A Secure Event Agreement (SEA) protocol for peer-to-peer games

Amy Beth Cormant, Scott Douglast, Peter Schachte{& Vanessa Teague
TNational ICT Australia, Victoria Lab
Department of Computer Science & Software Engineering
The University of Melbourne
Email:{amy,scdougl,schachte,vteague } @csse.unimelb.edu.au

Abstract

Secure updates in a peer-to-peer game where all of the
players are untrusted offers a unique challenge. We analyse
the NEO protocol [5] which was designed to accomplish
the exchange of update information among players in a fair
and authenticated manner. We show that of the five forms of
cheating it was designed to prevent, it prevents only three.
We then propose an improved protocol which we call Se-
cure Event Agreement (SEA) which prevents all five types of
cheating as well as meeting some additional security crite-
ria. We also show that the performance of SEA is at worst
equal to NEO and in some cases better.

1 Introduction

Massively multi-player online games (MMOGs) typi-
cally consist of many thousands of players interacting in a
virtual world. The persistent game state and the large invest-
ment of time by players makes the prevention of cheating
critical to a successful game. In the traditional client server
architecture for MMOGs, security is addressed through se-
cure communication with a trusted central server, usually
using off the shelf tools. These central servers require a
large investment in CPU, bandwidth and maintenance re-
sources. They also represent a single point of failure and
congestion. P2P networks can be used to distribute the re-
sponsibility for game state and logic over participating ma-
chines, removing the need for a central server. Doing so can
improve performance, scalability and robustness.

The use of P2P networks for this purpose poses a unique
security problem since all parties are untrusted. In essence
this means that MMOGs must facilitate a method for partic-
ipants to reach a consensus on the current state of the game
in a way that prevents malicious individuals and groups
from cheating. There are two main classes of communica-
tion that are required for this; low frequency messages, such
as for trading, group forming and permanent world altering

operations, and high frequency updates which communicate
rendering information such as position, direction and action
of virtual entities, such as avatars and non-player charac-
ters. This paper is concerned with a protocol that facilitates
the latter type of communication, which has additional per-
formance constraints. The protocol provides a mechanism
for peers to reach agreement, presenting a consistent view
of the game state to all players.

Scalability is maintained in the network by ensuring up-
dates are sent only to peers holding interested entities, i.e.
those which consume the information, for example to ren-
der a remote player’s avatar. The two main approaches to
interest management in P2P networks are region based and
neighbour based methods. Region based methods provide
either a subscription to a space within which all published
updates from other entities will be received [3, 4] or the
construction of a multi-cast tree of all peers with entities
within a given region which is used to propagate updates
to all local members [8]. Neighbour based approaches form
connections in the network based on the virtual proximity of
the entities on those peers [7, 6]. Updates are then passed
directly between neighbours.

Region based methods incur a communication cost from
routing over the entire P2P network, for example O(logn)
for Chord [13], where n is the number of peers, both to
and from the peer responsible for a region. The benefit
of this method is that since these regions are generally dis-
tributed randomly over all peers the chance that a player’s
peer is responsible for the region they are in is greatly re-
duced. The direct connections made in the neighbour based
method reduces communication cost. However, it is lim-
ited by the fact that messages sent between non-neighbour
peers, for example to pass messages between players, can
only be routed if the location of the recipient is known.

While the diversity of users in a P2P network poses ad-
ditional security issues it can also be leveraged to provide
resources dedicated to cheat detection. One way to do this
is to form a verification group. Actions requested by peers
must be received and verified by a subset of other peers, re-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE



ducing the chance that illegal actions can be performed. The
choice of the verification group thus becomes important, as
it is desirable to choose peers that are not likely to collude.

We envision a direct communication model in which
routing can also be performed over all peers. This facilitates
the formation of groups which is independent to locality in
the virtual world. Updates are passed between peers and are
verified by their respective groups.

