
A Distributed Architecture for MMORPG

Marios Assiotis and Velin Tzanov
Massachusetts Institute of Technology

{assiotis,tzanov}@alum.mit.edu

ABSTRACT
We present an approach to support Massively Multiplayer
Online Role-Playing Games. Our proposed solution begins
by splitting the large virtual world into smaller regions, each
region handled by a different server. We present techniques
and algorithms that (1) reduce the bandwidth requirements
for both game servers and clients, (2) address consistency,
hotspot, congestion and server failure problems typically
found in MMORPG and (3) allow seamless interaction be-
tween players residing on areas handled by different servers.
By implementing a simple game, Kosmos, we show the appli-
cability of our approach as well as the relative performance
benefits of designing new games using our architecture.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Distributed Systems

General Terms
distributed architecture

Keywords
Multiplayer Game, MMORPG

1. INTRODUCTION
In this paper we propose an architecture for Massively Mul-
tiplayer Online Role-Playing Games (MMORPG) to support
a very large number of concurrent users. Our design allows
for unrestrained growth of the virtual world while remain-
ing practical and pragmatic with respect to how such games
are implemented today. Our architecture is based on the
fact that MMORPG exhibit strong locality of interest and
as such we can split the large virtual world into smaller re-
gions. Multiple servers, still under the centralized control
of the game publisher, are each assigned to handle such a
region. A static division, however, will not be able to re-
act to sudden load peaks caused by so called hotspots. Our
design allows for a reorganization of the division without

interrupting gameplay significantly. We also propose tech-
niques and algorithms to handle player interactions between
regions handled by different servers.

We begin in section 2 by defining a formal model used through-
out this paper to describe our design. In section 3 we de-
scribe our design, propose a solution for dealing with events
near server region boundaries as well as algorithms for seam-
lessly transfering objects between servers without interrupt-
ing gameplay. Section 4 details algorithms build on top of
our design, enabling dynamic reorganization of the division
of regions amongst servers as well as the introduction of new
servers to allow for virtually unlimited scalability. Finally, in
section 5, we list our emperical and experimental results and
confirm that the proposed architecture can achieve practical
performance, scalability and seamless gameplay.

1.1 Related Work
There are various ongoing research efforts in developing scal-
able architectures for MMORPG. Most research trends are
towards peer to peer (P2P) systems[1, 5, 6]. P2P systems
exploit the locality of interest feature in MMORPG - much
like our proposed architecture. Although such systems fre-
quently describe novel mechanisms for distributing load and
scaling effectively, they are not very pragmatic in a real
world commercial setting. P2P systems are not under the
centralized control of the game publisher; the game state is
stored in the clients, with each client being responsible for
a smaller region. Clients multicast updates to other peers.
However, lack of an established IP Multicast solution, forces
such architectures to consume a lot of bandwidth. Reliance
on nodes with high latency network connections for data
transfers also means that it becomes increasingly difficult
to handle scenarios where players are interacting near areas
handled by different nodes. In addition, P2P systems are
less secure when compared to a centralised solution. In P2P
systems the global game state is usually stored in the local
client. Consequently a malicious player could modify the
game state.

In [8], each game server manages several dynamically as-
signed microcells, each of which contains a very small por-
tion of the large virtual world. The Microcells can be re-
arranged between servers to balance game load efficiently.
The authors do account for interaction near the microcell
borders and propose various methods for efficiently balanc-
ing the load. In order however to minimize the overhead
incurred by inter-cell interactions, microcells depend on a

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Netgames'06, October 30–31, 2006, Singapore.
Copyright 2006 ACM 1-59593-589-4. $5.00.

1



Figure 1: The squares represent different servers
each one handling a separate area of the virtual world.
The circles represent players and NPCs.

single shared storage mechanism. A shared storage mecha-
nism is a scalability bottleneck and could potentially suffer
from a large performance penalty as the game world grows.

