Semantics of Hoare Logic

Aquinas Hobor and Martin Henz

What does a Hoare tuple mean?

$$\{\phi\} \ \mathsf{P} \ \{\psi\}$$

Informal meaning (already given):

"If the program P is run in a state that satisfies ϕ and P terminates, then the state resulting from P's execution will satisfy ψ ."

We would like to **formalize**

$$\{\phi\}$$
 P $\{\psi\}$

Informal meaning (already given):

"If the program P is run in a state that satisfies ϕ and P terminates, then the state resulting from P's execution will satisfy ψ ."

We would like to **formalize**

$$\{\phi\} \ \mathsf{P} \ \{\psi\}$$

Need to define:

- 1. Running a program P
- 2. P terminates
- 3. State satisfies ϕ
- 4. Resulting state satisfies ψ .

Operational Semantics

Numeric Expressions E:

$$- n | x | (-E) | (E + E) | (E - E) | (E * E)$$

- Boolean Expressions B:
 - true | false | (!B) | (B&B) | (B|B) | (E < E)</p>

- Commands C:
 - $x = E \mid C;C \mid if B \{C\} else \{C\} \mid while B \{C\}$

Expressions: syntax and semantics

Numeric Expressions E:

$$- n | x | (-E) | (E + E) | (E - E) | (E * E)$$

Now, what does evaluation of an E mean?

We want to write $E \downarrow I$ n to mean "the expression I E evaluates to the numeric n"

But what about E = x? By itself, we don't know what to do...

We have to specify exactly how each evaluates

Numeric Expressions E:

$$- n | x | (-E) | (E + E) | (E - E) | (E * E)$$

Define a context γ to be a function from variables to numbers.

We have to specify exactly how each evaluates

Numeric Expressions E:

$$- n | x | (-E) | (E + E) | (E - E) | (E * E)$$

Now define $\gamma \vdash E \lor n$ to mean "in context γ , the expression E evaluates to the numeric n."

Boolean Evaluation

- Boolean Expressions B:
 - true | false | (!B) | (B&B) | (B|B) | (E < E)

Since B includes E, we will need contexts to evaluate Bs.

What do we evaluate to? How about propositions?

So define $\gamma \vdash B \lor P$ to mean "in context γ , the expression B evaluates to the proposition P."

Commands

Commands C:

 $-x = E \mid C;C \mid if B \{C\} else \{C\} \mid while B \{C\} \mid crash$

All of these look normal except for "crash" – which you can think of as dividing by zero. We add it to make the language a bit more interesting.

Command Evaluation

 Idea: executing command C for one step moves the machine from one state to the next

• What is a state σ ?

• Pair of context γ (data) and control k (code)

- Control k is either kStop (we are done) or kSeq C k
 - We can write C k for kSeq if that is easier
 - We can also write for kHalt

Step relation, assign

We now define the step relation, written

$$\sigma_{_1} \mapsto \sigma_{_2}$$

that is, "state σ_1 steps to state σ_2 ", in parts:

$$\gamma \vdash E \lor n$$
 $\gamma' = [x \rightarrow n] \gamma$ $(\gamma, (x = E) \bullet k) \mapsto (\gamma', k)$

Step relation, seq

$$(\gamma, (C_1; C_2) \bullet k) \mapsto (\gamma, C_1 \bullet (C_2 \bullet k))$$

Step relation, if (1 and 2)

$$\gamma \vdash B \downarrow \mathsf{True}$$

 $(\gamma, (if B then \{C_1\} else \{C_2\}) \bullet k) \mapsto (\gamma, C_1 \bullet k)$

$$\gamma \vdash \mathsf{B} \Downarrow \mathsf{False}$$

 $(\gamma, (if B then \{C_1\} else \{C_2\}) \bullet k) \mapsto (\gamma, C_2 \bullet k)$