The NEO [5] protocol for peer-to-peer games, based on
the work of Baughman and Levine [2], is intended to pre-
vent a number of cheats by attempting to verify the identity
of the sender and register updates in advance to ensure ev-
ery party has chosen their update for a round before they
may read the updates of the other players. It also attempts
to ensure game state consistency by reaching agreement on
which updates have been received by which peers. We anal-
yse this protocol and show that of the five forms of cheating
described in the paper, it prevents only three. We then pro-
pose an improved version of this protocol which prevents all
five types of cheating, as well as meeting some additional
security criteria.

The rest of this paper is organised as follows: Section 2
describes the threat model and requirements we have used
in our analysis, Section 3 describes the NEO protocol, Sec-
tion 4 describes the attacks we have found which compro-
mise the NEO protocol, Section 5 describes our modified
protocol SEA, Section 6 describes the advantages of SEA
and Sections 7 and 8 conclude and suggest further work.

2 Threat model and requirements

For this study we assume an attacker with the ability to
observe, modify, insert and delete network traffic. We also
assume that the attacker may be a valid player in the game
and may corrupt some number of other players. In the pres-
ence of such an attacker we cannot prevent all forms of in-
terference but we are able to detect when tampering has oc-
curred. Denial of service attacks are possible but given that
they are also possible in the underlying network they are
beyond the scope of this work.

While we do not discuss here the exact model used for
the formation and coordination of the verification group,
it is important to note that our threat model is not limited
by any particular routing implementation. For example it
may, for performance, be beneficial to construct a multi-
cast tree within larger verification groups to distribute mes-
sages. This obviously incurs a security threat since it means
messages are routed via untrusted peers. Our threat model
assumes that packet manipulation is possible in the under-
lying network and so could occur in a point to point com-
munication anyway.

Neither NEO nor SEA prevent players from willingly
disclosing any information they possess to another player.

It is easy for an attacker to directly send their updates in
the clear to other players they are colluding with. It is also
possible for players to disclose their private keys to other
players, which has the affect of the attacker being in control
of multiple players. Given that group verification is based
on a majority, if a majority of players are ever corrupted
they will be able to cheat the minority of honest players. It
is possible to mitigate the probability of a majority of play-
ers colluding by adding random “disinterested” third parties
to the group, but this is a matter for the group selection pro-
tocol.

It is important to note that we do not analyse the related
protocols needed for negotiating the number of players in-
volved, who these players are, or the round length. All
of these steps have the potential to contain security criti-
cal problems and need to be treated carefully. We assume
that all participants are in agreement about the membership
of the group, the length of a round, and a synchronised start
time. We also assume an established public key infrastruc-
ture and an honest majority of players. We expect that all
players are able to synchronise their starting time and then
count round lengths against a local clock. This synchroni-
sation takes place each time a new group is formed or the
membership of an existing group is changed.

It is possible in SEA that two players world views will
diverge because they disagree about whether a certain up-
date should be accepted. For example, one player may re-
ceive a majority of votes supporting a given update while
another player may not, due to lost packets. This is an in-
evitable problem in all systems with unreliable communica-
tion channels [9]. We expect this problem to be mitigated by
continuing to request other players to resend missed votes.

In the following sections we discuss both attacks and
cheats. We consider an attack on a protocol to be a vulner-
ability in a protocol and a cheat to be a method the attacker
may use to gain some benefit from a vulnerability. We use
the names for the following “cheats” that are given in the
original paper for clarity, but we do not consider all these to
be cheats by our definition of the word.

2.1 Types of cheats

Cheating is somewhat difficult to define, but we consider
it to be any action which is accepted but is against the rules
of the game. Given an ideal situation with a trusted and
secure server and secure links between each of the players
and this server, we consider any action that is possible but
would not be possible in this ideal situation to be a cheat.
To prevent protocol level cheating we must ensure that ev-
ery message is properly authenticated and is not modified
in transit. We must detect any tampering at the protocol
level which allows bad messages to be discarded quickly
and should spend the least amount of time possible doing

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE



M7 Message sent by player A in round r

Sa(z) x signed by player A
A Update for player A for round r
{x}fig

M }’( A) Message sent by the attacker I which appears to be from A in round r

Encryption of = with the key K which was chosen by player A and used in round
Vi~ Votes for which updates A received in round r — 1