In a mirrored game architecture[3], the clients are balanced
across a large number of servers. Each server holds an iden-
tical copy of the game world. Unfortunately, it becomes
very hard to maintain consistency among all servers in such
a highly variable environment, with thousands of concurrent
players. In addition to that, each single server may not have
the processing power to evolve the entire world(Game AI).

2. DEFINITIONS
We proceed to describe a formal model used throughout this
paper. We define a game character controlled by a human
player as a player and a character controlled by AI as NPC
(Non-Player Character). Now consider the virtual world W
which can be modeled as a 2D geographical map, although,
it can easily be extended to 3D. Players, NPCs and items
in the virtual environment are all considered game objects.
Every object i ∈ W has a set of coordinates Ci(x, y) on the
map as well as state Si, which we treat simply as a set of
bits. Every animated object’s trajectory function fi ⊂ Si

describes the objects current movement in the world with
respect to time. Throughout the paper we refer to the soft-
ware running locally on each player’s computer as clients.

2.1 Events
Every object follows its trajectory unless a game event oc-
curs. An event is an atomic transaction that happens in the
world and changes one or more objects’ state. Events are
discrete and of zero time duration. We treat non-instantaneous
operations as a set E of events with |E| > 1 and where neces-
sary, encapsulate movement in trajectories. As an example,
consider the firing of a rocket. In our design, the entire op-
eration is not a single event but two events: (1) the initial
firing of the rocket along with the creation of the rocket
object and (2) the final impact and the destruction of the
rocket object as well as any other objects affected by the
impact. The path travelled by the rocket is encapsulated in
its trajectory.
There are two types of events in the system : (1) events
caused by input from the human player and (2) events caused
by game AI rules. Also, it is paramount to note that events
can act on objects only within a fixed range R - where R is
the largest value amongst all event radii and player sensory
capabilities.

2.2 Actions

A large number of events in the game are caused by human
player input. We say that human player input constitutes
an action which in turn creates an event. For example, if a
player wishes to execute an action, such as firing a rocket,
the client sends the action to the server to which it is con-
nected. The server creates an event and updates the state of
all affected objects as necessary. The client is then notified
of these state changes and updates its local copy.
Each action sent from the client to the server carries a mono-
tonically increasing ID number. As we will examine later,
ID numbers are used in some scenarios to ensure correctness
and thus maintain consistency.

2.3 Area of Interest

Figure 2: The concept of an area of interest with
multiple servers. From left to right, the first player’s
area of interest lies entirely within the first server.
The second and third players also lie entirely inside
the second server. The fourth player’s area of interest
spans across server 3 and server 4.

It follows naturally from the nature of MMORPG that play-
ers are only interested in events occuring within the player’s
sensory capabilities. As discussed in [6] a client does not
need to receive events that the player cannot see or hear.
We can therefore define an area of interest for a player to
be the set of all points at most R away from the player’s
location.

3. DESIGN
The overall system architecture is based upon the spatial
locality of interest players exhibit. Clients can be clustered
together depending on their player’s location in the virtual
world. Therefore the virtual world W can be divided into
smaller, disjoint regions w1, w2..., wn ⊂ W - with each re-
gion being assigned to a different server as shown in figure
1. The region assigned to each server can be any convex
polygon. The multiple, smaller regions are transparent to
the player, who only sees one big virtual world.
At all times, the client has only one main point of contact,
the server to which it sends actions to. For each client, the
server acting as the main point of contact is determined by
the location of the player on the virtual map. The client
continues to send actions to the same server, unless it is
notified otherwise by the server1. Even though clients send
actions to only one server, they may receive events from
multiple servers. This is the case when players are located
at a distance less than R from another region.

The system infrastructure consists of multiple servers, all in-
terconnected with a mean latency of LS for server to server
network communication. Let LP be the mean client to
server latency and assume LP � LS . The latency assump-
tion is justified as clients typically run on commodity hard-

1We examine under which circumstances clients change
servers in section 3.3.3

2 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006



ware and are connected to the internet using broadband or
dialup connections. Game publishers usually install game
servers in the same datacenter or interconnect them using
high speed, low-latency backbones. We also assume the exis-
tence of a lobby server which handles user logins and initially
informs clients which server to connect to.

