Comparing Interest Management Algorithms for Massively
Multiplayer Games

Jean-Sébastien
Boulanger
School of Computer Science
McGill University
Montréal, Canada

jboula2 @ cs.mcgill.ca

ABSTRACT

Broadcasting all state changes to every player of a mas-
sively multiplayer game is not a viable solution. To success-
fully overcome the challenge of scale, massively multiplayer
games have to employ sophisticated interest management
techniques that only send relevant state changes to each
player. This paper compares the performance of different
interest management algorithms based on measurements ob-
tained in a real massively multiplayer game using human and
computer-generated player actions. We show that interest
management algorithms that take into account obstacles in
the world reduce the number of update messages between
players by up to a factor of 6, and that some computation-
ally inexpensive tile-based interest management algorithms
can approximate ideal visibility-based interest management
at very low cost. The experiments also show that measure-
ments obtained with computer-controlled players perform-
ing random actions can approximate measurements of games
played by real humans, provided that the starting positions
of the random players are chosen adequately. As the size of
the world and the number of players of massively multiplayer
games increases, adaptive interest management techniques
such as the ones studied in this paper will become increas-
ingly important.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks|: distributed

systems—distributed applications; D.1.3 [Programming tech-

niques|: Concurrent Programming—distributed program-
ming

General Terms
Performance, experimentation, algorithms, measurement

Keywords

Computer games, interest management, distributed games

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Netgames'06, October 30-31, 2006, Singapore.

Copyright 2006 ACM 1-59593-589-4. $5.00.

Jorg Kienzle
School of Computer Science
McGill University
Montréal, Canada

joerg.kienzle @mcgill.ca

Clark Verbrugge
School of Computer Science
McGill University
Montréal, Canada

clump@cs.mcgill.ca

1. INTRODUCTION

Since 1997 with the creation of Ultima Online, a new genre
of online game has emerged, the massively multiplayer on-
line (role-playing) game, short MMOG or MMORPG. Com-
pared to a traditional multiplayer game in which usually up
to 16 players play a relatively short-lived game, MMOGs of-
fer the possibility for thousands of players to play together in
a persistent world [14]. In a typical game, each client sees a
graphical representation of the world and controls a player
— an avatar — which can perform actions. Basic building
blocks of such actions are, e.g., moving the avatar, picking
up objects, or communicating with other players. MMOG
implementations face huge scalability problems since they
have to handle a massive amount of connected players, pre-
senting them with a consistent view of the world, and still
providing good performance and hence, an enjoying experi-
ence.

In order to provide a shared sense of space among players,
each player must maintain a copy of the (relevant) game
state on his computer. When one player performs an action
that affects the world, the game state of all other players
affected by that action must be updated. The simplest ap-
proach is for each player to maintain a full copy of the game
state and that all players broadcast updates to all other
players. The problem with this approach is that it does not
scale: as the number of players increases, the messages sent
over the network and to be processed by each client increase
exponentially.

One of the most effective strategies to address this problem
is to send to a player’s computer only the messages that
are relevant to its avatar (e.g., only the update message of
objects it can see, or that are near). The world space of
MMOGs contains a lot of information and a single player
needs only to know about a subset of that information. In-
terest management (IM) is the process of determining which
information is relevant to each player [16].

The information relevant to a player usually corresponds to
the perception of its avatar. The perception, or expression
of interest [16] of an avatar in interest management scheme
is often based on proximity, modeled as a sphere around the
avatar. However, the most common type of perception in
MMOG is what an avatar can see, which does not always
correspond to proximity. In particular, game worlds usually
contain static obstacles that occlude regions of the game

space. An object that is close to an avatar, but behind a
wall, is not relevant to that player.

Many interest management techniques [16] have been pro-
posed and implemented in distributed simulation, networked
virtual environments and games (see Section 2). However,
very few experiments have been performed to evaluate and
compare interest management techniques, especially in the
context of MMOGs. Furthermore, most evaluation that has
been done used simulation with randomly generated data.
It is not clear beforehand that results from random data will
hold in a real world environment.

In this paper we compare and evaluate eight interest man-
agement algorithms in the context of MMOGs using real
player data. Three of the algorithms we evaluate simply con-
sider the radius around the player as the region of interest.
The five others algorithms also take into account obstacles
in the world and attempt to leverage the fact that a player
does not need to be updated about objects that are oc-
cluded. In particular, we introduce scalable visibility-based
and reachability-based interest management algorithms that
use a triangulation of the world space as its base structure.
Overall our custom “Tile Path Distance” algorithm shows
good, general performance under a variety of workloads.

The remainder of the paper is structured as follows: Sec-
tion 2 presents background on interest management, and
overviews the related work in that area. Sections 3 and 4 il-
lustrate the eight evaluated interest management algorithms
and describe our experimental environment. Section 5 dis-
cusses the results, and the last section draws some conclu-
sions and presents future work.

2. BACKGROUND AND RELATED WORK

The general goal of interest management is to reduce the
cost of data communication in a distributed game. This cost
depends of course on the underlying communication archi-
tecture, and also the particular IM scheme in use. Below we
review relevant concepts and game work in these areas.

2.1 Communication Architecture

Data communication in larger multiplayer games can be per-
formed using a variety of packet delivery methods. This in-
cludes basic unicast as the most popular current choice, but
also broadcast and multicast approaches as well.

Standard unicast approaches in games focus on the differ-
ence between TCP and UDP protocols. UDP is a simple
best-effort protocol that offers no reliability and no packet
ordering guarantee. It has very little overhead, making it
appropriate for highly interactive games (e.g., first-person
shooter, car racing) where speed of packet delivery is par-
amount. TCP guarantees ordered delivery of packets; this
simplifies application programming, at a cost of noticeable
overhead. TCP also has the advantage of working more
transparently across firewalls, and has ended up being the
protocol of choice for many commercial MMOGs (e.g., EVE
Online, Lineage II, and World of Warcraft).