A unique identifier for the session depends on the time and group of players in the game

Vh;_1 Votes for which updates A received in round r — 1 including a hash of the update
T,y Concatenation of x and y

H(x) Cryptographic hash of =

n’ A nonce (fresh unpredictable value) used in round r

SessID

1Dy A unique identifier for player A

Table 1. Explanation of notation used in equations

so. GauthierDickey, Zappala, Lo and Marr [5] define five
specific cheats that they would like to prevent.

e Fixed-Delay Cheat - The attacker receives packets
faster than she sends them which enables her to use in-
formation about her opponents actions in the selection
of her own actions (before they know her actions).

o Time-stamp Cheat - The attacker uses information
about the actions of other players in the selection of
her actions and then puts false timestamps on her up-
dates which make it appear as if her actions occurred
before theirs.

o Suppressed Update Cheat - The attacker does not send
every update to all the players, this keeps those players
she omits from knowing what she is doing.

o [nconsistency Cheat - The attacker sends different up-
dates to different players.

e Collusion Cheat - The attacker shares information with
other players she is colluding with which would not
normally be available to everyone.

2.2 Types of attack

In addition to these five specific cheats we introduce two
new types of attack which are well-known in the protocol
literature [11]. These two types of attacks have significant
potential for damaging the security goals of the protocol be-
cause they undermine the authentication of the source of a
message.

e Replay Attacks - The attacker reuses a message previ-
ously sent by another player in whole or in part and
it is accepted as valid. This can be used to duplicate
the move of an opponent without necessarily knowing
what the move is.

e Spoofing Attacks - The attacker can construct messages
which appear to be from another player and are ac-
cepted as valid.

We will compare the security of the NEO protocol to our
improved version, which we call Secure Event Agreement
(SEA), based on the five cheats and these additional criteria.

3 Description of NEO

GauthierDickey, Zappala, Lo and Marr [5] present a pro-
tocol designed to improve on Baughman and Levine’s lock-
step protocol [2] by reducing latency while continuing to
prevent cheating. They achieve this by adding a voting
mechanism to compensate for packet loss in the environ-
ment. They call this protocol New Event Ordering (NEO).
The security attributes of this protocol can be described in
brief as a commit and reveal method with majority agree-
ment on valid commitments. This is implemented by having
fixed length rounds and adding a voting function such that
players communicate which updates they have received by
the end of the round. Players must commit to their update
within the round. They do not reveal their update until the
next round begins. The majority of players must receive the
update within the round time limit in order for the update to
be considered valid.

M}y = {SaUi)} iy K37, Sa(VA™H) M

The basic NEO protocol has messages of the format
given in Equation 1 with notation explained in Table 1.
Each player sends a message of the format described to each
of the other players in their group each round. The purpose
of this message is to inform the other players of the actions
they would like to take in the round (this is called the update
portion of the message).

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

YF]',F.

COMPUTER

SOCIETY



4 Problems with NEO

We have discovered several possible ways to cheat which
are not prevented by the NEO protocol. In brief, these are:

1. Attacker can replay updates for another player.

2. Attacker can construct messages with any previously
seen votes attached. Since the votes are signed, the
messages will appear to come from another player.

3. Attacker can send different updates to different oppo-
nents.

The first two of these result from the components of a
NEO message being concatenated but not bound by any
cryptographic means. The NEO protocol also neglects to
include the identity of the originator in the message which
violates Abadi and Needham’s third principle for prudent
engineering of cryptographic protocols [1]. We will now
discuss each of these attacks in detail.

4.1 Attacker can replay updates for an-
other player

The attacker replays a signed update from a previous
round forcing the player they are attacking to make the same
move as they have already made in a previous round. We
refer to the honest player as A and the attacker as I in our
equations. An example of a message constructed to achieve
this attack is given in Equation 2. The fact that the updates
are signed ensures that at the protocol level the recipient
will assume that the person who signed the update sent the
update, but this may not be the case.

