management. From this, the central server can reduce the
load by applying group communication if necessary. An im-
portant consideration for an MMOG provider is his need
to prevent cheating and provide fair gaming. Using only
proxy servers makes it easier to meet these requirements.
On the other hand, enabling arbitrary clients as potential
relay nodes saves cost in terms of setting up and maintaining
dedicated hosts. The MMOG provider saves money, but it
requires a trust relation between the client and the MMOG
provider to prevent cheating. Another consideration in favor
of the proxy solution is that it is relatively straight-forward
to install proxy servers in well-connected hosting centers,
while well-connected clients must be selected dynamically.

A study of user patterns relating to MMOGs [6] showed
that a large number of users will try out an MMOG once
it is released. The number of players decreases after the
initial boom, and flattens out. Moreover, it was shown that
the physical location of active players is heavily influenced
by day and night-time. The study clearly shows that it is
possible to predict what the user patterns and consequently,
what the long-term traffic patterns look like in MMOGs.

5. CONCLUSIONS AND FUTURE WORK
Today’s online game servers are typically built as strict

client-server systems, i.e., they suffer from the inherent scal-
ability problem of the architecture. Computing power and
bandwidth limitations close to the server limit the number of
players, and the users might experience huge latencies [16].
We have therefore evaluated several application layer mul-
ticast mechanisms in the central server scenario to look at
options for possible improvements.

The results from the experiments provide guidelines for
the future work in our project. Among the algorithms we
tested, we found that the delay constrained algorithms DCSP
and DCSPH give basic trade-offs between a latency balanced
tree and low hop count. The SMT algorithm ADH pro-
duced trees with a low total cost, and a lower maximum
pair-wise latency than the other spanning tree algorithms
(SPH, DNH, DCSPH and MST). However, ADH is O(n3)
and we have seen that it is not suitable if we want a distri-
bution tree fast. SPH, DNH and DCSHP reduced the exe-
cution time to an acceptable level and kept the tree quality
when kBL was applied. DNH can be further optimized us-
ing techniques highlighted by Poggi and Werneck [9]. The
overall results makes us more motivated for studying SMT
algorithms. Inventing one universal algorithm is hard be-
cause our experimental results indicate that the algorithms
are useful for different event streams to reduce resource con-
sumption while achieving a good perceived quality under

varying conditions, such as frequent changes in group mem-
bership and the demand for low latency.

To improve our current system, we are currently looking
at dynamic algorithms that do not require full tree recon-
figuration each time we have a change in the AoI. With
an increased use of audio-video streaming in MMOGs, the
out-degree of individual nodes in the trees also becomes a
concern. We will therefore examine the Minimum-diameter,
degree-limited spanning tree problem that addresses out-
degree limitations [30], and related algorithms. We tested
MDDBST, but due to time constraints, further evaluation
is required.

Finally, we have focused on optimizing a centralized ar-
chitecture, where the server can apply group communication
to reduce the server load. The centralized group communi-
cation that we simulate is located on the main game server,
i.e., there is still room for considerable improvements us-
ing distributed architectures. Future work will consist of
investigating distributed architectures like proxy technology
and P2P. Combining group communication and partial game
state distribution has many challenges that we shall look
into. For instance, we plan to study the group steiner tree
problem [19] in relation with proxy technology and P2P.

6. REFERENCES
[1] S. Banerjee and B. Bhattacharjee. Analysis of the

NICE application layer multicast protocol. Technical
Report UMIACSTR 2002-60 and CS-TR 4380,
Department of Computer Science, University of
Maryland, College Park, June 2002.

[2] D. Bauer, S. Rooney, and P. Scotton. Network
infrastructure for massively distributed games. In
Proceedings of the Workshop on Network and System
Support for Games (NETGAMES), pages 36–43,
Braunschweig, Germany, Apr. 2002.

[3] P. Bettner and M. Terrano. 1500 archers on a 28.8:
Network programming in Age of Empires and beyond.
In Game Developers Conference, San Jose, CA, USA,
2001.

[4] M. S. Borella. Source models of network game traffic.
Elsevier Computer Communications, 23(4):403–410,
Feb. 2000.

[5] M. Busse, B. Lamparter, M. Mauve, and
W. Effelsberg. Lightweight QoS-support for networked
mobile gaming. In Proceedings of the Workshop on
Network and System Support for Games
(NETGAMES), pages 85–92, Portland, OR, USA,
2004.

[6] C. Chambers, Wu-chang Feng, S. Sahu, and D. Saha.
Measurement-based characterization of a collection of
on-line games. In Proceedings of the USENIX Internet
Measurement Conference (IMC), pages 1–14, Berkeley,
CA, USA, 2005.

[7] K.-T. Chen, P. Huang, C.-Y. Huang, and C.-L. Lei.
Games traffic analysis: An MMORPG perspective. In
Proceedings of the International Workshop on Network
and Operating System Support for Digital Audio and
Video (NOSSDAV), pages 19–24, Stevenson, WA,
USA, 2005. ACM Press.

[8] M. Claypool. The effect of latency on user
performance in real-time strategy games. Elsevier
Computer Networks, 49(1):52–70, Sept. 2005.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 11

[9] M. P. de Aragão and R. F. F. Werneck. On the
implementation of MST-based heuristics for the
Steiner problem in graphs. In ALENEX, pages 1–15,
2002.