Step relation, while (1 and 2)

$$\gamma \vdash B \downarrow \mathsf{True}$$

 $(\gamma, \text{ (while B {C})} \bullet \text{k}) \mapsto (\gamma, \text{ C} \bullet \text{ (while B {C})} \bullet \text{k}))$

$$\gamma \vdash \mathsf{B} \Downarrow \mathsf{False}$$

 $(\gamma, \text{ (while B {C})} \bullet \text{k)} \mapsto (\gamma, \text{k)})$

Entire step relation

$$\gamma \vdash E \lor n$$
 $\gamma' = [x \rightarrow n] \gamma$ $(\gamma, (x = E) \bullet k) \mapsto (\gamma', k)$

$$(\gamma, (C_1; C_2) \bullet k) \mapsto (\gamma, C_1 \bullet (C_2 \bullet k))$$

$$\frac{\gamma \vdash B \downarrow \mathsf{True}}{(\gamma, (\mathsf{if} \; \mathsf{B} \; \mathsf{then} \; \{\mathsf{C}_1\} \; \mathsf{else} \; \{\mathsf{C}_2\}) \bullet \mathsf{k}) \mapsto (\gamma, \, \mathsf{C}_1 \bullet \mathsf{k})}$$

$$\frac{\gamma \vdash B \Downarrow False}{(\gamma, (if B then \{C_1\} else \{C_2\}) \bullet k) \mapsto (\gamma, C_2 \bullet k)}$$

$$\gamma \vdash B \downarrow \text{True}$$

 $(\gamma, \text{ (while B {C})} \bullet \text{ k)} \mapsto (\gamma, \text{ C} \bullet \text{ (while B {C}} \bullet \text{ k)})$

$$\frac{\gamma \vdash B \Downarrow \mathsf{False}}{(\gamma, (\mathsf{while} \ \mathsf{B} \ \{\mathsf{C}\}) \bullet \mathsf{k}) \mapsto (\gamma, \mathsf{k}))}$$

What about crash??

 The point is that crash does not step anywhere – it just stops the machine in some kind of invalid state.

 This is different from ■, which also does not step anywhere but which is consider to be a "proper" way to stop the program.

From step to step*

 Usually we want to run our program for more than one step.

• We write $\sigma \mapsto^* \sigma'$ to mean that the state σ steps to the state σ' in some number of steps.

From step to step*

$$\sigma \mapsto^* \sigma$$
 $\sigma \mapsto^* \sigma'$
 $\sigma \mapsto^* \sigma''$

We would like to **formalize**

$$\{\phi\} \ \mathsf{P} \ \{\psi\}$$

Need to define:

- 1. Running a program P
- 2. P terminates
- 3. State satisfies ϕ
- 4. Resulting state satisfies ψ .

First Attempt:

Terminates means eventually halted

• We say a state (γ, k) is halted when $k = \blacksquare$

(First Attempt:)

• σ terminates if $\exists \sigma'$ such that $\sigma \mapsto^* \sigma'$ and σ' is halted.

• This works well... except that it is terrible when we want to use it as a hypothesis.

Example: sequence rule

Consider trying to prove the following rule

$$\frac{\{\psi\}\,\mathsf{c}_1\,\{\chi\}}{\{\psi\}\,\mathsf{c}_1\,\mathsf{;}\,\mathsf{c}_2\,\{\phi\}}$$

Premise 1: if ... c1 terminates ... then ...

Premise 2: if ... c2 terminates ... then ...

 c_1 ; c_2 *does not terminate* after running c_1 – it then starts on c_2 . But that means that we can't use premise 1 in our proof (or at least not very easily).

We would like to **formalize**

$$\{\phi\}$$
 P $\{\psi\}$

Need to define:

- 1. Running a program P
- 2. P terminates (**Deferred until step 4**)
- 3. State satisfies ϕ
- 4. Resulting state satisfies ψ .

What is an assertion?

The idea is that an assertion is a formula whose truth depends on the context:

$$\psi$$
, ϕ : $\gamma \rightarrow \{\mathsf{T, F}\}$

We can even write $\gamma \vDash \psi$ as shorthand for $\psi(\gamma)$

We will see that this approach is very similar to modal logic (but not for a few more weeks)

Lifting Assertions to Metalogic

Now we want to define how the logical operators:

$$\gamma \vDash \phi \land \psi \equiv (\gamma \vDash \psi) \land (\gamma \vDash \phi)$$

$$\gamma \vDash B \equiv \gamma \vdash B \Downarrow \mathsf{True}$$

$$\gamma \models [x \rightarrow e] \psi \equiv [x \rightarrow n] \gamma \models \psi$$
(where $\gamma \vdash e \lor n$)

etc.

Implication of Assertions

It is also useful to have a notion that one formula implies another for any context.

$$\phi \vdash \psi \equiv \forall \gamma, (\gamma \vDash \phi) \Rightarrow (\gamma \vDash \psi)$$

Note that this is very different from implication at the object level:

$$\gamma \vDash \psi \Rightarrow \phi \equiv (\gamma \vDash \psi) \Rightarrow (\gamma \vDash \phi)$$

We would like to **formalize**

$$\{\phi\} \ \mathsf{P} \ \{\psi\}$$

Need to define:

- 1. Running a program P
- 2. P terminates
- 3. State satisfies ϕ
- 4. Resulting state satisfies ψ .