Mjay ={SaUx Nry . Ki7HSa(VE™H) @)

Mgy ={SaU3 ey Ky Sa(Vih) - 3)

In order to construct this replay attack, the attacker must
have seen both the round with the update to be replayed
and the following round with the key to decrypt the update.
The attacker may then decrypt to extract the signed update
and either re-encrypt it with an arbitrary key (as shown in
Equation 3) or replay it exactly as it is since the attacker
now knows the key it was encrypted with. The two example
equations given differ only in that in Equation 2 the attacker
reuses a key chosen by the original sender and in Equation 3
the attacker generates a new key. The attack is also illus-
trated in Figure 1.

Round |

Alice EE——

Intruder - Bob

Round 2

Alice ——-—| Intruder p——m-—-P Bob
r
A M pa)

Figure 1. An illustration of the replay attack
described in Section 4.1.

4.2 Attacker can spoof messages with pre-
viously seen votes

The NEO protocol has a message element which is called
the votes. It is a bit vector sent by each player in which they
vote either 1 or O for each other player in the group. A 1
means that the player did receive an update before the end
of the round, a 0 means that the player voting did not re-
ceive the update in time. The purpose of the addition of
voting to the protocol is to provide a way to judge consen-
sus on whether a player sent their update within the round
limit. Unfortunately, because the voting part of the message
is signed by the voter but not bound to any particular round,
it may be abused by an attacker to forge this consensus and
break the commit and reveal nature of the protocol.

Once the attacker has recorded the votes from many
other players, the attacker may then construct spoofed mes-
sages which appear to come from other players. By append-
ing votes which accept the attacker’s message, it is possible
for the attacker to send her update after the round is finished
and the other players will still accept it as valid. This allows
the attacker to read the updates of the other players before
constructing her own.

My ={SaU)}er, K5 Sa(Vi™h) @)

An example of a message to achieve this attack is given
in Equation 4. An illustration of this attack is given in Fig-
ure 2. The steps for this attack are:

1. I records votes from player A looking for one in which
A votes “yes” for I (round r — 4 in the example equa-
tion)

2. I constructs a spoofed packet for A and attaches the
vote from r — 4

3. The round finishes.

4. I reads the updates of all the other players for the
round.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE



5. I constructs her own update using this information and
sends it to the other players.

6. The other players mistakenly believe that A received
the update before the end of the round.

[Step 1] Intruder prepares by recording messages

m"
Alice > Intruder —L »- Bob
r r
M A M A
[Step 2] Intruder sends message on behalf of A with different V
Alice > Intruder »- Bob
r+l
M - -
A M’”M) = S (V! 4A)
[Step 3] Round including Step 2 ends
[Step 4] Intruder reads the other player's updates
[Step 5] Intruder finishes attack by sending message after round ends
" r+2 ", r+2
! Iz b
Alice » Intruder > Bob
r+2 r+2
M A M A

Figure 2. An illustration of the voting attack
with steps corresponding to the description
in Section 4.2.

This subverts the voting and defeats the purpose of the
round limits. This attack will only work if I successfully
spoofs packets for a majority of players (or I may have ac-
complices who will always vote “yes”). In relation to the
original five cheats, this attack is effectively a time-stamp
cheat.

4.3 Attacker can send different updates to
different players

NEO provides no assurances at the protocol level that all
players have received the same update. It is claimed that
because the updates are signed, this behaviour will be de-
tected, but because the updates are not tied to a round at the
protocol level it is possible for the attacker to replay signed
updates to different players which would convince them to
accuse an innocent player of cheating. In relation to the
original five cheats, this attack is effectively an inconsis-
tency cheat.

We propose the addition of a hash of the update be in-
cluded in the vote. This means that if a player A receives an
update from player B within the round limit for round 7, in-
stead of voting simply “yes” for player B in round r, A will
vote “yes” for an update with the hash x in round r. This
allows the players to determine if a majority of players re-
ceived the same update. We assume that a player should be
able to construct their vote based on protocol level informa-
tion alone (without passing the message up for higher level
processing). We will discuss the details of our proposed
protocol in the following sections.