[10] G. Feng, Tak-Shing, and P. Yum. Efficient multicast
routing with delay constraints. Int. J. Commun. Sys.,
12:181–195, January 1999.

[11] W.-c. Feng, F. Chang, W.-c. Feng, and J. Walpole.
Provisioning on-line games: a traffic analysis of a busy
Counter-strike server. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurement,
pages 151–156, Marseille, France, 2002.

[12] G. Fox and S. Pallickara. The Narada event brokering
system: Overview and extensions. In PDPTA ’02:
Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and
Applications, pages 353–359. CSREA Press, 2002.

[13] P. Francis, S. Ratnasamy, R. Govindan, and
C. Alaettinoglu. Yoid project.

[14] Funcom. Anarchy online.
http://www.anarchy-online.com/, Feb. 2006.

[15] M. Goodrich and R. Tamassia. Algorithm Design:
Foundations, Analysis and Internet Examples. John
Wiley and Sons, 2002.

[16] C. Griwodz and P. Halvorsen. The fun of using TCP
for an MMORPG. In Proceedings of the International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV), Newport,
RI, USA, May 2006. ACM Press.

[17] O. Heckmann, M. Piringer, J. Schmitt, and
R. Steinmetz. On realistic network topologies for
simulation. In International workshop on models,
methods and tools for reproducible network research,
pages 28–32, Karlsruhe, Germany, 2003.

[18] S.-Y. Hu and G.-M. Liao. Scalable peer-to-peer
networked virtual environment. In Proceedings of the
Workshop on Network and System Support for Games
(NETGAMES), pages 129–133, Portland, OR, USA.

[19] F. Hwang, D. Richards, and P. Winter. The Steiner
tree problem. Elsevier Annals of Discrete
Mathematics, 53:203–282, 1992.

[20] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In Proceedings of
the Workshop on Network and System Support for
Games (NETGAMES), pages 116–120, Portland, OR,
USA, 2004.

[21] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology
generator. Technical Report CSE-TR-433-00, Dept. of
EECS, University of Michigan, Ann Arbor, Sept. 2000.

[22] L. Kou, G. Markowsky, and L. Berman. A fast
algorithm for Steiner trees. Acta Inf., 15:141–145,
1981.

[23] L. S. Liu and R. Zimmermann. Immersive peer-to-peer
audio streaming platform for massive online games. In
Proceedings of the IEEE International Workshop on
Networking Issues in Multimedia Entertainment
(NIME), Las Vegas, NV, USA, 2006.

[24] M. Mauve, S. Fischer, and J. Widmer. A generic
proxy system for networked computer games. In
Proceedings of the Workshop on Network and System
Support for Games (NETGAMES), pages 25–28,

Braunschweig, Germany, Apr. 2002.

[25] A. Medina, A. Lakhina, I. Matta, and J. Byers.
BRITE: Universal topology generation from a user’s
perspective. Technical Report 2001-003, 1 2001.

[26] L. Pantel and L. Wolf. On the impact of delay on
real-time multiplayer games. In Proceedings of the
International Workshop on Network and Operating
System Support for Digital Audio and Video
(NOSSDAV), pages 23–29, Miami Beach, FL, USA,
2002.

[27] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel.
ALMI: An application level multicast infrastructure.
In Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems (USITS), pages
49–60, 2001.

[28] V. Rayward-Smith and A. Clare. The computation of
nearly minimal Steiner trees in graphs. International
Journal of Mathematical Education in Science and
Technology, 14(1):8pp, 1983.

[29] N. Sheldon, E. Girard, S. Borg, M. Claypool, and
E. Agu. The effect of latency on user performance in
Warcraft III. In Proceedings of the Workshop on
Network and System Support for Games
(NETGAMES), pages 3–14, Redwood City, CA, USA,
2003.

[30] S. Shi and J. Turner. Routing in overlay multicast
networks. In Proceedings of the Joint Conference of
the IEEE Computer and Communications Societies
(INFOCOM), New York, NY, USA, 2002.

[31] S. Y. Shi, J. Turner, and M. Waldvogel. Dimensioning
server access bandwidth and multicast routing in
overlay networks. In Prceedings of NOSSDAV 2001,
pages 83–92, June 2001.

[32] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual.
Addison-Wesley, 2002.

[33] H. Takahashi and A. Matsuyama. An approximate
solution for the Steiner problem in graphs. Math.
Japonica 24, 24(6):573–577.

[34] K.-H. Vik. Game state and event distribution using
proxy technology and application layer multicast. In
Proceedings of the ACM International Multimedia
Conference (ACM MM), pages 1041–1042, Singapore,
2005. ACM Press.

[35] J. Vogel, J. Widmer, D. Farin, M. Mauve, and
W. Effelsberg. Priority-based distribution trees for
application-level multicast. In Proceedings of the
Workshop on Network and System Support for Games
(NETGAMES), pages 148–157, Redwood City, CA,
USA, 2003.

[36] B. M. Waxman. Routing of Multipoint Connections.
IEEE Journal of Selected Areas in Communications,
6, December 1988.

[37] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito.
A distributed event delivery method with load
balancing for mmorpg. In Proceedings of the Workshop
on Network and System Support for Games
(NETGAMES), pages 1–8, Hawthorne, NY, USA,
2005.

[38] A. Young, C. Jiang, M. Zheng, A. Krishnamurthy,
L. Peterson, and R. Wang. Overlay mesh construction
using interleaved spanning trees, 2004.

12 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