In more restrictive settings actual broadcast can be used.
Local area networks (LANs) can be configured to allow a sin-
gle packet to be sent to all hosts simultaneously, in a manner

similar to UDP. This can make transmission of state data
in MMOGs extremely efficient and simple. Unfortunately,
broadcast is not typically allowed across router boundaries,
and internet-based MMOGs are not able to take practical
advantage of this efficiency.

Multicast systems provide unreliable, group-based packet
delivery; a host can subscribe to one or many multicast
addresses and receive all messages sent to those addresses.
Transmission is not quite as efficient as basic broadcast, but
is usually much more efficient than multiple unicast opera-
tions. Interest management systems in games often specify
multicasting as a means of efficiently implementing interest
groups and associated network communication [20]. Un-
fortunately, not all ISPs provide access to the multicasting
internet layers; access, firewall, and resource concerns mean
multicasting is still not a general choice for MMOGs.

2.2 Interest Management

Interest management can be abstracted using a publish-
subscribe model [17]. Publishers are objects that produce
events, subscribers are objects that consume events, and
an object can be both a publisher and subscriber (e.g. a
player’s avatar). In this model, interest management con-
sists of computing a function that determines when a sub-
scriber discovers a publisher, subscribes and unsubscribes
to/from its updates.

Interest management schemes can usually be separated into
two broad categories: space-based and class-based, or ex-
trinsic and intrinsic respectively [16]. Space-based interest
management is determined based on the relative position of
objects in the virtual environment, while class-based is de-
termined from an object’s attributes (e.g., type of object).

Space-based interest management is usually based on prox-
imity, and can be understood in terms of an aura-nimbus
information model [5]. The aura is the area that bounds the
presence of an object in space, while the nimbus or area-of-
interest is the space in which an object can perceive other
objects. In its simplest model both the aura and nimbus can
be represented by fixed-size circles around the object. An
object x is then aware of another object y when the nimbus
of x intersects the aura of y. The pure aura-nimbus model
has been implemented in many systems, such as MASSIVE-
1 [9], Morgan et al.’s approach based on standard message-
passing middleware [15], and commercial middleware such as
through Quazal’s Duplication Spaces technology [17]. In the
latter case the implementation of the game-specific interest
management function is left to the game developer, allow-
ing for multiple, programmer-controlled publish-subscribe
domains.

The advantage of a pure aura-nimbus implementation is that
it allows fine-grained interest management in which only
the relevant messages are sent to subscribers. It is espe-
cially suitable when there is a connection for each client
with the server (e.g., TCP connection). The drawback of
a pure aura-nimbus model is that it does not scale well be-
cause of the cost of computing the intersection between the
area-of-interest and the auras of objects [19]. The computa-
tion of intersections between subscriber and publishers has
a complexity of O(MN) where M is the number of sub-

2 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

scribers and N the number of publishers in the world. This
computation can become a bottleneck in systems without
broadcast or multicast capabilities.

To mitigate the limitations of a pure aura-nimbus model,
region-based interest management is used by many systems
as an approximation [3, 7, 8, 12]. In region-based inter-
est management the world space is first partitioned into
static regions. The interest management determines the re-
gions that intersects the area of interest of the subscriber
and forms the area-of-subscription from the union of the
intersected regions. The area-of-subscription represents an
approximation of the true area-of-interest; this approxima-
tion, however, is often cheaper to compute than a pure aura-
nimbus model. The quality of an interest region approxima-
tion is highly dependent on the shape and size of regions.
Regular square tilings are quite popular and straightforward;
studies have shown, however, that hexagons can better ap-
proximate the aura-nimbus model [7]. Other systems such
as Spline allow the designer to create regions of any shape
or size [4].

Similar to basic aura/nimbus designs, region-based interest
management maps nicely onto multicasting. In NPSNET,
for example, the space is divided into hexagons, and a mul-
ticast group is assigned to each hexagon [12]. A publisher
sends events to the multicast group of the hexagon it occu-
pies, and subscribers subscribe to multicast groups within
their area-of-interest. If hexagon sizes are carefully chosen
to be large enough, the number of subscribed groups of an
object can be bounded, limiting the number of subscription
and unsubscription requests. Region-based IM works best
when objects are evenly distributed among the regions, and
load balancing is important in situations where many objects
gather in the same large region. The “three-tiered” IM par-
tially addresses the load balancing problem by providing a
dynamic subdivision of regions using an octree structure [3].

Interest management approaches discussed so far mostly
consider an area-of-interest for the subscriber that is inde-
pendent of the geography of the environment. Visibility-
based interest management considers the vision of player
instead of a fixed radius. RING, for instance, implements
visibility-based interest management by dividing the envi-
ronment into rectangular regions and precomputing visibil-
ity between regions [8]. At run-time a player will receive
updates about objects that are within regions that are vis-
ible from his or her current region. Hosseini et al. [11]
developed another visibility-based IM in which the visibil-
ity information is taken from each client’s existing visibility
culling performed in the course of graphic rendering. The
advantage of this technique is that the visibility of objects
is determined precisely and at no more cost since the infor-
mation is already computed for rendering. Of course clients
must first receive information about the position of all ob-
jects that may be visible in the world to be able to compute
the visibility. Thus if position is your main source of mes-
sages, the technique is not advantageous.

Visibility requirements can be generalized, and audible range,
radio contact, etc. are also bases for distributing game in-
formation. In general multiple forms of IM can be required
in a game, each with different transmission and reception

properties. Quazal’s Duplication Spaces allows relatively
arbitrary functionality to be used for regulating multiple,
co-existing information domains [17]. e-Agora also uses a
system of multiple, independent domains; e.g., both chat
and navigation data [13].

Interest management need not always be a binary decision,
and it has also been investigated with respect to scaling in-
formation quality. Han et al. build on the observation that
some information (e.g., closer objects) is more relevant than
others and make a distinction between high and low fidelity
data. Users interested in a common area create groups for
which a representative is elected and responsible to send low
fidelity data to other peers. This allows for observation of
distant areas, but at reduced scale, and thus reduced band-
width requirements.