To summarize, in section 3.1 we examine a locking mech-
anism used to achieve consistency when processing events
across multiple servers. Then in section 3.2 we describe how
our design augments traditional publish/subscribe systems
and in section 3.3 we use our locking and event mechanisms
to propose various algorithms for dealing with events that
span across regions handled by more than one server.

3.1 Locking Mechanism
Region Locks
To tackle the various consistency challenges that arise, we
introduce the concept of region locks. Region locks are locks
over geographical areas in the virtual world. The authority
for granting region locks lies entirely in the server handling
the region. A server executing an event affecting a specific
area on the map (e.g. a bomb explosion), might request a
lock over that area. Once a server is granted a lock, other
servers requesting a lock for an area that overlaps with the
already locked area, would have to wait in a queue.

Object Locks
When processing events near server region boundaries, in
addition to the region-based locks above, it may be neces-
sary to obtain locks on the objects affected. When a server
obtains a lock on an object, another server requiring the
same object for the execution of an event, will have to wait
until the first server releases the lock.
Once again, the authority for granting locks is with the
server owning the object, that is the server handling the
object’s state.

3.2 Event Announcing Mechanism
In this section we describe a mechanism for servers to an-
nounce events to clients and other servers by using a pub-
lish/subscribe design pattern[4, 2]. In our design servers
are both publishers and subscribers whereas clients are only
subscribers. Subscription is region-based; a subscriber may
subscribe to receive events occuring only within a small re-
gion.

We first examine how servers announce events to other servers.
Every server is subscribed to its adjacent servers for all
points R distance away from its boundaries. For example,
assume a virtual world handled by two servers, S1 and S2,
such that S1 handles the right half of the area and S2 han-
dles the left half. In our system, S1 will be subscribed to
S2’s rightmost area and S2 will be subscribed for events oc-
curing within S1’s leftmost area, always within a range R.
As such, both servers will always notify each other for events
occuring within R of their borders. Having servers subscribe
to each other for events occuring within distance R of their
common border, is an important part of our design. In the
next paragraph, we show how we utilize cross-server sub-

Figure 3: An example of two adjacent game servers
and two clients P1 and P2 each inside an area handled
by a different server

scription to allow for smooth gameplay in areas near server
borders.

We now examine how servers announce events to clients. For
each player in a server’s region, the server performs two im-
portant functions : (1) it processes actions received from the
client and (2) it subscribes/unsubscribes the client to receive
events occuring in their area of interest. In a single server
scenario, the server would subscribe and unsubscribe the
client as the player moves through the virtual world so that
the client only receives events relevant to the area of radius
R from the player’s coordinates. For example, a player P1

can walk in another player’s P2 area of interest. The server
receives the player walk action from P1 and announces the
event that P1 walked to both P1 and P2. If both players are
looking in the right direction, they should now be able to
visually spot each other.
In a multiple server scenario, whenever a player’s coordi-
nates are at most distance R from a point in another server’s
region, his area of interest may span across more than one
server, and as such the client should receive events from
all relevant servers. A trivial example, shown in figure 2,
would be a player walking in an area handled by server S3

towards an area handled by server S4. As soon as the player
is within distance R from S4’s border, and because S4 is sub-
scribed to receive events from S3, S4 will learn of the player’s
presence. S4 will then automatically subscribe the player’s
client to receive events happening within the portion of the
player’s area of interest handled by itself. We follow the
same procedure in reverse for unsubscribing clients. If the
player starts walking away from S4, then S4 will subscribe
the client to receive events occuring in a smaller and smaller
area inside S4 until the player is more than R away from
S4’s border. Once that happens, S4 will receive an event
from S3 that the player has moved and S4 will completely
unsubscribe the client. Note that even though a player can
be subscribed to receive events from multiple servers, it only
sends actions to one server - in our example from figure 2
above, P4 only sends actions to S3.