Better Approach

• Define safe(σ) as,

- Among other things, if σ is safe then it never reaches crash.
- Define guards(P, k) as,

$$- \forall \gamma. \ \gamma \models P \Rightarrow safe(\gamma, k)$$

 The idea is that if P guards the control k, then as long as P is true then k is safe to run.

Putting it all together

$$\{\psi\} \subset \{\phi\} \equiv \forall k. \text{ guards}(\phi, k) \Rightarrow$$

guards $(\psi, C \bullet k)$

That is, for any continuation (rest of program) k, if ϕ is enough to make k safe, then ψ is enough to make C followed by k safe.

Question: does ϕ hold after executing C?

Testers

- Answer: yes! We pick a k that "tests ϕ ".
- For example, if $\phi \equiv x = 3$, then we pick
 - $-k \equiv if x = 3 then x = x else crash$
 - (this is why crash is useful to add to the language!)
- Obviously, if $\gamma \models \phi$, then this k is safe (since x=x does no harm).
- But if ϕ does not hold, then this program will not be safe.

Putting it all together

$$\{\psi\} \ \mathsf{C} \ \{\phi\} \ \equiv \ \forall \ \mathsf{k}. \ \mathsf{guards}(\phi, \mathsf{k}) \Rightarrow$$
guards $(\psi, \mathsf{C} \bullet \mathsf{k})$

Thus in fact, if we know $\{\psi\}$ C $\{\phi\}$, we know that C must make ϕ true after it executes (assuming that ψ was true before running C)

Now what?

Prove the Hoare rules as lemmas from definitions!

$$\frac{\{\psi\} c_1 \{\chi\} c_2 \{\phi\}}{\{\psi\} c_1 ; c_2 \{\phi\}}$$

$$\{[x \rightarrow E] \psi\} \quad x = E \quad \{\psi\}$$

If, While Rules

$$\{\psi \land \mathsf{B}\} \ \mathsf{C} \ \ \{\psi\}$$

 $\{\psi\}$ while B $\{C\}$ $\{\psi \land \neg B\}$

Implied Rule

$$\phi' \vdash \phi \quad \{\phi\} \subset \{\psi\} \quad \psi \vdash \psi'$$
 $\{\phi'\} \subset \{\psi'\}$

Your task on the next homework: Prove these lemmas

```
HT_Seq: 10 points
HT_Asgn: 10 points
HT_If: 10 points
HT_Implied: 5 points
HT_While: 20 points extra credit
    (good luck!)
```

Finally

```
Definition x : var := 0.
Definition y : var := 1.
Definition z : var := 2.
Open Local Scope Z scope.
Definition neq (nel nel : nExpr) : bExpr :=
 Or (LT ne1 ne2) (LT ne2 ne1).
Definition factorial prog : Coms :=
                              (* y := 1 *)
  Seq (Assign y (Num 1))
 (Seq (Assign z (Num 0))  (* z := 0 *)
 (While (neq (Var z) (Var x)) (* \text{ while } z <> x \{ * \})
    (Seq (Assign z (Plus (Var z) (Num 1)))
                                      (* z := z + 1 *)
    (Assign y (Times (Var y) (Var z))) (* y := y * z *)
                                    (* } *)
```

Statement of Theorem

```
Definition Top: assertion := fun => True.
Open Local Scope nat scope.
Fixpoint factorial (n : nat) :=
  match n with
   | \  \, 0 \  \, => \  \, 1
   | S n' => n * (factorial n')
 end.
Open Local Scope Z scope.
Lemma factorial good:
  HTuple Top factorial prog
 (fun g \Rightarrow g y = Z \text{ of nat (factorial (Zabs nat (g x)))).}
```

Casts

```
Definition Top: assertion := fun => True.
Open Local Scope nat scope.
Fixpoint factorial (n : nat) :=
 match n with
   | \  \, ) => 1
   | S n' => n * (factorial n')
 end.
Open Local Scope Z scope.
Lemma factorial good:
  HTuple Top factorial prog
 (fun g => g y = Z of nat (factorial (Zabs nat (g x)))).
```

