
Authority Assignment in Distributed Multi-Player
Proxy-based Games

Sudhir Aggarwal Justin Christofoli
Department of Computer Science

Florida State University, Tallahassee, FL
{sudhir, christof}@cs.fsu.edu

Sarit Mukherjee Sampath Rangarajan
Center for Networking Research
Bell Laboratories, Holmdel, NJ
{sarit, sampath}@bell-labs.com

ABSTRACT
We present a proxy-based gaming architecture and author-
ity assignment within this architecture that can lead to bet-
ter game playing experience in Massively Multi-player On-
line games. The proposed game architecture consists of dis-
tributed game clients that connect to game proxies (referred
to as “communication proxies”) which forward game related
messages from the clients to one or more game servers. Un-
like proxy-based architectures that have been proposed in
the literature where the proxies replicate all of the game
state, the communication proxies in the proposed architec-
ture support clients that are in proximity to it in the phys-
ical network and maintain information about selected por-
tions of the game space that are relevant only to the clients
that they support. Using this architecture, we propose an
authority assignment mechanism that divides the author-
ity for deciding the outcome of different actions/events that
occur within the game between client and servers on a per
action/event basis. We show that such division of author-
ity leads to a smoother game playing experience by imple-
menting this mechanism in a massively multi-player online
game called RPGQuest. In addition, we argue that cheat
detection techniques can be easily implemented at the com-
munication proxies if they are made aware of the game-play
mechanics.

Categories and Subject Descriptors
C.2.4 [Computer-Communication networks]: Distributed
Systems—Distributed Applications

General Terms
Games, Performance

Keywords
MMOG, Distributed multi-player games, authority, commu-
nication proxy, latency compensation

1. INTRODUCTION
In Massively Multi-player On-line Games (MMOG), game
clients who are positioned across the Internet connect to
a game server to interact with other clients in order to be
part of the game. In current architectures, these interac-
tions are direct in that the game clients and the servers ex-
change game messages with each other. In addition, current
MMOGs delegate all authority to the game server to make
decisions about the results pertaining to the actions that
game clients take and also to decide upon the result of other
game related events. Such centralized authority has been
implemented with the claim that this improves the security
and consistency required in a gaming environment.

A number of works have shown the effect of network latency
on distributed multi-player games [1, 2, 3, 4]. It has been
shown that network latency has real impact on practical
game playing experience [3, 5]. Some types of games can
function quite well even in the presence of large delays. For
example, [4] shows that in a modern RPG called Everquest
2, the “breakpoint” of the game when adding artificial la-
tency was 1250ms. This is accounted to the fact that the
combat system used in Everquest 2 is queueing based and
has very low interaction. For example, a player queues up
4 or 5 spells they wish to cast, each of these spells take 1-2
seconds to actually perform, giving the server plenty of time
to validate these actions. But there are other games such as
FPS games that break even in the presence of moderate net-
work latencies [3, 5]. Latency compensation techniques have
been proposed to alleviate the effect of latency [1, 6, 7] but
it is obvious that if MMOGs are to increase in interactiv-
ity and speed, more architectures will have to be developed
that address responsiveness, accuracy and consistency of the
gamestate.

In this paper, we propose two important features that would
make game playing within MMOGs more responsive for
movement and scalable. First, we propose that centralized
server-based architectures be made hierarchical through the
introduction of communication proxies so that game updates
made by clients that are time sensitive, such as movement,
can be more efficiently distributed to other players within
their game-space. Second, we propose that assignment of
authority in terms of who makes the decision on client ac-
tions such as object pickups and hits, and collisions between
players, be distributed between the clients and the servers in
order to distribute the computing load away from the central
server. In order to move towards more complex real-time

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Netgames'06, October 30–31, 2006, Singapore.
Copyright 2006 ACM 1-59593-589-4. $5.00.

1

networked games, we believe that definitions of authority
must be refined.

Most currently implemented MMOGs have game servers
that have almost absolute authority. We argue that there is
no single consistent view of the virtual game space that can
be maintained on any one component within a network that
has significant latency, such as the one that many MMOG
players would experience. We believe that in most cases, the
client with the most accurate view of an entity is the best
suited to make decisions for that entity when the causality
of that action will not immediately affect any other play-
ers. In this paper we define what it means to have authority
within the context of events and objects in a virtual game
space. We then show the benefits of delegating authority
for different actions and game events between the clients
and server.