3.3 Events Near Server Boundaries
One of the major advantages of our design is that it han-
dles interactions near and across multiple servers well. We
examine algorithms to handle such complex scenarios; we
also provide the consistency requirements necessary to en-
sure correctness.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 3



3.3.1 Consistency Requirements
To maintain correctness, two consistency requirements must
be satisfied at all times

1. The order of events affecting the state of any given
object must be the same for all clients.

2. There exists a global order of the events that is con-
sistent with the order of events acted on every object.
That is to say it should be possible to assign numbers
to all events, so that the sequence of numbers of the
events that happened to any one object is monotoni-
cally increasing.

3.3.2 Events
We now solve the problem of events that affect areas in
multiple servers. To tackle this problem we use the con-
cept of region locks introduced in section 3.1 and the event
announcing mechanism from section 3.2. Assume an event
originates on server S2 but also affects areas on servers S1

and S3. Our algorithm performs the following

1. Server S2 requests region locks for the geographical ar-
eas affected by the event and object locks for all objects
participating in the event. To avoid deadlocks, begin
requesting both region and object locks in decreasing
ID order. In our example, S2 asks and obtains all the
locks from S3 first, then obtains its own locks and then
from S1. Locks are requested from each server in an
all-or-nothing approach - S2 will request all necessary
locks at each step and will not proceed to request locks
from another server until all locks are available first.

2. Server S2 executes the atomic event and notifies S1

and S3 how they should change their state.

3. S2 releases all acquired locks

4. Clients receive all the state updates via the mechanism
described in section 3.2

5. Once the client receives the outcome of the event from
all the servers it is subscribed to, the client updates its
local state and updates the human player’s game view
if necessary

6. If a client receives a new event before it receives the
outcome of the previous event from all the servers, then
the client queues the new event and executes it right
after being notified about the previous event from all
servers

In the case where the virtual world is divided into rectangles,
the number of servers involved in the execution of an event
is not more than 4. As such, the maximum additional delay
incurred is O(LS).

3.3.3 Object Transfers
A special case of event occurs when an object moves from
a region handled by one server to a region handled by a
different server. Our solution for this case is very similar
to the algorithm in section 3.3.2, however, executing the
event includes transferring the state of the object from one

server to the other. The most complex scenario occurs when
the object is actually a player. In that case, not only do
we need to transfer object state between servers, but also,
events occurring while the transfer is in progress must be
processed as normal. In more detail, consider the scenario
of a player P , walking from S1 to S2. Our algorithm for
server S1 performs the following steps

1. S1 requests region locks for the small area player P
will walk through, beginning with the server having
the largest ID. In this example, S1 asks and obtains a
lock from S2 first before obtaining its own lock.

2. Obtain an object lock on P

3. S1 sends the ID of the last action processed for player
P to S2

2

4. S1 initiates the transfer of P ’s state to S2

5. Upon state transfer completion, S1 releases previously
acquired locks

6. S1 notifies P that S2 is now his new point of commu-
nication

7. If P initiates any events while steps 4, 5 and 6 are
being executed, S1 forwards them to S2

Similarly, the destination server S2 performs the following
steps

1. Let S1 acquire region locks

2. Receive the ID of the last player action processed by
S1 and store it as PlastID

3. Accept the transfer of state

4. When state transfer completes, accept the connection
from P

5. If S2 receives an action from player P having ID >
PlastID + 1 queue it up. If ID = PlastID + 1, process
the action and exit the algorithm

6. At any point, if an action by P is forwarded to S2 by
S1, process it and set PlastID to PlastID + 1

7. When the first event in the queue has an ID equal to
PlastID + 1, process all events in the queue and exit
the algorithm

The event ID tracking mechanism ensures that the consis-
tency requirements laid out in section 3.3.1 are met, even if
some events forwarded from S1 to S2 are slightly delayed.
In section 4.2, we will examine how we utilize this feature
of our design to dynamically reorganize the virtual world
division without affecting gameplay.