2.3 Comparing Interest Management

Our study here attempts to evaluate multiple IM schemes
under multiple workloads. Others have also looked into the
relative performance of different approaches, mostly using
simulation or artificially-generated movement data. Han
et al., for instance, compare their interest-based group ap-
proach with aura-based approach using simulation [10]. More
detailed simulation results are given by Zou et al.; they eval-
uate two grouping techniques: cell-based and entity-based
grouping for interest management with multicast. Exten-
sive simulation study is then done to evaluate the trade-
offs of group formation versus message dissemination [20].
Fiedler et al. compare the use of hexagonal versus rectangle
tiling using randomly generated player movement. Their
results show that a smaller number of channels are sub-
scribed too when using hexagons. They also show that
the use of smaller tiles result in a smaller percentage of the
world being subscribed to and a smaller number of events re-
ceived [7]. Funkhouser compares the RING visibility-based
approach with full message broadcast using randomly gen-
erated player movement [8]. Morgan et al. evaluate the
scalability of their middleware based interest management
approach with randomly generated movement that attempt
to reproduce realistic gathering of players by randomly po-
sitioning common targets within the world [15].

Using real user data from a military simulation, Rak and
Van Hook [18] evaluate region-based IM under multicast.
They find that while the smaller the region size the bet-
ter the IM filtering, it is nevertheless expensive to subscribe
and unsubscribe to multicast group: optimality represents
a trade-off between the region size and the number of mul-
ticast groups.

3. INTEREST MANAGEMENT

We ran our interest management experiments inside Mam-
moth, a massively multiplayer online game development frame-
work developed at McGill University [2]. Mammoth pro-
vides an implementation of a 2D game world in which each
player has an avatar that can move around, pickup and drop
items and talk to other players. Players and items are the
only mutable objects in the world, all other objects are static
(e.g. buildings, walls, trees, rivers, roads, etc.). Figure 1
shows a screenshot of the main Mammoth map.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 3

Figure 1: Mammoth World Map with dimensions of
30x30.

For our experiments we implemented eight different interest
management algorithms. They are described in the follow-
ing subsections. The first three algorithms simply consider
a circular area-of-interest around the player. The other five
go a step further and try to leverage on the occlusion created
by obstacles in the world.

3.1 Euclidean Distance Algorithm

The Euclidean distance algorithm (see Figure 3) is a sim-
ple implementation of the aura-nimbus model. The area-
of-interest is a circle around the position of the player with
a radius that covers the maximum distance a player can
see. The aura is the position of the object. If the distance
between an object and a player is smaller than the radius
of the area-of-interest, the player subscribes to the object’s
updates.

The main advantages of this algorithm is that it is easy
to implement, and computing the Euclidean distance be-
tween two points is inexpensive. The disadvantage is that
the algorithm must compute the distance between all pairs
of subscribers and publishers in the space. As the number of
objects increases in the game, the algorithm does not scale
well.

3.2 Square Tile Algorithm

The square tile algorithm (see Figure 4) is a region-based
interest management that divides the world into equal-sized
squares. The size of squares is set according to the radius
of interest of players. At any location, the subscriber is
interested in at most nine tiles, the subscriber’s current tile
and the eight (or less) neighboring tiles. Whenever a player
performs an action, the action is broadcast to all players
subscribed to the square in which the action has taken place.

The square tile algorithm scales well as the complexity of the
computation to determine the zone of interest is constant.

However, it is a rather bad approximation of the radius of
interest of the player.

3.3 Hexagonal Tile Algorithm

The hexagonal tile algorithm (see Figure 5) divides the world
into equal-sized, regular hexagons. A player subscribes to
objects in the tiles that intersects its area-of-interest. Hexag-
onal tiles are known to be a better approximation of a player’s
circular area-of-interest.

3.4 Ray Visibility Algorithm

When using ray visibility, the only objects of interest are
those that a player sees (see Figure 6). To determine if an
object is visible to a player, we trace a line from the position
of the player to the position of the object, up to a maximum
length. If the line does not intersect with any obstacle in
the world, the two objects are visible to each other.

Ray visibility is in a sense the perfect interest management
algorithm, since it accurately calculates the exact area of
interest of a player at a given point in time. It therefore
provides the lower bound on the number of messages that
must be exchanged between players, and an indication of
the cost of a relatively expensive interest calculation. Note,
however, that optimal visibility is not always desired: to
prevent slow gameplay caused by network latency, it is often
recommended to pre-fetch information about objects that
are “soon to be discovered,” if perhaps not actually visible
yet. The inflexibility of ray visibility in this respect means
that in practice it is more subject to problems such as the
missed interaction problem [15] or late discovery of objects.

3.5 Triangulation of the World Space

The four next algorithms are original algorithms we designed
to use triangular tiles. The advantage of triangular tiles is
that they can accommodate arbitrary polygonal obstacles;
i.e. exclude them from the partitioning of the world space.
In this section we explain how we partitioned the world space
into triangles, and then we introduce four algorithms that
use the triangular tiles for interest management.

Converting to world spaceinto a polygon with holes
Triangulation of a polygon is a well-studied problem in com-
putational geometry, so the first step to partition the world
into triangles is to transform the world space into a polygon
with holes. The contour of the polygon is formed from the
limits of the world and obstacles are represented by holes.
The conversion is relatively straightforward for world spaces
that are planar (or can be mapped to a plane). In a triangu-
lation being used for interest management, however, the ex-
istence of long, thin triangles is undesirable; the distance be-
tween two points in relatively flattened triangle can be much
larger than for regular triangles, and so they are less ap-
propriate for approximating a player’s area-of-interest. Our
choice of triangulation algorithm reflects this requirement,
and we further perform two additional preprocessing steps
in order to get a suitable triangulation for interest manage-
ment.