S Description of SEA

We propose a modification of the NEO protocol to fix
the problems described in Section 4. We call our protocol
Secure Event Agreement (SEA). SEA is described in
Equation 5 and Equation 6. We replace encryption as a
commitment method with a cryptographic hash because it
provides the same security but is faster [12] and removes
possible issues with key tampering and selection.

Commit’y = H({Uy,n",SessID,1D4) (5)
M} = Sa(Commit’y, U;‘_l,Vh;l_l,nT_l,r) (6)

For the sake of future analysis, it is useful to describe the
intended purpose of each element of the message format.
The purpose of signing the entire message is to authenticate
the creator of the message. The hash serves to commit the
player to the values included for the next round. We have
included a nonce inside the hash to reduce the possibility of
pre-computing all possible values for the hash. A nonce is
a pseudo-random value which needs to be fresh (never used
before, never used again) and unpredictable. The nonce
may be unnecessary if the likely values for the U’ are from
a sufficiently large range of possibilities. We have included
the SessID inside the hash to prevent replaying this
message in a different session or with a different group of
players. We have also included the 1D 4 inside the hash to
bind the message to one particular sender, this will prevent
an attacker from playing the same move (without necessar-
ily knowing what it is) by copying the hash and playing
it as their own (and supplying the appropriate update and
nonce after the player reveals them in the following round).
We have included the round number in the signature to pre-
vent the entire message being replayed in a following round.

5.1 Checks to perform on a SEA message

The security assurances of a SEA message depend on
the proper checks being performed before a message is ac-
cepted as valid.

e The signature is checked (we assume that players pos-
sess the public keys of the other players and that the
identity to key relationship has been validated previ-
ously).

e The update and nonce for the previous round are used
with the SessID and ID,4 (which must match the
identity associated with the signature on the previous
round’s message) to construct the hash which must
match the value committed to in the previous round.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE



Player A B C D E
A Commit Commitcy Commitp Commitg,
B Commitp Commitcy Commitp Commitg
C Commitc Commitp Commitg
D Commit o Commitc Commitp Commitg
E

Tally 2 I 2 g 3

Table 2. Example voting matrix from player A’s perspective for five players

e The round number, » must be for the current round.

e The V;l—a;e,_ are examined with the following condi-
tions:

— A majority of messages must have been received
(based on the number of players in the group)
and the result of the vote for each player must
be clear. If missing messages could change the
outcome, they must request that the messages be
resent.

— A majority of the hash values for a particular
player must match for their update to be ac-
cepted. Only the update matching this hash value
is accepted as valid.

5.2 SEA vote construction

In the NEO protocol the voting part of the message con-
sists of a bit vector of length P, where P is the total number
of players in a group. We have not fixed a maximum group
size but expect the group size to vary between 5 and 30 in
practise. Each player gathers these vectors and puts them to-
gether into a matrix and tallies the number of votes for each
player. If the result of the tally for a particular player could
not be changed by missing votes, the vote stands. If the
missing votes could change the outcome of the tally (with
respect to the majority), the player asks abstaining players
to resend their votes.

In the SEA protocol we send the Commit part of the
player’s update (shown in Equation 5) as the “yes” vote.
This lengthens the message but provides additional secu-
rity. Given a game with 5 players, A, B, C, D, and F, an
example voting matrix from the perspective of player A is
given in Table 2. In this example all players would immedi-
ately discard the update for B, and accept the updates for D
and E given that a majority of votes agree on each of these
players’ updates. For players A and C' however, the result is
affected by E’s missing vote. The update received by play-
ers A and B from player C, Commitcy differs from the
update received by players C and D, Commitc. It is nec-
essary to contact E to resolve the issue. If a response from

E does not arrive in a timely manner, these updates should
also be discarded.

6 Advantages of SEA

The SEA protocol offers security advantages and equal
or better performance to the NEO protocol.