In our model, the game space consists of game clients (rep-
resenting the players) and objects that they control. We
divide the client actions and game events (we will collec-
tively refer to these as “events”) such as collisions, hits etc.
into three different categories, a) events for which the game
client has absolute authority, b) events for which the game
server has absolute authority, and c) events for which the
authority changes dynamically from client to the server and
vice-versa. Depending on who has the authority, that en-
tity will make decisions on the events that happen within a
game space. We propose that authority for all decisions that
pertain to a single player or object in the game that neither
affects the other players or objects, nor are affected by the
actions of other players be delegated to that player’s game
client. These type of decisions would include collision detec-
tion with static objects within the virtual game space and
hit detection with linear path bullets (whose trajectory is
fixed and does not change with time) fired by other players.
Authority for decisions that could be affected by two or more
players should be delegated to the impartial central server,
in some cases, to ensure that no conflicts occur and in other
cases can be delegated to the clients responsible for those
players. For example, collision detection of two players that
collide with each other and hit detection of non-linear bul-
lets (that changes trajectory with time) should be delegated
to the server. Decision on events such as item pickup (for
example, picking up items in a game to accumulate points)
should be delegated to a server if there are multiple play-
ers within close proximity of an item and any one of the
players could succeed in picking the item; for item pick-up
contention where the client realizes that no other player, ex-
cept its own player, is within a certain range of the item,
the client could be delegated the responsibility to claim the
item. The client’s decision can always be accurately verified
by the server.

In summary, we argue that while current authority models
that only delegate responsibility to the server to make au-
thoritative decisions on events is more secure than allowing
the clients to make the decisions, these types of models add
undesirable delays to events that could very well be decided
by the clients without any inconsistency being introduced
into the game. As networked games become more complex,
our architecture will become more applicable. This archi-
tecture is applicable for massively multiplayer games where

the speed and accuracy of game-play are a major concern
while consistency between player game-states is still desired.
We propose that a mixed authority assignment mechanism
such as the one outlined above be implemented in high in-
teraction MMOGs.

Our paper has the following contributions. First we propose
an architecture that uses communication proxies to enable
clients to connect to the game server. A communication
proxy in the proposed architecture maintains information
only about portions of the game space that are relevant to
clients connected to it and is able to process the movement
information of objects and players within these portions.
In addition, it is capable of multicasting this information
only to a relevant subset of other communication proxies.
These functionalities of a communication proxy leads to a
decrease in latency of event update and subsequently, better
game playing experience. Second, we propose a mixed au-
thority assignment mechanism as described above that im-
proves game playing experience. Third, we implement the
proposed mixed authority assignment mechanism within a
MMOG called RPGQuest [8] to validate its viability within
MMOGs.

In Section 2, we describe the proxy-based game architec-
ture in more detail and illustrate its advantages. In Sec-
tion 3, we provide a generic description of the mixed au-
thority assignment mechanism and discuss how it improves
game playing experience. In Section 4, we show the feasi-
bility of implementing the proposed mixed authority assign-
ment mechanism within existing MMOGs by describing a
proof-of-concept implementation within an existing MMOG
called RPGQuest. Section 5 discusses related work. In Sec-
tion 6, we present our conclusions and discuss future work.

2. PROXY-BASED GAME ARCHITECTURE
Massively Multi-player Online Games (MMOGs) usually con-
sist of a large game space in which the players and differ-
ent game objects reside and move around and interact with
each-other. State information about the whole game space
could be kept in a single central server which we would re-
fer to as a Central-Server Architecture. But to alleviate
the heavy demand on the processing for handling the large
player population and the objects in the game in real-time, a
MMOG is normally implemented using a distributed server
architecture where the game space is further sub-divided
into regions so that each region has relatively smaller num-
ber of players and objects that can be handled by a single
server. In other words, the different game regions are hosted
by different servers in a distributed fashion. When a player
moves out of one game region to another adjacent one, the
player must communicate with a different server (than it was
currently communicating with) hosting the new region. The
servers communicate with one another to hand off a player
or an object from one region to another. In this model, the
player on the client machine has to establish multiple gam-
ing sessions with different servers so that it can roam in the
entire game space.

We propose a communication proxy based architecture where
a player connects to a (geographically) nearby proxy instead
of connecting to a central server in the case of a central-
server architecture or to one of the servers in case of dis-

2 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

tributed server architecture. In the proposed architecture,
players who are close by geographically join a particular
proxy. The proxy then connects to one or more game servers,
as needed by the set of players that connect to it and main-
tains persistent transport sessions with these server. This
alleviates the problem of each player having to connect di-
rectly to multiple game servers, which can add extra con-
nection setup delay. Introduction of communication proxies
also mitigates the overhead of a large number of transport
sessions that must be managed and reduces required network
bandwidth [9] and processing at the game servers both with
central server and distributed server architectures. With
central server architectures, communication proxies reduce
the overhead at the server by not requiring the server to ter-
minate persistent transport sessions from every one of the
clients. With distributed-server architectures, additionally,
communication proxies eliminate the need for the clients to
maintain persistent transport sessions to every one of the
servers. Figure 1 shows the proposed architecture.

Figure 1: Architecture of the gaming environment.

Note that the communication proxies need not be cognizant
of the game. They host a number of players and inform the
servers which players are hosted by the proxy in question.
Also note that the players hosted by a proxy may not be in
the same game space. That is, a proxy hosts players that
are geographically close to it, but the players themselves
can reside in different parts of the game space. The proxy
communicates with the servers responsible for maintaining
the game spaces subscribed by the different players. The
proxies communicate with one another in a peer-to-peer to
fashion. The responsiveness of the game can be improved
for updates that do not need to wait on processing at a
central authority. In this way, information about players can
be disseminated faster before even the game server gets to
know about it. This definitely improves the responsiveness
of the game. However, it ignores consistency that is critical
in MMORPGs. The notion that an architecture such as this
one can still maintain temporal consistency will be discussed
in detail in Section 3.