The first step is to remove obstacles smaller than a parame-
terizable threshold. This is motivated by the fact that small
obstacles do not occlude a significant part of the world. A

4 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

Figure 2: Delaunay triangulation of the Mammoth
world map with a maximum area constraint of 1.0.

telephone post for example would occlude a very small space,
furthermore, as soon as an avatar moves slightly to the right
or left it will see any object hidden behind the pole. Hence,
from an interest management point of view, small obstacles
are not really significant. Furthermore triangulation with
small obstacles results in some inconveniently small or thin
triangles (since one edge has to follow the obstacle).

Arbitrarily wide, but quite thin obstacles also reduce trian-
gle quality. Thin rectangular obstacles are thus converted to
lines as a second preprocessing step. This allows us to avoid
the generation of thin triangles that would have an edge on
the shortest edge of a thin rectangle.

Delaunay triangulation with constrained area

The Delaunay triangulation [6] has the property of maximiz-
ing the minimum angle in every triangle in the triangulation;
heuristically this will help in avoiding thin triangles. We also
put a constraint on the maximum area of a triangle output
by the triangulation. Extra Steiner points are added to en-
sure a maximum triangle size, and this allows us to explore
fine or course-grained partitionings. Figure 2 shows the tri-
angulation of the Mammoth world map (Figure 1) with an
area constraint of 1. The map contains 155 rectangles that
represent obstacles (i.e., walls), and the triangulation cre-
ated 1678 triangles.

In the context of this work we assume a stationary environ-
ment in which obstacles do not change. However, efficient
algorithms exists to re-triangulate a subset of a triangula-
tion and could be used to dynamically re-create tiles for a
part of the world space in which obstacles changed.

The triangulated world space can be stored as a graph in
which each tile is a vertex and two vertices are connected by
an edge if the corresponding tiles are neighbors (i.e., have a
point in common that is not on an obstacle). Using a graph
to store the partitioned space has the main advantage that

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

o ———
e A2 c————1l
- =}
]
o | e r— —
I | -

10

Figure 3: Euclidean distance algorithm with interest
radius of 2.0.

Figure 4: Square tiles algorithm with tiles of size 2.0
and one neighbor.

the problem of determining an area of interest can be done
using a simple graph search. When using a breadth-first
search rooted at the current tile of a player, only a local-
ized subset of tiles that is proportional to the size of the
player’s area-of-interest is visited. Furthermore the graph
also encodes information about occlusion of space: two re-
gions that are close in Euclidean distance but separated by
an obstacle are equally separated in the graph.

3.6 Tile Distance

The tile distance algorithm (see Figure 7) is based on the
Euclidean distance between a player and a triangular tile.
The set of tiles of interest for a player is computed as the set
of tiles connected to the current tile of the player that inter-
sect the player’s area of interest. The algorithm implements
a breadth-first search from the player’s current tile. The tile
distance algorithm is an approximation of the player’s area
of interest, but also has the property that tiles that are not
reachable within the player’s area-of-interest are ignored.
We can see this property of the algorithm in Figure 7: the
tiles inside the building on the right are visible because they
are connected to the player’s current tile. On the other hand

Figure 5: Hexagon tiles of area size 1.0 with interest

radius of 2.0.

Figure 8: Tile visibility algorithm with interest ra-

—

ﬂ

Figure 6: Ray visibility algorithm with interest ra-

dius of 2.0.

Figure 9: Tile neighbor algorithm with a depth of
3 neighbors. The numbers indicate the depth from
the player’s tile.

Figure 7: Tile Distance algorithm with interest ra-

dius of 2.0.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

Figure 10: Path distance algorithm with a path
length < 3.0. The numbers indicate the path length
from the player’s tile.

the tiles inside the building on the left are not chosen be-
cause there is no path within the interest radius connecting
them to the player.

3.7 Tile Visibility

The tile visibility algorithm (see Figure 8) is based on the
visibility between tiles. For efficiency reasons, the algorithm
involves a precomputing step during which the visibility be-
tween each tile is computed. A tile is considered visible from
another tile if there exist a point in each of the two tiles that
can be connected by a line segment that does not intersect
an obstacle. The algorithm takes advantage of the fact that
the visibility of tiles is static, as opposed to the visibility
of players that changes with their position. The algorithm
approximates the visibility of a player by selecting the tiles
that are visible from the player’s current tile.

3.8 Tile Neighbor

The tile neighbor algorithm (see Figure 9) determines tiles of
interest for a player based on neighbor relationships between
tiles. The algorithm performs a breadth-first search from the
current tile of the player, and collects all the tiles until it
reaches a given depth. For example, for a depth of one, the
algorithm will only collect the immediate neighbors of the
current tile. Figure 9 shows an example with a depth of
three.

The main advantage of this algorithm is that it is very simple
to compute. The disadvantage is that since the shape and
size of triangles is not uniform, it is difficult to predict if a
given depth will fully cover the area of interest of a player.

3.9 Tile Path Distance

The path distance algorithm (see Figure 10) is somewhat
similar to the neighbor algorithm, but instead of taking the
graph depth as a limiter for its search, it takes the shortest-
path distance. We define the path distance between two
tiles as the sum of the distances between the centers of the
triangles connecting the two tiles. The intuition behind the
algorithm is that the subscriber is interested in the tiles
within a certain “reachable” distance from his current po-
sition. The algorithm is an approximation of that distance.
The algorithm has the same problem as the Neighbor al-
gorithm, i.e. it cannot guarantee to fully cover the area of
interest of a player. However, since it uses a criteria based on
the distance, it tolerates cases of abnormal triangles. This
property can be observed by comparing Figure 9 and 10; the
path distance algorithm has a more “roundish” shape, for
instance it cuts out the thin triangle on the left side along
the wall.

The path-distance algorithm uses static information (such
as the distance between neighboring triangle centers) that
can be pre-computed or cached. It can also easily adjust to
different interest radii.