Proof of Theorem

```
Lemma factorial good:
                                                         (\text{fun g => g z >= 0 /} (\text{g y}) * ((\text{g z}) + 1)
                                                                                                             apply prop ext.
                                                           = Z of nat (factorial (Zabs nat ((g z)
  HTuple Top factorial proq (fun q => q y =
                                                                                                             firstorder.
      Z of nat (factorial (Zabs nat (g
                                                                                                             unfold upd ctx in H.
                                                         (fun q : ctx => q z - 1 >= 0 / q y =
      x\overline{)}))\overline{)}.
                                                                                                             simpl in H.
                                                           Z of nat (factorial (Zabs nat (g
Proof.
                                                                                                             auto with zarith.
                                                           z\overline{)}))\overline{)}.
  apply HT Seq with (fun g \Rightarrow g y = 1).
                                                         repeat intro.
                                                                                                             simpl.
  replace Top with ([y => (Num 1) @ (fun q :
                                                                                                             unfold upd ctx.
                                                         destruct H.
      ctx => g y = 1)).
                                                                                                             simpl.
                                                         destruct H.
  apply HT Asqn.
                                                                                                             auto with zarith.
                                                         clear HO.
    extensionality q.
                                                                                                           replace (fun g : var \rightarrow Z \Rightarrow g z \rightarrow 1 \Rightarrow 0
                                                         rewrite H1.
    unfold assertReplace, Top, upd ctx.
                                                                                                               /\  g y * g z = Z of nat (factorial
                                                         split; auto.
     simpl.
                                                                                                               (Zabs nat (q z)) \overline{)} with
                                                         remember (g z) as n.
    apply prop ext.
                                                                                                             [v \Rightarrow (Times (Var y) (Var z)) @ (fun g :
                                                         clear -H.
    firstorder.
                                                                                                               var -> Z => g z - 1>= 0 /\ g y =
                                                                                                               Z of nat (factorial (Zabs nat (g
                                                         destruct n; auto.
  apply HT Seq with (fun q :ctx \Rightarrow q z = 0
      / \setminus g \overline{y} = 1).
                                                                                                               z\overline{)}))\overline{)}
                                                         simpl.
                                                                                                           apply HT Asgn.
  replace (fun q : var \rightarrow Z \Rightarrow q y = 1)
                                                         rewrite <- Pplus one succ r.
                                                                                                             extensionality q.
                                                         rewrite nat of P succ morphism.
                 ([z \Rightarrow (Num 0) @ (fun q :ctx)]
                                                                                                             apply prop ext.
      => g z = 0 / (g y = 1)).
                                                                                                             firstorder.
                                                         remember (factorial (nat of P p)).
  apply HT Asqn.
                                                                                                             repeat intro; firstorder.
                                                         clear.
    extensionality q.
                                                                                                             repeat intro.
                                                         rewrite Zpos succ morphism.
    unfold assertReplace, Top, upd ctx.
                                                                                                             destruct H.
                                                         rewrite inj plus.
     simpl.
                                                                                                             destruct H.
                                                         rewrite inj mult.
     apply prop ext.
                                                                                                             rewrite H1.
                                                         rewrite <- Zpos eq Z of nat o nat of P.
    firstorder.
                                                                                                             simpl in HO.
  apply HT Implied with
                                                                                                             destruct (Ztrichotomy (g z) (g x)).
                                                         elimtype False.
     (fun g \Rightarrow g z \Rightarrow 0 / g y = Z of nat
                                                                                                             contradiction HO; auto.
                                                         auto with zarith.
      (factorial (Zabs nat (g z)))
                                                                                                             destruct H2.
                                                      apply HT Seg with (fun q \Rightarrow q z - 1 >= 0
     ((fun q \Rightarrow q z \Rightarrow 0 / q y = Z of nat
                                                           / \ g y * g z = Z of nat (factorial)
                                                                                                             rewrite <- H2.
      (factorial (Zabs nat (g z)))) &&
                                                           (Zabs nat (q z)) \overline{)}.
                                                                                                             trivial.
       [bNeq (neq (Var z) (Var x))]).
                                                      replace (fun q : var \rightarrow Z \Rightarrow q z \Rightarrow 0 /\ q
                                                                                                             contradiction HO.
     repeat intro.
                                                           y * (q z + 1) = Z \text{ of nat (factorial)}
                                                                                                             right.
     destruct H.
                                                           (Zabs nat (g z + \overline{1}))) with
                                                                                                             apply Zqt lt .
                                                         [z \Rightarrow (Plus (Var z) (Num 1)) @ (fun q :
    rewrite H, HO.
                                                                                                             trivial.
                                                           var \rightarrow Z \Rightarrow g z - 1 >= 0 / g y * g z
    simpl.
                                                           = Z of nat (factorial (Zabs nat (g
     firstorder.
                                                           z)))))].
  apply HT While.
                                                      apply HT Asgn.
  apply HT Implied with
                                                         extensionality g.
```

The good news...