6.1 Five original cheats

We have already shown that the NEO protocol did not
prevent all five of the cheats it was designed to stop. Our
SEA protocol does prevent all five of these cheats which
are described in Section 2.1.

e Fixed-Delay Cheat - Forcing all players to commit to a
move in a particular round before revealing any moves
for that round prevents the attacker from gaining any
knowledge about the other players’ moves before they
must choose their own. A hash function is a secure
method of accomplishing this goal. The voting proto-
col ensures that a majority of players have received the
same commitment before the round finishes.

o Time-stamp Cheat - All updates sent in the same round
happen simultaneously. The round numbers are used
to order events appropriately. If an update was not re-
ceived within the round duration with the correct 7, it
will not be accepted.

e Suppressed Update Cheat - The Commit value in-
cluded in the voting part of the message will let any
players who did not receive an update from a partic-
ular player know what update that player committed
to without receiving it directly. Since all messages are
signed, they may be forwarded on to players that did
not receive them. This means that a player only needs
to get voting information from one other player that
did receive the update.

o Inconsistency Cheat - As in the above suppressed up-
date cheat, the Commit value included in the votes
makes it possible for the players to detect if they have

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE



Primitive type Example primitive Clock cycles
Hash function SHA-1 (160 bits) 15/byte + 1040
Symmetric encryption | AES (128 bit key) 25/byte + 504
Digital signature RSA-PSS (1024 bit key) | 42,000,000

Table 3. Approx. CPU cycles used on a Pentium lll Processor [10]

received different updates and only if a majority of
players have received the same C'ommit will it be ac-
cepted.

o Collusion Cheat - Players may still share any informa-
tion they possess with other players outside the typ-
ical game channels but given the commit and reveal
method, this information is limited to revealed updates.

6.2 Additional security criteria

We have added some additional security requirements
which we feel are important to the security of a peer-to-peer
game protocol.

® Replay Attacks - The Commit value includes the
SessID and ID pjqyer Which should prevent another
player from replaying the message in a different con-
text. The Commit value also includes a nonce n,. to
provide freshness. If this nonce is unique (and from a
large enough possible range of values), it should make
the Commit value both unpredictable and unique.

e Spoofing Attacks - In SEA the entire message is signed
which should prevent another player from generating
spoofed messages with valid signatures (provided the
key is kept secret).

6.3 Performance

To form a message, SEA uses one hash operation and
one signature operation. This is faster than NEO which uses
one encryption operation and two signature operations. To
give the reader a sense of how expensive each type of op-
eration is to compute, the approximate costs of, and an ex-
ample of, each type of operation are given in Table 3 [10].
This shows that the cost of a signature operation is so many
times greater than either a hash function or encryption op-
eration that it is the most significant part of the computa-
tion. Therefore the reduction from two signature operations
to one will have the most significant impact on the perfor-
mance. We have chosen the particular hash function, sym-
metric encryption and signature examples given in Table 3
because they are well-known, there is no requirement to use
these particular functions in an implementation of SEA and

these are not necessarily the best choices to make for these
functions.

In the NEO protocol, the loss of a message results in the
loss of two rounds of updates due to the chaining nature
of the messages. In our SEA protocol this is mitigated by
the addition of the Commit values to the voting section
of the message. This allows a player to accept an update
even if they did not receive the Commit on time or at all
(provided that a majority of other players did). A player
who is missing a Commit may randomly select any other
player who has received the update (and voted as such) and
request that they resend the missing value.

We also propose a variation which adds to the message
length but reduces the effect of lost messages as shown in
Equations 7 and 8. By including updates for the two previ-
ous rounds, the loss of a message results in the loss of only
the round that is committed to in that message (or possibly
none at all when considered in conjunction with the voting
format discussed above).