4. EXPERIMENTAL SETTING

In this section we describe the environment and methodol-
ogy we used to perform experiments with interest manage-
ments. The goal of the experiments was threefold:

e Evaluate and compare the use of different interest man-
agement algorithms in an MMOG-like setting.

e Evaluate the feasibility of using triangulation-based
tiling to perform obstacle-aware interest management.

e Compare results obtained from real-player traces with
results from randomly generated traces.

The eight algorithms described in Section 3 were imple-
mented within the Mammoth framework. Each experiment
consisted of a replay of trace data collected from either the
movements of real-players playing a non-trivial multiplayer
game (Orbius, described below), or by using artificial, ran-
domly generated data.

4.1 Mammoth Implementation Details

The Mammoth framework has a client-server communica-
tion architecture, each client is connected to the server through
a TCP/IP connection and exchanges messages with the server
only. On the server-side virtual channels are implemented on
top of Java NIO, and clients can subscribe to an unlimited
number of channels. In Mammoth, subscription and un-
subscription to channels is a relatively fast server-side only
operation. A message sent on a channel is unicast to each
client subscribed to that channel.

To implement interest management within the framework,
we assign one virtual channel to each publisher. Publish-
ers publish events on their channel only. Subscribers (i.e.,
players) subscribe to the channels of objects within their
area-of-interest. The interest management is computed on
the server at a set rate. When a publisher match the interest
of a subscriber that does not already have a subscription to
that object, the server sends a copy of the object within a
content message and subscribes the subscriber to the chan-
nel of the publisher so it will receive future updates (i.e., up-
date messages). The server also unsubscribes a subscriber
if it detects that it is no longer interested in a particular
object.

4.2 The Orbius Game Trace

The real-player trace that was used for experiments was col-
lected in a gaming event involving 28 participants playing a
custom Mammoth game implementation, Orbius. The Or-
bius game was designed to reflect the general characteris-
tics of larger multiplayer games. Players had to explore
the world, collaborate as teams, and interact with opposing
teams in order to win the game. The game was played in
the 30x30 world shown in Figure 1, and a single player has
size 0.1.

The Orbius game trace was replayed for the experiment us-
ing “bot” game clients that can read the trace and replay
the actions of a player. For the experiments below, 28 bots
(one per player trace) were run on seven computers (four
bots per computer) connected to the server through a local
area network.

Note that due to the distributed nature of the system, there
are multiple nondeterministic factors that makes it impossi-
ble to guarantee an identical replay of the same game. We
computed a variation by replaying the same experiment five

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 7

times and found that the largest variation in number of mes-
sages between experiments was of 0.4%.

4.3 Random Traces

Two random player movement traces were generated to com-
pare with Orbius data. Both random traces were designed
to send the same number of movements over the same pe-
riod of time as the Orbius trace. Each of 28 clients sends
one random move of length 0.5 in a randomly-chosen direc-
tion, at a constant rate of one move every 740 milliseconds;
these parameters were derived from the average number of
message sent by players divided by the experiment length.
The main difference between the two random traces is the
starting position of players. In the first trace players were all
initialized in the space outside of buildings, similar to the
way Orbius players were initialized; in the second trace 4
players were initialized outside and 24 inside of buildings—
14 were initialized within the same building.

There are two main reasons for considering these variations
in random traces. From our observations of random move-
ments players initialized outside buildings are unlikely to
end up inside of buildings, and symmetrically players initial-
ized inside a building are unlikely to exit from that building.
This has the potential to make a significant difference in in-
terest management performance—players inside a building
have many opportunities for occluded sight, and thus may
be able to take better advantage of visibility-based algo-
rithms. Relative distribution is another important property
with respect to region-based IM; the second trace thus also
allows us to examine a scenario in which half of the players
are located in one place rather than being more uniformly
distributed.

4.4 Measurements

To evaluate our implementations we considered two main
types of messages between the server and clients: content
messages and update messages. Content messages are used
when an object is discovered by a player that has no copy
of that object; a full copy of the state of the target ob-
ject is sent to the player—this represents a replication cost.
Update messages are sent to existing subscribers to inform
them of a change in the state of an object that is already
known. In our experiments these are primarily player posi-
tion updates. Content messages are generally more expen-
sive because they contain the full state of an object while
update messages contain only a partial state. In the Orbius
trace, we calculated that on average a content message was
1.5 times the size of an update message.

For each experiment we measured the number of each type
of message received at each client and computed an average
over the 28 clients. We also measured the CPU consump-
tion of the dedicated machine running the server using JSys-
mon [1]. CPU utilization was polled every second, averaged
over the total length of the experiment (12 minutes), and
was gathered on a dual-core 3GHz Pentium D with 2GB of
memory.

5. RESULTS

In this section we present results from experiments we con-
ducted. First, based on the Orbius (real player) movement

1000
I & & &
S00 —a
800 e
e
] o —
8 700 . "
&
2 s00
£
5
£ 500
5
o
5 4001 #—e - +* *
£
Z__ 300
3 300 - Ry Visibiity
200
100 iy
—- Tile Visitilty
. —== Path Distance
1 2 3 4 5
tile size (area)

Figure 11: Average number of content messages re-
ceived by a client for varying tile areas.

40 7

—&— Ray Visibdity
- Distance

—h- Sauare

<= Hexagonal

—% Tile Distance

~@- Tile Vislblity

—— Path Distance

30

tile size (area)

Figure 12: CPU consumption of the server for dif-
ferent tile areas.

data, we discuss the trade-offs provided by choice of tile size
in terms of message filtering capability versus CPU over-
head. We then compare the effectiveness at relevance fil-
tering of the eight algorithms, followed by results on the
scalability of our different IM approaches. Finally, we com-
pare results obtained from real-player traces with results ob-
tained from randomly generated traces. This is intended to
give some indication of the kinds and magnitude of factors
in workload data that can influence or obscure results.

5.1 Tile Size

We investigated the effect of changing the tile size (area).
Our hypothesis is that smaller tiles would better approxi-
mate the player’s area-of-interest and filter more irrelevant
messages; however, it would also have a higher computation
overhead.