Your HW does **not** require you to do one of these yourself (we are not without mercy...)

Still... why did I show it to you?

Seems like a lot of work... why bother?

```
(fun q \Rightarrow q z >= 0 / (g y) * ((g z) + 1)
Lemma factorial good:
                                                                                                          apply prop ext.
  HTuple Top factorial prog (fun g => g y =
                                                         = Z of nat (factorial (Zabs nat ((g z)
                                                                                                          firstorder.
      Z of nat (factorial (Zabs nat (g
                                                                                                          unfold upd ctx in H.
      x\overline{)}))\overline{)}.
                                                        (fun q : ctx => q z - 1 >= 0 / q y =
                                                                                                          simpl in H.
                                                         Z of nat (factorial (Zabs nat (g
Proof.
                                                                                                          auto with zarith.
                                                         z\overline{)}))\overline{)}.
  apply HT Seq with (fun q \Rightarrow q y = 1).
                                                       repeat intro.
                                                                                                          simpl.
  replace Top with ([y => (Num 1) @ (fun q :
                                                                                                          unfold upd ctx.
                                                       destruct H.
      ctx => q y = 1)).
                                                                                                          simpl.
                                                       destruct H.
  apply HT Asqn.
                                                                                                          auto with zarith.
                                                       clear HO.
    extensionality q.
                                                                                                        replace (fun g : var \rightarrow Z \Rightarrow g z \rightarrow 1 \Rightarrow 0
                                                       rewrite H1.
    unfold assertReplace, Top, upd ctx.
                                                                                                            /\ g y * g z = Z of nat (factorial)
                                                       split; auto.
    simpl.
                                                                                                            (Zabs nat (g z))) with
                                                       remember (g z) as n.
    apply prop ext.
                                                                                                           [y \Rightarrow (Times (Var y) (Var z)) @ (fun q :
                                                       clear -H.
    firstorder.
                                                                                                            var -> Z => q z - 1>= 0 / q y =
                                                       destruct n; auto.
                                                                                                            Z of nat (factorial (Zabs nat (g
  apply HT Seq with (fun q :ctx \Rightarrow q z = 0
                                                                                                            z\overline{)}))\overline{)}].
      / \ q y = 1).
                                                       simpl.
                                                                                                        apply HT Asgn.
  replace (fun q : var \rightarrow Z \Rightarrow q y = 1)
                                                       rewrite <- Pplus one succ r.
                                                                                                          extensionality q.
                                                       rewrite nat of P succ morphism.
                 ([z \Rightarrow (Num 0) @ (fun g :ctx)]
                                                                                                          apply prop ext.
      => g z = 0 / (g y = 1)).
                                                                                                          firstorder.
                                                       remember (factorial (nat of P p)).
  apply HT Asqn.
                                                                                                          repeat intro; firstorder.
                                                       clear.
    extensionality q.
                                                                                                          repeat intro.
                                                       rewrite Zpos succ morphism.
    unfold assertReplace, Top, upd ctx.
                                                                                                          destruct H.
                                                       rewrite inj plus.
    simpl.
                                                                                                          destruct H.
                                                       rewrite inj mult.
    apply prop ext.
                                                                                                          rewrite H1.
                                                       rewrite <- Zpos eq Z of nat o nat of P.
    firstorder.
                                                                                                          simpl in HO.
  apply HT Implied with
                                                                                                          destruct (Ztrichotomy (g z) (g x)).
                                                       elimtype False.
     (fun q \Rightarrow q z >= 0 / q y = Z of nat
                                                                                                          contradiction HO; auto.
                                                       auto with zarith.
      (factorial (Zabs nat (g z))))
                                                                                                          destruct H2.
                                                     apply HT Seg with (fun q \Rightarrow q z - 1 >= 0
    ((fun q \Rightarrow q z >= 0 / q y = Z of nat)
                                                         / \ g y * g z = Z of nat (factorial)
                                                                                                          rewrite <- H2.
      (factorial (Zabs nat (g z)))) &&
                                                         (Zabs nat (q z)) \overline{)}.
                                                                                                          trivial.
       [bNeg (neg (Var z) (Var x))]).
                                                     replace (fun q: var \rightarrow Z \Rightarrow q z \Rightarrow 0 /\ q
                                                                                                          contradiction HO.
    repeat intro.
                                                         y * (q z + 1) = Z \text{ of nat (factorial)}
                                                                                                          right.
    destruct H.
                                                         (Zabs nat (g z + \overline{1}))) with
                                                                                                          apply Zqt lt .
                                                       [z \Rightarrow (Plus (Var z) (Num 1)) @ (fun q :
    rewrite H, HO.
                                                                                                          trivial.
                                                         var \rightarrow Z \Rightarrow g z - 1 \gg 0 / g y * g z
    simpl.
                                                         = Z of nat (factorial (Zabs nat (g
    firstorder.
                                                         z))))).
  apply HT While.
                                                     apply HT Asgn.
  apply HT Implied with
                                                       extensionality q.
```