Figure 2 shows and example of the working principle of the
proposed architecture. Assume that the game space is di-
vided into 9 regions and there are three servers responsible
for managing the regions. Server S1 owns regions 1 and 2,

S2 manages 4, 5, 7, and 8, and S3 is responsible for 3, 6 and
9.

Figure 2: An example.

There are four communication proxies placed in geographi-
cally distant locations. Players a, b, c join proxy P1, proxy P2

hosts players d, e, f , players g, h are with proxy P3, whereas
players i, j, k, l are with proxy P4. Underneath each player,
the figure shows which game region the player is located
currently. For example, players a, b, c are in regions 1, 2, 6,
respectively. Therefore, proxy P1 must communicate with
servers S1 and S3. The reader can verify the rest of the links
between the proxies and the servers.

Players can move within the region and between regions.
Player movement within a region will be tracked by the
proxy hosting the player and this movement information
(for example, the player’s new coordinates) will be multi-
cast to a subset of other relevant communication proxies
directly. At the same time, this information will be sent
to the server responsible for that region with the indication
that this movement has already been communicated to all
the other relevant communication proxies (so that the server
does not have to relay this information to all the proxies).
For example, if player a moves within region 1, this infor-
mation will be communicated by proxy P1 to server S1 and
multicast to proxies P3 and P4. Note that proxies that do
not keep state information about this region at this point
in time (because they do not have any clients within that
region) such as P2 do not have to receive this movement
information.

If a player is at the boundary of a region and moves into
a new region, there are two possibilities. The first possi-
bility is that the proxy hosting the player can identify the
region into which the player is moving (based on the tra-
jectory information) because it is also maintaining state in-
formation about the new region at that point in time. In
this case, the proxy can update movement information di-
rectly at the other relevant communication proxies and also
send information to the appropriate server informing of the
movement (this may require handoff between servers as we
will describe). Consider the scenario where player a is at
the boundary of region 1 and proxy P1 can identify that the
player is moving into region 2. Because proxy P1 is currently
keeping state information about region 2, it can inform all

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 3

the other relevant communication proxies (in this example,
no other proxy maintains information about region 2 at this
point and so no update needs to be sent to any of the other
proxies) about this movement and then inform the server in-
dependently. In this particular case, server S1 is responsible
for region 2 as well and so no handoff between servers would
be needed. Now consider another scenario where player j
moves from region 9 to region 8 and that proxy P4 is able
to identify this movement. Again, because proxy P4 main-
tains state information about region 8, it can inform any
other relevant communication proxies (again, none in this
example) about this movement. But now, regions 9 and 8
are managed by different servers (servers S3 and S2 respec-
tively) and thus a hand-off between these servers is needed.
We propose that in this particular scenario, the handoff be
managed by the proxy P4 itself. When the proxy sends
movement update to server S3 (informing the server that
the player is moving out of its region), it would also send
a message to server S2 informing the server of the presence
and location of the player in one of its region.

In the intra-region and inter-region scenarios described above,
the proxy is able to manage movement related information,
update only the relevant communication proxies about the
movement, update the servers with the movement and en-
able handoff of a player between the servers if needed. In
this way, the proxy performs movement updates without in-
volving the servers in any way in this time-critical function
thereby speeding up the game and improving game play-
ing experience for the players. We consider this the “fast
path” for movement update. We envision the proxies to be
just communication proxies in that they do not know about
the workings of specific games. They merely process move-
ment information of players and objects and communicate
this information to the other proxies and the servers. If the
proxies are made more intelligent in that they understand
more of the game logic, it is possible for them to quickly
check on claims made by the clients and mitigate cheating.
The servers could perform the same functionality but with
more delay. Even without being aware of game logic, the
proxies can provide additional functionalities such as time-
stamping messages to make the game playing experience
more accurate [10] and fair [11].

The second possibility that should be considered is when
players move between regions. It is possible that a player
moves from one region to another but the proxy that is
hosting the player is not able to determine the region into
which the player is moving, a) the proxy does not main-
tain state information about all the regions into which the
player could potentially move, or b) the proxy is not able
to determine which region the player may move into (even if
maintains state information about all these regions). In this
case, we propose that the proxy be not responsible for mak-
ing the movement decision, but instead communicate the
movement indication to the server responsible for the region
within which the player is currently located. The server will
then make the movement decision and then a) inform all
the proxies including the proxy hosting the player, and b)
initiate handoff with another server if the player moves into
a region managed by another server. We consider this the
“slow path” for movement update in that the servers need
to be involved in determining the new position of the player.