Figure 11 shows the average number of content messages
sent from the server to a client for different tile sizes. The
size of tiles is expressed in terms of average area; in the
case of triangular tiles we use the maximum area since our
triangulation algorithm does not guarantee an equal area for

8 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

each triangle. The players’ interest radius is fixed to five, a
reasonable value based on player experiences in the Orbius
game.

In most cases a smaller tile size results in slightly less con-
tent messages, with the Tile Visibility algorithm gaining the
most from a smaller tile size. The effect is surprisingly sub-
tle; even with 28 players Mammoth is not a densely pop-
ulated world, and tile size does not have an overall large
impact. Unsurprisingly Ray Visibility and (Euclidean) Dis-
tance do not change; these IM schemes are based on absolute
distance, and tiling has no direct impact. Square also does
not change since its tiling does not change for a fixed interest
radius.

Figure 12 shows the average CPU consumption at the server
for each tile size. Here the impact of tile size is more obvious.
Algorithms such as Hexagonal, Tile Distance, Neighbor, and
Path Distance make use of breadth-first search, and natu-
rally as tile size decreases the number of tiles that must
be visited increases, and so does CPU cost. Tile Visibility
displays the smallest increase due to reduced tile size; this
is likely due to using precomputed information rather than
dynamic searches in order to determine tile visibility.

The results of Figure 11 and 12 suggest two things. First,
the gains from the use of smaller IM regions are not nec-
essarily large, and may depend on the game environment.
Secondly, while there is a definite and large tradeoff be-
tween quality of the approximation and the overhead cost
of smaller tiles, particularly at very small tile sizes, prepro-
cessing of the environment can greatly mitigate the costs.
For our subsequent experiments we used a tile size of 1.0,
as a reasonable point where improvements in the number of
content messages are mostly realized while CPU cost is still
not excessive.

5.2 Message Filtering

Message filtering is the primary role of IM; in order to de-
termine the effectiveness of the different IM algorithms we
measured the number of update and content messages re-
ceived by each client from the server. Figures 13 and 14 show
the average number of messages per client for the eight in-
terest management algorithms under different interest radii.
The Ray Visibility algorithm represents a theoretically per-
fect filtering of messages and can be used as a reference to
evaluate the efficacy of other algorithms.

The first observation to be made is that there is a consider-
able difference in number of messages between Ray Visibil-
ity and Distance. This suggests that there is considerable
potential to reduce the number of messages by taking ad-
vantage of obstacles—IM approaches that consider visibility
should perform significantly better at filtering.

By far the worst filtering is provided by the square tiling.
For the smallest radius of interest the number of messages
sent (update or content) is more than twice the number of
Ray Visibility. This trend only gets worse as the radius of
interest increases: our square tiling algorithm guarantees
a fixed region of nine tiles in all cases, and so as the tile
size increases to accommodate a larger visibility radius the
squares provide a worse and worse approximation of the real

O Ray Visibility
| Distance

aTile Distance
W Tile Visibility

@ Nelighbor

m Path Distance

ges

number of update messa

RRUERRARRAR AR AR}
EEsasasvan s an el

interest radius 2 interest radius 3

Figure 13: Average number of update messages per
player with various interest radius sizes.

1000
O Ray Visibility
8 Distance

& Square

m Hexagonal
800 4 (@ Tile Distance
m Tile Visibility

@ Melghbaor

m Path Distance

400

number of content messages

200

:
123
i
E 3
i

0 3 ==

interest radius 2 interest radius 3 interest radius 4 interest radus 5

Figure 14: Average number of content messages per
player with various interest radius sizes.

player interest region. Regular tilings do not take advantage
of actual visibility, and this is also exacerbated by a larger
interest radius, which heuristically includes more obstacles.

Hexagonal tiles represent a significant improvement over
square tiles, an observation also made by others [7]. If we
compare the number of messages for the hexagonal tiling
with our pure (Euclidean) Distance in Figure 13 and 14 we
find there are only 17% more update messages and 14%
more content messages. This improvement over square tiles
is mainly due to the accuracy of approximating the real re-
gion of interest. Neither our square nor hexagonal tile based
approaches take advantage of actual visibility, but as the
interest radius increases in proportion to the tile size hexag-
onal tilings better approximate a circular region of interest.

Tile Distance is an obstacle-aware algorithm, and thus should
show improved results over Hexagonal. Here, however, it
performs only marginally better in terms of update mes-
sages, and marginally worse with respect to content mes-
sages. Obstacles in Mammoth are many, but mainly con-
centrated in a few areas, and Orbius players tended to stay
largely outside. Moreover, obstacles in Mammoth do not
tend to result in complex, maze-like environments; tiles with-

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 9

in a given area-of-interest tend to be connected and thus
included in the tile distance. Overall Tile Distance reduces
only about 6% of update messages and 1% of content mes-
sage over an algorithm that considers all triangles intersect-
ing the area-of-interest irrespective of connectivity.

The Neighbor algorithm filters slightly less update messages
than Hexagonal in most cases, and filters only slightly more
content messages. The problem with Neighbor arises from
the difficulty in determining the depth that matches a given
interest radius, primarily due to the fact that tiles have ir-
regular sizes. For our experiments we determined the depth
qualitatively by choosing a value that would fully cover the
area-of-interest in a surface where there is no obstacle.

Tile Visibility can filter more update messages and slightly
less content messages than Hexagonal tiles. The advantage
of Tile Visibility seems to grow with the increase of the in-
terest radius. For an interest radius of two it filters 3% more
update messages than Hexagonal, and for an interest radius
of five, 23% more. We explain this increase in effectiveness
by the fact that obstacles occlude a larger proportion of the
area-of-interest when the surface is greater.