Reveal’y = Uy, VR, —1,n" "1 r 7

MYy = Sa(Commit?, Reveal’y, Reveal’y ') (8)
7 Conclusion

We have shown that the NEO protocol fails to prevent
two of the five attacks its authors claim. These attacks are
possible because the elements of the message are simply
concatenated. This allows the formation of new illegal but
valid messages from previously seen events. We have pro-
posed a new protocol, SEA, which addresses these issues.
The SEA protocol signs an entire event message, binding
the parts of the message into a whole. It also includes ad-
ditional information such as the SessI D, n,, and r which
bind the message to a particular round and group.

In addition to being significantly more secure, the SEA
protocol offers performance advantages. The SEA protocol
is shown to require approximately half the computation to
create and process each message. The addition of update
hashes to the voting section of the message adds the ability
to securely reconstruct and propagate updates which have
not reached all relevant players. This means that instead of
losing two communication rounds with each missing mes-
sage, as is the case for NEO, the SEA protocol only loses

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE



one, effectively giving twice the delivered updates upon
failure.

The SEA protocol is a strong foundation upon which a
comprehensive secure peer-to-peer game may be built. A
complete solution has many layers and each layer must en-
sure adequate security. SEA provides this security for the
protocol level.

8 Future work

Given that the group selection and round negotiation
protocols are crucial to the security of any group consen-
sus event agreement protocol, we intend to develop secure
group selection and round negotiation protocols to work in
conjunction with SEA. It is important that all members of
a group agree on the membership of the group for concepts
like “majority” to make sense. This is particularly challeng-
ing in a peer-to-peer game environment where the group
membership may change frequently as players move around
the virtual world or enter and exit and the game altogether.

Acknowledgment

The authors would like to thank Aaron Harwood for
helpful discussions and comments on this paper. We would
also like to thank NICTA Victoria research lab for support-
ing this work.

References

[1] M. Abadi and R. Needham. Prudent engineering practice
for cryptographic protocols. IEEE Transactions on Software
Engineering, 22(1):6-15, 1996.

[2] N. E. Baughman and B. N. Levine. Cheat-proof playout of
centralized and distributed online games. In Proceedings
IEEE INFOCOM 2001, The Conference on Computer Com-
munications, pages 104-113, Apr. 2001.

[3] A.R.Bharambe, M. Agrawal, and S. Seshan. Mercury: sup-
porting scalable multi-attribute range queries. In ACM SIG-
COMM, pages 353-366, Portland, OR, September 2004.

[4] A.R.Bharambe, S. Rao, and S. Seshan. Mercury: a scalable
publish-subscribe system for Internet games. In NetGames,
pages 3-9, Bruanschweig, Germany, April 2002.

[5] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr. Low-
latency cheat-proof event ordering for peer-to-peer games.
In International Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video (NOSSDAV), June
2004.

[6] S.Hu and G. Liao. Scalable peer-to-peer networked virtual
environment. In NetGames, pages 129-133, Portland, OR,
September 2004.

[7]1 J. Keller and G. Simon. Solipsis: A massively multi-
participant virtual world. In PDPTA 2003, pages 262-268,
Las Vegas, NV, June 2003.

(8]

(9]

(10]

(11]

[12]

[13]

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

B. Knutsson, H. Lu., W. Xu, and B. Hopkins. Peer-to-peer
support for massively multiplayer games. In /EEE Infocom,
Hong Kong, China, March 2004.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

B. Preneel, B. V. Rompay, S. B. Ors, A. Biryukov,
L. Granboulan, E. Dottax, M. Dichtl, M. Schafheutle,
P. Serf, S. Pyka, E. Biham, E. Barkan, O. Dunkelman,
J. Stolin, M. Ciet, J.-J. Quisquater, F. Sica, H. Raddum, and
M. Parker. Performance of optimized implementations of
the NESSIE primtives, February 2003.

B. Schneier. Applied Cryptography (2nd Edition). John Wi-
ley & Sons, 1996.

B. Schneier and D. Whiting. A performance comparison
of the five AES finalists. In The Third Advanced Encryption
Standard Candidate Conference, pages 123—135, New York,
NY, USA, April 13-14 2000.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In ACM SIGCOMM, pages 149—
160, San Diego, CA, August 2001.

YF]',F.

COMPUTER
SOCIETY




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