In the example, assume that player a moves from region 1
to region 4. Proxy P1 does not maintain state information
about region 4 and thus would pass the movement informa-
tion to server S1. The server will identify that the player
has moved into region 4 and would inform proxy P1 as well
as proxy P2 (which is the only other proxy that maintains
information about region 4 at this point in time). Server S1

will also initiate a handoff of player a with server S2. Proxy
P1 will now start maintaining state information about re-
gion 4 because one of its hosted players, player a has moved
into this region. It will do so by requesting and receiving
the current state information about region 4 from server S2

which is responsible for this region.

Thus, a proxy architecture allows us to make use of faster
movement updates through the fast path through a proxy if
and when possible as opposed to conventional server-based
architectures that always have to use the slow path through
the server for movement updates. By selectively maintaining
relevant regional game state information at the proxies, we
are able to achieve this capability in our architecture without
the need for maintaining the complete game state at every
proxy.

3. ASSIGNMENT OF AUTHORITY
As a MMOG is played, the players and the game objects that
are part of the game, continually change their state. For ex-
ample, consider a player who owns a tank in a battlefield
game. Based on action of the player, the tank changes its
position in the game space, the amount of ammunition the
tank contains changes as it fires at other tanks, the tank col-
lects bonus firing power based on successful hits, etc. Sim-
ilarly objects in the battlefield, such as flags, buildings etc.
change their state when a flag is picked up by a player (i.e.
tank) or a building is destroyed by firing at it. That is,
some decision has to be made on the state of each player
and object as the game progresses. Note that the state of
a player and/or object can contain several parameters (e.g.,
position, amount of ammunition, fuel storage, points col-
lected, etc), and if any of the parameters changes, the state
of the player/object changes.

In a client-server based game, the server controls all the
players and the objects. When a player at a client machine
makes a move, the move is transmitted to the server over
the network. The server then analyzes the move, and if
the move is a valid one, changes the state of the player at
the server and informs the client of the change. The client
subsequently updates the state of the player and renders
the player at the new location. In this case the authority to
change the state of the player resides with the server entirely
and the client simply follows what the server instructs it to
do.

Most of the current first person shooter (FPS) games and
role playing games (RPG) fall under this category. In cur-
rent FPS games, much like in RPG games, the client is not
trusted. All moves and actions that it makes are validated.
If a client detects that it has hit another player with a bullet,
it proceeds assuming that it is a hit. Meanwhile, an update
is sent to the server and the server will send back a message
either affirming or denying that the player was hit. If the
remote player was not hit, then the client will know that it

4 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

did not actually make the shot. If it did make the hit, an
update will also be sent from the server to the other clients
informing them that the other player was hit. A difference
that occurs in some RPGs is that they use very dumb client
programs. Some RPGs do not maintain state information
at the client and therefore, cannot predict anything such as
hits at the client. State information is not maintained be-
cause the client is not trusted with it. In RPGs, a cheating
player with a hacked game client can use state information
stored at the client to gain an advantage and find things
such as hidden treasure or monsters lurking around the cor-
ner. This is a reason why most MMORPGs do not send a
lot of state information to the client and causes the game
to be less responsive and have lower interaction game-play
than FPS games.

In a peer-to-peer game, each peer controls the player and
object that it “owns”. When a player makes a move, the
peer machine analyzes the move and if it is a valid one,
changes the state of the player and places the player in new
position. Afterwards, the owner peer informs all other peers
about the new state of the player and the rest of the peers
update the state of the player. In this scenario, the authority
to change the state of the player is given to the owning peer
and all other peers simply follow the owner.

For example, Battle Zone Flag (BzFlag) [12] is a multi-
player client-server game where the client has all authority
for making decisions. It was built primarily with LAN play
in mind and cheating as an afterthought. Clients in BzFlag
are completely authoritative and when they detect that they
were hit by a bullet, they send an update to the server which
simply forwards the message along to all other players. The
server does no sort of validation.

Each of the above two traditional approaches has its own set
of advantages and disadvantages. The first approach, which
we will refer to as “server authoritative” henceforth, uses a
centralized method to assign authority. While a centralized
approach can keep the state of the game (i.e., state of all the
players and objects) consistent across any number of client
machines, it suffers from delayed response in game-play as
any move that a player at the client machine makes must go
through one round-trip delay to the server before it can take
effect on the client’s screen. In addition to the round-trip de-
lay, there is also queuing delay in processing the state change
request at the server. This can result in additional process-
ing delay, and can also bring in severe scalability problems
if there are large number of clients playing the game. One
definite advantage of the server authoritative approach is
that it can easily detect if a client is cheating and can take
appropriate action to prevent cheating.

The peer-to-peer approach, henceforth referred to as “client
authoritative”, can make games very responsive. However,
it can make the game state inconsistent for a few players
and tie break (or roll back) has to be performed to bring the
game back to a consistent state. Neither tie break nor roll
back is a desirable feature of online gaming. For example,
assume that for a game, the goal of each player is to collect
as many flags as possible from the game space (e.g. BzFlag).
When two players in proximity try to collect the same flag
at the same time, depending on the algorithm used at the

client-side, both clients may determine that it is the winner,
although in reality only one player can pick the flag up. Both
players will see on their screen that it is the winner. This
makes the state of the game inconsistent. Ways to recover
from this inconsistency are to give the flag to only one player
(using some tie break rule) or roll the game back so that the
players can try again. Neither of these two approaches is
a pleasing experience for online gaming. Another problem
with client authoritative approach is that of cheating by
clients as there is no cross checking of the validation of the
state changes authorized by the owner client.