2Recall from section 2.2 that events caused by player actions
have monotonically increasing ID numbers associated with
them

4 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006



From a player’s prespective, everything continues smoothly.
A client continues to send actions to S1 unless notified other-
wise in step 6 of the first algorithm. Our design for multiple
publishers as described in section 3.2 ensures that clients
continue to receive event notifications without interruption
and with only an additional mean delay of LS . As LS � LP ,
the delay is not noticable.
The algorithm works equally well for objects other than hu-
man players. In such cases, there is no need to notify the
object of the server switch - the new server becomes respon-
sible for applying game AI rules upon sucessful receipt of
the object’s state.

3.4 Aborting Events
Due to the consistency requirements or delays introduced
during network transfers, it may be the case that the pre-
requisites for executing an event are no longer valid. For
example, two players attempt to pick up the same object
at approximately the same time instant. The server will
obtain locks on behalf of the client whose action the server
received first. The server will then execute the event and
notify the first client that he has sucessfully picked up the
object. After doing so, the server releases the locks and
attempts to lock the same object on behalf of the second
client. However, the object has been already picked up by
the first player and naturally the server will not be able
to acquire the locks. Therefore the event on behalf of the
second client will be aborted and he will be notified that the
object is no longer available.

4. LIVENESS AND SCALABILITY
In this section we discuss some important facets of MMORPG
as a distributed system. We also introduce an algorithm for
dynamically balancing the server and network load by reor-
ganizing the game world while the game is in progress.

4.1 Liveness
Our design allows for a seamless player transfer between
servers that does not require large data burst transfers. Also,
our solution to congestion and hotspots, presented in the
next section, does not create any sudden peaks in network
traffic.
To show that our design has this desirable feature, it is
enough to satisfy the following property : At any time in-
stant, the data exchange between a server and a client as
well as the data exchange between two servers is limited to
O(1). In other words, at no point in time is there a large
game data exchange between servers or server and client. It
is trivial to see that none of the steps in the algorithms from
section 3.3.3 break this property.

4.2 Hotspots
To address unpredictable congestion and hotspots that typi-
cally occur in MMORPG, we describe an algorithm for split-
ting the area handled by one server into two or more parts.
The congested parts can be assigned to either new or exist-
ing servers, depending on the current capacity of the system.

Consider the example for two servers, S1 and S2. S1 is
operational but experiencing a heavy load as it is responsible
for a large number of objects and is handling an unusually
high number of events. S2 is not operational yet and is

without any state. Our algorithm performs the following
steps :

1. S1 designates an area as belonging to S2.

2. S1 begins transferring game data to S2. The game
data consists of objects that can be serialized and mar-
shalled across the wire. Only game data in the area
designated as belonging to S2 in step 1 is transferred.

3. If while the transfer is in place, an object already trans-
ferred is updated, S1 sends the updated copy to S2.

4. Upon data transfer completion, S2 can immediately
become operational as it has all the game data re-
quired, including object trajectories.

5. S1 triggers the split and S2 begins publishing events.

6. The last two steps from the player transfer algorithm
detailed in section 3.3.3 are executed for every player
that is now located in an area handled by S2.

The key in understanding how our algorithm satisfies the
liveness property is noting that the communication in steps 2
and 6 happens over an extended period of time. In step 2, S1

can throttle the data communication between itself and S2

depending on current inter-server network congestion. More
importantly, in step 6, our algorithm from section 3.3.3 en-
sures that no events are lost. Therefore, even if S1 notifies
clients slowly and over time, that their main point of con-
tact is now S2, gameplay will not be significantly affected.
The additional mean delay incurred while the transfer is in
progress is LS , where LS � LP . Therefore even for large
N , the transition is seamless for players.