Path Distance performs better than the similar Neighbor
algorithm; it filters about 16% more update messages and
10% more content messages. This can be mostly attributed
to the fact that Path Distance is easier to adjust to a given
interest radius. Path distance also performs slightly better
than Tile Visibility in most cases (5% less update messages
and 10% less content messages), but is subject to approxi-
mation errors—it is possible that the tile area does not fully
cover the interest radius of the player. Path Distance does,
however, have a potential advantage in allowing for more
“incremental” discovery of the world. Under Tile Visibil-
ity large groups of tiles can be added to the area-of-interest
by player moving only a small distance, peeking past a cor-
ner for instance. Path Distance will have already included
many of the newly visible triangles. Overall Path Distance
is the algorithm that has the closest results to the Ray Vis-
ibility lower bound, generating about twice the number of
messages.

The results suggest that both visibility and path distance
seems to be reasonable algorithms to perform interest man-
agement in a world with obstacles. The Path Distance algo-
rithm, however, has a few practical advantages over the Tile
Visibility algorithm. Most importantly it does not require
a complex preprocessing step, and thus is much more ac-
commodating of changes in parameters, such as the interest
radius.

5.3 Scalability

To evaluate the scalability of the algorithms in densely popu-
lated areas we increased the number of objects in the world
and measured the number of content message received by
each player, as well as the CPU consumption of the server.
The first run of the experiment had 186 objects which was
the initial number of objects put by the designer in the map;
here we experiment with 1000, 2000, and 3000 objects.

Figure 15 shows the increase in average number of content
messages received by each client, and Figure 16 shows the

12000

10000

8000

6000

Visibiity
-l Distance
~&— Square
=+ Hexagonal
#- Tile Distance
-@- Tile Visility
4+ Neighbor
—=— Path Distance

4000

number of content messages

2000

500 1000 1500 2000 2500 3000 3500

number of objects

Figure 15: Average number of content messages per
player with an increasing number of objects in the
world.

S0

a0

—4~ Ray Visibiity
- Distance

—&- Square

— Hexagonal
#- Tile Distance

CPU

-&- Tie Visiblity
-+ Meighbor
= Path Distance

2000 2500 3000 3500
number of objects

Figure 16: CPU consumption with an increasing
number of objects in the world.

server CPU consumption corresponding with the increase in
object density. The former shows a linear relation for most of
our algorithms; content messages themselves are not a major
source of scalability concern. CPU consumption shows much
more separation. Here it is clear that algorithms based on
tiles have a great scaling advantage over algorithms such as
Ray Visibility and Distance. A subscriber in a tile-based
situation is localized to tiles that are close to the subscriber
while for the other two algorithms the interest computation
is done with every publisher in the world. This makes tiling
much more appealing at all but the lowest density of game
objects.

5.4 Real-Player versus Random Movements
Many interest management analyses make use of random-
ized data. Real player behaviour, however, has potential to
be quite different from any simple randomized model. To
determine if experiments using real player traces and exper-
iments using randomly generated traces would give similar
results, we compared the results from our Orbius trace with
the results from the two randomly generated traces (see Sec-
tion 4).

10 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

o Ray Visiblity
@ Distance

| Souare

50001 | mHexagonal

@ Tile Distance
W Tile Visiility

B MNeighbor
4000 4 | ®Path Distance

BLE Messages

w
=1
=1
(=1

2000

number of up

1000

interest radius 2 interes interest radius 5

Figure 17: Average number of update messages per
player with various interest radius sizes for random
data starting outside buildings.

10000
o Ray Visibiity
B Distance

B Square

. B Hexagonal
B00o = Tike Distance
m Tile Visibilty

& Meighbar
mPath Distance

6000

i

t

R R

4000

number of update messages

2000

interest radius 2 interest radius 3 interest radius 4 rterest radius 5
Figure 18: Average number of update messages per
player with various interest radius sizes for random

data starting mostly inside buildings.

Figure 13, 17, and 18 shows the average number of update
messages received per player for the three sets of traces (i.e.,
Orbius, random outside, and random inside). The three
traces give similar relative results between algorithms. For
instance, in most cases Tile Visibility and Path Distance al-
gorithms perform better than Square and Hexagonal tiles.
In absolute terms, however, there is considerable difference
in the number of messages received. For example, Tile Vis-
ibility filters 40% more messages over Hexagonal with the
random inside trace, only 6% more with the random outside
trace, and 12% with the Orbius trace. The Distance algo-
rithm nearly matches Ray Visibility in random outside, but
is much worse in random inside.

These differences correlate with the general properties of
player behaviour in these games. In random inside players
largely move in an environment dense with obstacles, and
thus obstacle-aware algorithms do quite well. Players in
random outside are far from obstacles, and obstacle-aware
algorithms do not improve the performance nearly as much.

Algorithm RO Avg | RO Max | RI Avg | RI Max
Ray Visibility -37.9% -44.3% -33.4% -38.8%
Distance 17.5% 22.8% -43.2% | -49.7%
Square 20.4% 22.2% -40.3% | -49.6%
Hexagonal 9.3% 12.1% -41.0% | -45.4%
Tile Distance 17.4% 20.0% -41.3% | -44.2%
Tile Visibility 0.5% -15.4% -11.0% -18.6%
Neighbor 10.5% 12.0% -27.4% -35.3%
Path Distance 13.7% 25.1% -17.4% | -37.8%

Table 1: Relative difference in number of update
messages between Orbius data and the two Random
data sets. Columns 2 and 3 show the change from
Random Outside to Orbius, while columns 4 and 5
show the relation between Random Inside and Or-
bius. Negative values indicates fewer messages for
Orbius, and max difference is in terms of absolute
value.

This is also evident in Table 1. Orbius data has more of a
mixture of inside and outside movements, and Ray Visibil-
ity and Tile Visibility thus perform better in Orbius than
in outside random data, and show less improvement in Or-
bius with respect to the use of obstacle-dense, random inside
data. Table 1 further shows the variance induced by the dif-
ferent workloads. Real game movements are particularly
amenable to visibility based schemes, with Path Distance
having overall good absolute and relative performance.