We propose to use a hybrid approach to assign the authority
dynamically between the client and the server. That is, we
assign the authority to the client to make the game respon-
sive, and use the server’s authority only when the client’s
individual authoritative decisions can make the game state
inconsistent. By moving the authority of time critical up-
dates to the client, we avoid the added delay caused by re-
quiring the server to validate these updates. For example,
in the flag pickup game, the clients will be given the author-
ity to pickup flags only when other players are not within
a range that they could imminently pickup a flag. Only
when two or more players are close by so that more than
one player may claim to have picked up a flag, the authority
for movement and flag pickup would go to the central server
so that the game state does not become inconsistent. We
believe that in a large game-space where a player is often
in a very wide open and sparsely populated area such as
those often seen in the game Second Life [13], this hybrid
architecture would be very beneficial because of the long pe-
riods that the client would have authority to send movement
updates for itself. This has two advantages over the central-
authority approach, it distributes the processing load down
to the clients for the majority of events and it allows for a
more responsive game that does not need to wait on a server
for validation.

We believe that our notion of authority can be used to de-
velop a globally consistent state model of the evolution of
a game. Fundamentally, the consistent state of the system
is the one that is defined by the server. However, if local
authority is delegated to the client, in this case, the client’s
state is superimposed on the server’s state to determine the
correct global state. For example, if the client is authori-
tative with respect to movement of a player, then the tra-
jectory of the player is the “true” trajectory and must re-
place the server’s view of the player’s trajectory. Note that
this could be problematic and lead to temporal inconsis-
tency only if, for example, two or more entities are moving
in the same region and can interact with each other. In
this situation, the client authority must revert to the server
and the sever would then make decisions. Thus, the client
is only authoritative in situations where there is no poten-
tial to imminently interact with other players. We believe
that in complex MMOGs, when allowing more rapid move-
ment, it will still be the case that local authority is possible
for significant spans of game time. Note that it might also
be possible to minimize the occurrences of the “Dead Man
Shooting” problem described in [14]. This could be done by
allowing the client to be authoritative for more actions such
as its player’s own death and disallowing other players from
making preemptive decisions based on a remote player.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 5

One reason why the client-server based architecture has gained
popularity is due to belief that the fastest route to the other
clients is through the server. While this may be true, we aim
to create a new architecture where decisions do not always
have to be made at the game server and the fastest route to
a client is actually through a communication proxy located
close to the client. That is, the shortest distance in our ar-
chitecture is not through the game server but through the
communication proxy. After a client makes an action such
as movement, it will simultaneously distribute it directly to
the clients and the game server by way of the communica-
tions proxy. We note that our architecture however is not
practical for a game where game players setup their own
servers in an ad-hoc fashion and do not have access to prox-
ies at the various ISPs. This proxy and distributed authority
architecture can be used to its full potential only when the
proxies can be placed at strategic places within the main
ISPs and evenly distributed geographically.

Our game architecture does not assume that the client is
not to be trusted. We are designing our architecture on the
fact that there will be sufficient cheat deterring and detec-
tion mechanisms present so that it will be both undesirable
and very difficult to cheat [15]. In our proposed approach,
we can make the games cheat resilient by using the proxy-
based architecture when client authoritative decisions take
place. In order to achieve this, the proxies have to be game
cognizant so that decisions made by a client can be cross
checked by a proxy that the client connects to. For exam-
ple, assume that in a game a plane controlled by a client
moves in the game space. It is not possible for the plane to
go through a building unharmed. In a client authoritative
mode, it is possible for the client to cheat by maneuvering
the plane through a building and claiming the plane to be
unharmed. However, when such move is published by the
client, the proxy, being aware of the game space that the
plane is in, can quickly check that the client has misused
the authority and then can block such move. This allows us
to distribute authority to make decisions about the clients.

In the following section we use a multiplayer game called
RPGQuest to implement different authoritative schemes and
discuss our experience with the implementation. Our imple-
mentation shows the viability of our proposed solution.

4. IMPLEMENTATION EXPERIENCE
We have experimented with the authority assignment mech-
anism described in the last section by implementing the
mechanisms in a game called RPGQuest. A screen shot from
this game is shown in Figure 3. The purpose of the imple-
mentation is to test its feasibility in a real game. RPGQuest
is a basic first person game where the player can move
around a three dimensional environment. Objects are placed
within the game world and players gain points for each ob-
ject that is collected. The game clients connect to a game
server which allows many players to coexist in the same
game world. The basic functionality of this game is represen-
tative of current online first person shooter and role playing
games. The game uses the DirectX 8 graphics API and Di-
rectPlay networking API. In this section we will discuss the
three different versions of the game that we experimented
with.