4.3 Scalability
As the number of players grows with the popularity of the
system, it may be necessary for the game publisher to grow
the virtual world. Below we describe a simple mechanism
for joining a new game server Snew to the network.

1. Snew subscribes to its adjecent servers for all regions
at most distance R from its boundaries

2. All servers adjecent to Snew subscribe to receive events
occuring in regions at most distance R from their re-
spective boundaries

3. Snew becomes operational

Adding new nodes can be an effective means to increase
the size of the virtual world, in order to accomodate for an
increasing user base.

4.4 Fault Tolerance
MMORPG users expect game servers to be constantly avail-
able with little or no downtimes. Recent outages in the
World of Warcraft network have cost the game publisher,
Blizzard Entertainment, an estimated $26198 per hour[7].
Our design, allows for a mirroring scheme that can be used
to cope with server failure. Below, we provide a simple out-
line that can provide fault-tolerance under some common

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 5



failure scenarios.
One backup server Sb is assigned to each operational server
So which acts as the primary server. We then use a method-
ology similar to the one used in the region-split algorithm
in section 4.2. This time however, Sb subscribes to receive
event updates in the entire geographical region handled by
So. Thus So announces all events to Sb prior to announc-
ing to anyone else. In addition, So informs Sb every time it
acquires or releases a lock. Unlike the algorithm in section
4.2 however, we do not notify the players of Sb’s presence
unless we detect that So is down. In that case, Sb, having
all the game data, executes step 5 of the region-split algo-
rithm. The transfer of game data itself is O(LS). With
an appropriate failure-detection scheme, the total delay be-
tween primary server failure and the backup server being
fully operational can be as short as the maximum delay for
server-to-server communication. The above mechanism is
simple and showcases the flexibility of our design. Much
more work needs to be done before we can claim a complete
solution for coping with server failure. However, providing
a thorough discussion on fault tolerance issues is beyond the
scope of this paper.

5. EVALUATION
5.1 Implementation
We have implemented a simple game called Kosmos, to
demonstrate the most important aspects of our architec-
ture as well as measure the relative performance gains of
the distributed approach. Kosmos is built on top of the
Java Remote Method Invocation subsystem. Although this
is inefficient from a performance perspective, it allows for
a simple event-driven design that clearly demonstrates how
our architecture works. We have also implemented a sep-
arate subsystem for facilitating asynchronous method invo-
cations. Our purposes was to further test if our design can
correctly support asynchronous operations, a mode of oper-
ation typical in networked games.

5.2 Empirical Results
We played a version of Kosmos on a local network of PCs us-
ing a GUI game client which allowed a human player to nav-
igate in the virtual world and fire rockets using the mouse.
The GUI also displayed a bright red line to show server
region borders. As such we tried to manually create fail-
ure scenarios by simultaneous fire, constantly crossing the
virtual server border back and forth, transferring objects
between servers and simulating collisions exactly on server
borders. Kosmos passed all tests successfully. Despite the
lack of optimizations, the gameplay was very enjoyable.

5.3 Experimental Results
We performed our experiments using a version of Kosmos on
a large heterogeneous cluster. To do so we used Emulab[9] to
configure a network topology of multiple servers and clients.
All game servers were connected to a high-speed LAN with
virtually zero latency and zero packet loss rate. Game clients
were configured with various latencies ranging from 10ms to
300ms and variable packet loss rates, ranging from 0 to 0.5%.
The hardware configuration consisted of 3GHz Pentium IV
PCs with 1GB of RAM running RedHat Linux 9.0 for the
game servers and i586 variants for the game clients. To
evaluate our experimental results we measured the time it

Figure 4: Testing performance when 200 clients are
spawned at random locations in the virtual world and
when spawned near server region boundaries. It can
be seen that performance does not suffer even when
all clients are spawned near server borders.