6. CONCLUSION AND FUTURE WORK

Good interest management designs are important to good
network performance in massively multiplayer games, and
we have compared a variety of algorithms incorporating var-
ious levels of visibility and map conformance. Experiments
within the Mammoth framework have shown that taking ob-
stacles into account reduces the number of update messages
that have to be sent between players by up to a factor of 6.
Not surprisingly the technique is especially effective when
there are many obstacles, e.g. within buildings.

We have shown that it is possible to define regions of interest
based on a partitioning of the world space into triangular
tiles. Among the different tile-based interest management
algorithms, our own ”Tile Path Distance” (see Section 3.9)
seems to exhibit the most interesting properties. The num-
ber of update messages that have to be sent between players
is the closest to the ideal number (given by the Ray Visi-
bility algorithm), but the computational effort required to
run the algorithm is 3 to 6 times lower! In addition, the
unnecessary update messages sent to a player are the ones
concerning game state that is very likely to be of interest to
the player in a near future, which can increase game respon-
siveness in case of network lag.

Finally, we have demonstrated that measurements taken
during a game using computer-controlled players perform-
ing random movements can be used to predict measurements
taken during a game with real human players. However, the
starting position of the random players has to be chosen
carefully; factors such as the ratio of players starting inside
buildings or other closed spaces compared to those starting
outside can have a significant impact, and need to reflect
the situation in the real game.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 11

Based on the observations of this paper we intend to investi-
gate the performance of hybrid / adaptive interest manage-
ment algorithms in the future. For instance, it makes sense
to use a fast distance-based interest management algorithm
such as “Euclidean Distance” when players are mainly out-
side (in an area with very few obstacles), and then switch to
a reachability-based interest management algorithm such as
“Path Distance” when players congregate inside buildings
or other areas with many obstacles.

The evaluation of triangular partitioning was limited to a
comparison with simple square and hexagonal partitioning,
in the future we would like to compare triangular partition-
ing with more dynamic space partitioning structure such as
BSP trees, R-trees, and octrees.

Our experiments were also limited to a stationary environ-
ment in which obstacles do not change position or shape. In
the future we would like to use dynamic re-triangulation of
the world space with our path distance algorithm in order to
support changes to the environment. We also plan to port
our current 2D visibility model to a 3D environment as soon
as the Mammoth framework provides a 3D engine.

Partitioning the world into triangles is not only useful for
interest management, but also for pathfinding and dynamic
zoning. In the future we intend to work on integrating the al-
gorithms dealing with these three concerns, and experiment
with them in a distributed setting with multiple servers.

7. ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valu-
able comments. This research has been supported by the
National Science and Engineering Research Council of Canada
and the Canadian Foundation for Innovation.

8. REFERENCES

(1] JSysmon. http://jsysmon.sourceforge.net.

[2] Mammoth: The massively multiplayer prototype.
http://mammoth.cs.mcgill.ca, 2006.

(3] H. Abrams, K. Watsen, and M. Zyda. Three-tiered
interest management for large-scale virtual
environments. In Proceedings of the ACM symposium
on Virtual reality software and technology, pages
125-129, 1998.

[4] J. W. Barrus, R. C. Waters, and D. B. Anderson.
Locales and beacons: efficent and precise support for
large multi-user virtual environments. In Proceedings
of the IEEE Virtual Reality Annual International
Symposium, pages 204-213, 1996.

[5] S. Benford and L. E. Fahlen. A spatial model of
interaction in large virtual environments. In Third
FEuropean Conference on Computer Supported
Cooperative Work, pages 107-123, 1993.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry Algorithms
and Applications. Springer, 1997.

[7] S. Fiedler, M. Wallner, and M. Weber. A
communication architecture for massive multiplayer

(8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

games. In Proceedings of the 1st workshop on Network
and system support for games, pages 14-22, 2002.

T. A. Funkhouser. RING: a client-server system for
multi-user virtual environments. In Proceedings of the
1995 symposium on Interactive 3D graphics, pages
85-92, 1995.

C. Greenhalgh. Awareness-based communication
management in the MASSIVE systems. Distributed
Systems Engineering, vol. 5, no. 3:129-137, 1998.

S. Han, M. Lim, and D. Lee. Scalable interest
management using interest group based filtering for
large networked virtual environments. In Proceedings
of the ACM symposium on Virtual reality software and
technology, pages 103-108, 2000.

M. Hosseini, S. Pettifer, and N. D. Georganas.
Visibility-based interest management in collaborative
virtual environments. In Proceedings of the 4th
international conference on Collaborative virtual
environments, pages 143-144, 2002.

M. R. Macedonia, M. J. Zyda, D. R. Pratt, D. P.
Brutzman, and P. T. Barham. Exploiting reality with
multicast groups. IEEE Comput. Graph. Appl.,
15(5):38-45, 1995.

M. Masa and J. Zara. Generalized interest
management in virtual environments. In Proceedings
of the 4th international conference on Collaborative
virtual environments, pages 149150, 2002.

R. D. P. McFarlane. Network software architecture for
real-time massively-multiplayer online games. Master’s
thesis, McGill University, 2005.

G. Morgan, F. Lu, and K. Storey. Interest
management middleware for networked games. In
Proceedings of the 2005 symposium on Interactive 3D
graphics and games, pages 57-64, 2005.

K. L. Morse. Interest management in large-scale
distributed simulations. Technical report, Department
of Information & Computer Science, University of
California, Irvine, 1996.

Quazal. Duplication Spaces™ Quazal Multiplayer
Connectivity White Paper, January 2002.
http://www.quazal.com.

S. J. Rak and D. J. V. Hook. Evaluation of grid-based
relevance filtering for multicast group assignment,
1996.

S. Singhal and M. Zyda. Networked Virtual
Environments: Design and Implementation.
SIGGRAPH Series. Addison-Wesley and ACM Press,
New York, 1999.

L. Zou, M. H. Ammar, and C. Diot. An evaluation of
grouping techniques for state dissemination in
networked multi-user games. In Proceedings of the
ninth Internation Symposium on Modeling, Analysis
and Sitmulation of Computer and Telecommunication
Systems, pages 3340, 2001.

12 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