Figure 3: The RPGQuest Game.

The first version of the game, which is the original imple-
mentation of RPGQuest, was created with a completely au-
thoritative server and a non-authoritative client. Authority
given to the server includes decisions of when a player col-
lides with static objects and other players and when a player
picks up an object. This version of the game performs well
up to 100ms round-trip latency between the client and the
server. There is little lag between the time player hits a
wall and the time the server corrects the player’s position.
However, as more latency is induced between the client and
server, the game becomes increasingly difficult to play. With
the increased latency, the messages coming from the server
correcting the player when it runs into a wall are not re-
ceived fast enough. This causes the player to pass through
the wall for the period that it is waiting for the server to
resolve the collision.

When studying the source code of the original version of
the RPGQuest game, there is a substantial delay that is
unavoidable each time an action must be validated by the
server. Whenever a movement update is sent to the server,
the client must then wait whatever the round trip delay is,
plus some processing time at the server in order to receive
its validated or corrected position. This is obviously unac-
ceptable in any game where movement or any other rapidly
changing state information must be validated and dissemi-
nated to the other clients rapidly.

In order to get around this problem, we developed a second
version of the game, which gives all authority to the client.
The client was delegated the authority to validate its own
movement and the authority to pick up objects without val-
idation from the server. In this version of the game when
a player moves around the game space, the client validates
that the player’s new position does not intersect with any
walls or static objects. A position update is then sent to the
server which then immediately forwards the update to the
other clients within the region. The update does not have
to go through any extra processing or validation.

This game model of complete authority given to the client
is beneficial with respect to movement. When latencies of

6 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

100ms and up are induced into the link between the client
and server, the game is still playable since time critical as-
pects of the game like movement do not have to wait on a
reply from the server. When a player hits a wall, the colli-
sion is processed locally and does not have to wait on the
server to resolve the collision.

Although game playing experience with respect to respon-
siveness is improved when the authority for movement is
given to the client, there are still aspects of games that do
not benefit from this approach. The most important of these
is consistency. Although actions such as movement are time
critical, other actions are not as time critical, but instead
require consistency among the player states. An example of
a game aspect that requires consistency is picking up objects
that should only be possessed by a single player.

In our client authoritative version of RPGQuest clients send
their own updates to all other players whenever they pick up
an object. From our tests we have realized this is a problem
because when there is a realistic amount of latency between
the client and server, it is possible for two players to pick
up the same object at the same time. When two players
attempt to pick up an object at physical times which are
close to each other, the update sent by the player who picked
up the object first will not reach the second player in time
for it to see that the object has already been claimed. The
two players will now both think that they own the object.
This is why a server is still needed to be authoritative in this
situation and maintain consistency throughout the players.

These two versions of the RPGQuest game has showed us
why it is necessary to mix the two absolute models of author-
ity. It is better to place authority on the client for quickly
changing actions such as movement. It is not desirable to
have to wait for server validation on a movement that could
change before the reply is even received. It is also sometimes
necessary to place consistency over efficiency in aspects of
the game that cannot tolerate any inconsistencies such as
object ownership. We believe that as the interactivity of
games increases, our architecture of mixed authority that
does not rely on server validation will be necessary.

To test the benefits and show the feasibility of our archi-
tecture of mixed authority, we developed a third version of
the RPGQuest game that distributed authority for differ-
ent actions between the client and server. In this version,
in the interest of consistency, the server remained author-
itative for deciding who picked up an object. The client
was given full authority to send positional updates to other
clients and verify its own position without the need to ver-
ify its updates with the server. When the player tries to
move their avatar, the client verifies that the move will not
cause it to move through a wall. A positional update is then
sent to the server which then simply forwards it to the other
clients within the region. This eliminates any extra process-
ing delay that would occur at the server and is also a more
accurate means of verification since the client has a more
accurate view of its own state than the server.

This version of the RPGQuest game where authority is dis-
tributed between the client and server is an improvement
from the server authoritative version. The client has no de-

lay in waiting for an update for its own position and other
clients do not have to wait on the server to verify the update.
The inconsistencies where two clients can pick up the same
object in the client authoritative architecture are not present
in this version of the client. However, the benefits of mixed
authority will not truly be seen until an implementation of
our communication proxy is integrated into the game. With
the addition of the communication proxy, after the client
verifies its own positional updates it will be able to send the
update to all clients within its region through a low latency
link instead of having to first go through the game server
which could possibly be in a very remote location.

The coding of the different versions of the game was very
simple. The complexity of the client increased very slightly
in the client authoritative and hybrid models. The origi-
nal “dumb” clients of RPGQuest know the position of other
players; it is not just sent a screen snapshot from the server.
The server updates each client with the position of all nearby
clients. The “dumb” clients use client side prediction to fill
in the gaps between the updates they receive. The only ex-
tra processing the client has to do in the hybrid architecture
is to compare its current position to the positions of all ob-
jects (walls, boxes, etc.) in its area. This obviously means
that each client will have to already have downloaded the
locations of all static objects within its current region.