Figure 5: The performance of a single server with
100, 150 and 200 clients. We can see that the single
server approach has great difficulty scaling with the
number of users.

6 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006



Figure 6: The performance of three servers using our
architecture with 200, 300 and 400 clients. We can
see that three servers handling 400 clients outperform
a single server handling 200.

takes to process events under various loads; starting from
1000 events and slowly increasing the number of events to
5000.

Experiment 1
We tested the practical performance of our algorithms for
handling gameplay near server borders. To do so, we began
by testing with 200 clients whose players have uniformly ran-
dom coordinates and are thus placed everywhere in the vir-
tual world and then comparing with 200 clients whose play-
ers all have coordinates within R of server borders. From our
results, shown in figure 4, we conclude that despite the addi-
tional complexity, our design handles gameplay near server
borders very well.

Experiment 2
To evaluate how well our architecture scales with respect to
the number of users, we measured the performance of single
and multiple server configurations. Figure 5 clearly demon-
strates the practical limitations of a single server approach.
Even though our event announcing mechanism described in
section 3.2 allows a single server to scale gracefully up to
150 clients, server performance drop radically at 200 clients.
Our architecture however, can scale to handle a large num-
ber of clients. Test results shown in figure 6 demonstrate
that three servers can handle 400 clients. Figure 4 suggests
that players do not notice the slight delays incured due to
multiple servers.

6. CONCLUSIONS AND FUTURE WORK
In the future, further improvements are possible, especially
in the area of fault-tolerance. In addition, this paper does
not deal with security and authentication. However, given
the fact that our architecture retains game state control in
the hands of the game publisher, security and authentication
could be incorporated in our architecture relatively easily.

Overall, our solution takes advantage of the locality of inter-
est to distribute the game across several game servers and

reduce both the computational strain as well as the band-
width requirements on each one. Furthermore we present
a solution to the problem of handling game events occur-
ring near virtual boundaries, provide seamless transfer of
objects between servers, describe an algorithm for dealing
with hotspots, and discuss an algorithm that allows the en-
tire game to scale horizontally. In conclusion, through ex-
perimentation we have shown that a new game written with
our architecture can scale to handle a large number of play-
ers.

7. ACKNOWLEDGMENTS
We would like to thank Professor Robert Morris and Panayi-
otis Mavrommatis for their valuable feedback.

8. REFERENCES
[1] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: a

scalable publish-subscribe system for internet games. In
NETGAMES ’02: Proceedings of the 1st workshop on
Network and system support for games, pages 3–9, New
York, NY, USA, 2002. ACM Press.

[2] S. Caltagirone, M. Keys, B. Schlief, and M. J.
Willshire. Architecture for a massively multiplayer
online role playing game engine. J. Comput. Small
Coll., 18(2):105–116, 2002.

[3] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An
efficient synchronization mechanism for mirrored game
architectures. In NETGAMES ’02: Proceedings of the
1st workshop on Network and system support for games,
pages 67–73, New York, NY, USA, 2002. ACM Press.

[4] S. Fiedler, M. Wallner, and M. Weber. A
communication architecture for massive multiplayer
games. In NETGAMES ’02: Proceedings of the 1st
workshop on Network and system support for games,
pages 14–22, New York, NY, USA, 2002. ACM Press.

[5] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In NetGames ’04:
Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, pages 116–120,
New York, NY, USA, 2004. ACM Press.

[6] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games,
2004.

[7] R. Miller. Extended Outages for World of Warcraft.

[8] B. D. Vleeschauwer, B. V. D. Bossche, T. Verdickt,
F. D. Turck, B. Dhoedt, and P. Demeester. Dynamic
microcell assignment for massively multiplayer online
gaming. In NetGames ’05: Proceedings of 4th ACM
SIGCOMM workshop on Network and system support
for games, pages 1–7, New York, NY, USA, 2005. ACM
Press.

[9] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and
Implementation, pages 255–270, Boston, MA, Dec.
2002. USENIX Association.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 7