5. RELATED WORK
It has been noted that in addition to latency, bandwidth
requirements also dictate the type of gaming architecture to
be used. In [16], different types of architectures are stud-
ied with respect to bandwidth efficiencies and latency. It is
pointed out that Central Server architectures are not scal-
able because of bandwidth requirements at the server but
the overhead for consistency checks are limited as they are
performed at the server. A Peer-to-Peer architecture, on the
other hand, is scalable but there is a significant overhead
for consistency checks as this is required at every player.
The paper proposes a hybrid architecture which is Peer-to-
Peer in terms of message exchange (and thereby is scalable)
where a Central Server is used for off-line consistency checks
(thereby mitigating consistency check overhead). The paper
provides an implementation example of BZFlag which is a
peer-to-peer game which is modified to transfer all author-
ity to a central server. In essence, this paper advocates an
authority architecture which is server based even for peer-
to-peer games, but does not consider division of authority
between a client and a server to minimize latency which
could affect game playing experience even with the type of
latency found in server based games (where all authority is
with the server).

There is also previous work that has suggested that proxy
based architectures be used to alleviate the latency prob-
lem and in addition use proxies to provide congestion con-
trol and cheat-proof mechanisms in distributed multi-player
games [17]. In [18], a proxy server-network architecture is
presented that is aimed at improving scalability of multi-
player games and lowering latency in server-client data trans-
mission. The main goal of this work is to improve scalability
of First-Person Shooter (FPS) and RPG games. The further
objective is to improve the responsiveness MMOGs by pro-
viding low latency communications between the client and

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 7

server. The architecture uses interconnected proxy servers
that each have a full view of the global game state. Proxy
servers are located at various different ISPs. It is mentioned
in this work that dividing the game space among multiple
games servers such as the federated model presented in [19]
is inefficient for a relatively fast game flow and that the
proposed architecture alleviates this problem because users
do not have to connect to a different server whenever they
cross the server boundary. This architecture still requires all
proxies to be aware of the overall game state over the whole
game space unlike our work where we require the proxies
to maintain only partial state information about the game
space.

Fidelity based agent architectures have been proposed in [20,
21]. These works propose a distributed client-server archi-
tecture for distributed interactive simulations where differ-
ent servers are responsible for different portions of the game
space. When an object moves from one portion to another,
there is a handoff from one server to another. Although
these works propose an architecture where different portions
of the simulation space are managed by different servers,
they do not address the issue of decreasing the bandwidth
required through the use of communication proxies.

Our work differs from the above discussed previous works by
proposing a) a distributed proxy-based architecture to de-
crease bandwidth requirements at the clients and the servers
without requiring the proxies to keep state information about
the whole game space, b) a dynamic authority assignment
technique to reduce latency (by performing consistency checks
locally at the client whenever possible) by splitting the au-
thority between the clients and servers on a per object basis,
and c) proposing that cheat detection can be built into the
proxies if they are provided more information about the spe-
cific game instead of using them purely as communication
proxies (although this idea has not been implemented yet
and is part of our future work).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we first proposed a proxy-based architec-
ture for MMOGs that enables MMOGs to scale to a large
number of users by mitigating the need for a large num-
ber of transport sessions to be maintained and decreasing
both bandwidth overhead and latency of event update. Sec-
ond, we proposed a mixed authority assignment mechanism
that divides authority for making decisions on actions and
events within the game between the clients and server and
argued how such an authority assignment leads to better
game playing experience without sacrificing the consistency
of the game. Third, to validate the viability of the mixed
authority assignment mechanism, we implemented it within
a MMOG called RPGQuest and described our implementa-
tion experience.

In future work, we propose to implement the communica-
tions proxy architecture described in this paper and inte-
grate the mixed authority mechanism within this architec-
ture. We propose to evaluate the benefits of the proxy-based
architecture in terms of scalability, accuracy and responsive-
ness. We also plan to implement a version of the RPGQuest
game with dynamic assignment of authority to allow players
the authority to pickup objects when no other players are

near. As discussed earlier, this will allow for a more efficient
and responsive game in certain situations and alleviate some
of the processing load from the server.

Also, since so much trust is put into the clients of our ar-
chitecture, it will be necessary to integrate into the archi-
tecture many of the cheat detection schemes that have been
proposed in the literature. Software such as Punkbuster [22]
and a reputation system like those proposed by [23] and [15]
would be integral to the operation of an architecture such as
ours which has a lot of trust placed on the client. We further
propose to make the proxies in our architecture more game
cognizant so that cheat detection mechanisms can be built
into the proxies themselves.

7. REFERENCES
[1] Y. W. Bernier. Latency Compensation Methods in

Client/Server In-game Protocol Design and
Optimization. In Proc. of Game Developers
Conference’01, 2001.

[2] Lothar Pantel and Lars C. Wolf. On the impact of
delay on real-time multiplayer games. In NOSSDAV
’02: Proceedings of the 12th international workshop on
Network and operating systems support for digital
audio and video, pages 23–29, New York, NY, USA,
2002. ACM Press.

[3] G. Armitage. Sensitivity of Quake3 Players to Network
Latency. In Proc. of IMW2001, Workshop Poster
Session, November 2001. http://www.geocities.com/
gj armitage/q3/quake-results.html.

[4] Tobias Fritsch, Hartmut Ritter, and Jochen Schiller.
The effect of latency and network limitations on
mmorpgs: a field study of everquest2. In NetGames
’05: Proceedings of 4th ACM SIGCOMM workshop on
Network and system support for games, pages 1–9,
New York, NY, USA, 2005. ACM Press.

[5] Tom Beigbeder, Rory Coughlan, Corey Lusher, John
Plunkett, Emmanuel Agu, and Mark Claypool. The
effects of loss and latency on user performance in
unreal tournament 2003. In NetGames ’04:
Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, pages
144–151, New York, NY, USA, 2004. ACM Press.

[6] Y. Lin, K. Guo, and S. Paul. Sync-MS: Synchronized
Messaging Service for Real-Time Multi-Player
Distributed Games. In Proc. of 10th IEEE
International Conference on Network Protocols
(ICNP), Nov 2002.

[7] Katherine Guo, Sarit Mukherjee, Sampath
Rangarajan, and Sanjoy Paul. A fair message
exchange framework for distributed multi-player
games. In NetGames ’03: Proceedings of the 2nd
workshop on Network and system support for games,
pages 29–41, New York, NY, USA, 2003. ACM Press.

[8] T. Barron. Multiplayer Game Programming, chapter
16–17, pages 672–731. Prima Tech’s Game
Development Series. Prima Publishing, 2001.

8 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

[9] Carsten Griwodz and P̊al Halvorsen. The fun of using
tcp for an mmorpg. In NOSSDAV ’06: Proceedings of
the International Workshop on Network and Operating
Systems Support for Digital Audio and VIdeo, New
York, NY, USA, 2006. ACM Press.

[10] Sudhir Aggarwal, Hemant Banavar, Amit Khandelwal,
Sarit Mukherjee, and Sampath Rangarajan. Accuracy
in dead-reckoning based distributed multi-player
games. In NetGames ’04: Proceedings of 3rd ACM
SIGCOMM workshop on Network and system support
for games, pages 161–165, New York, NY, USA, 2004.
ACM Press.

[11] Sudhir Aggarwal, Hemant Banavar, Sarit Mukherjee,
and Sampath Rangarajan. Fairness in dead-reckoning
based distributed multi-player games. In NetGames
’05: Proceedings of 4th ACM SIGCOMM workshop on
Network and system support for games, pages 1–10,
New York, NY, USA, 2005. ACM Press.

[12] Riker, T. et al. Bzflag. http://www.bzflag.org,
2000-2006.

[13] Linden Lab. Second life. http://secondlife.com,
2003.

[14] Martin Mauve. How to keep a dead man from
shooting. In IDMS ’00: Proceedings of the 7th
International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services,
pages 199–204, London, UK, 2000. Springer-Verlag.

[15] Max Skibinsky. Massively Multiplayer Game
Development 2, chapter The Quest for Holy Scale–
Part 2: P2P Continuum, pages 355–373. Charles River
Media, 2005.

[16] Joseph D. Pellegrino and Constantinos Dovrolis.
Bandwidth requirement and state consistency in three
multiplayer game architectures. In NetGames ’03:
Proceedings of the 2nd workshop on Network and
system support for games, pages 52–59, New York,
NY, USA, 2003. ACM Press.

[17] M. Mauve J. Widmer and S. Fischer. A Generic Proxy
Systems for Networked Computer Games. In Proc. of
the Workshop on Network Games, Netgames 2002,
April 2002.

[18] S. Gorlatch J. Muller, S. Fischer and M.Mauve. A
Proxy Server Network Architecture for Real-Time
Computer Games. In Euor-Par 2004 Parallel
Processing: 10th International EURO-PAR
Conference, August-September 2004.

[19] H. Hazeyama T. Limura and Y. Kadobayashi. Zoned
Federation of Game Servers: A Peer-to-Peer Approach
to Scalable Multiplayer On-line Games. In Proc. of
ACM Workshop on Network Games, Netgames 2004,
August-September 2004.

[20] B. Kelly and S. Aggarwal. A Framework for a Fidelity
Based Agent Architecture for Distributed Interactive
Simulation. In Proc. 14th Workshop on Standards for
Distributed Interactive Simulation, pages 541–546,
March 1996.

[21] S. Aggarwal and B. Kelly. Hierarchical Structuring for
Distributed Interactive Simulation. In Proc. 13th
Workshop on Standards for Distributed Interactive
Simulation, pages 125–132, Sept 1995.

[22] Even Balance, Inc. Punkbuster.
http://www.evenbalance.com/, 2001-2006.

[23] Y. Wang and J. Vassileva. Trust and Reputation
Model in Peer-to-Peer Networks. In Third
International Conference on Peer-to-Peer Computing,
2003.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 9