Bug in Paper Proof

```
Lemma factorial good:
                                                        (\text{fun g => g z >= 0 /} (\text{g y}) * ((\text{g z}) + 1)
                                                                                                           apply prop ext.
                                                          = Z of nat (factorial (Zabs nat ((g z)
  HTuple Top factorial prog (fun g => g y =
                                                                                                           firstorder.
      Z of nat (factorial (Zabs nat (g
                                                                                                           unfold upd ctx in H.
                                                        (\text{fun g : ctx => g z - 1 >= 0 /\ g y =}
      x\overline{)}))\overline{)}.
                                                                                                           simpl in H.
                                                          Z of nat (factorial (Zabs nat (g
Proof.
                                                                                                           auto with zarith.
                                                          z\overline{)}))\overline{)}.
  apply HT Seq with (fun q \Rightarrow q y = 1).
                                                                                                           simpl.
                                                        repeat intro.
  replace Top with ([y => (Num 1) @ (fun q :
                                                                                                           unfold upd ctx.
                                                        destruct H.
      ctx => g y = 1)).
                                                                                                           simpl.
                                                        destruct H.
  apply HT Asqn.
                                                                                                           auto with zarith.
                                                        clear HO.
    extensionality q.
                                                                                                         replace (fun g : var \rightarrow Z \Rightarrow g z \rightarrow 1 \Rightarrow 0
                                                        rewrite H1.
    unfold assertReplace, Top, upd ctx.
                                                                                                             /\  g y * g z = Z of nat (factorial
                                                        split; auto.
    simpl.
                                                                                                             (Zabs nat (g z)) \overline{)} with
                                                        remember (g z) as n.
    apply prop ext.
                                                                                                            [y \Rightarrow (Times (Var y) (Var z)) @ (fun q :
                                                        clear -H.
    firstorder.
                                                                                                             var -> Z => g z - 1>= 0 / g y =
                                                        destruct n; auto.
                                                                                                             Z of nat (factorial (Zabs nat (g
  apply HT Seq with (fun q :ctx \Rightarrow q z = 0
                                                                                                             z\overline{)}))\overline{)}
      / \ q y = 1).
                                                        simpl.
                                                                                                         apply HT Asgn.
  replace (fun q : var \rightarrow Z \Rightarrow q y = 1)
                                                        rewrite <- Pplus one succ r.
                                                                                                           extensionality q.
                                                        rewrite nat of P succ morphism.
                 ([z \Rightarrow (Num 0) @ (fun q :ctx)]
                                                                                                           apply prop ext.
      => g z = 0 / (g y = 1)).
                                                                                                           firstorder.
                                                        remember (factorial (nat of P p)).
  apply HT Asqn.
                                                                                                           repeat intro; firstorder.
                                                        clear.
    extensionality q.
                                                                                                           repeat intro.
                                                        rewrite Zpos succ morphism.
    unfold assertReplace, Top, upd ctx.
                                                                                                           destruct H.
                                                        rewrite inj plus.
    simpl.
                                                                                                           destruct H.
                                                        rewrite inj mult.
    apply prop ext.
                                                                                                           rewrite H1.
                                                        rewrite <- Zpos eq Z of nat o nat of P.
    firstorder.
                                                                                                           simpl in HO.
  apply HT Implied with
                                                                                                           destruct (Ztrichotomy (g z) (g x)).
                                                        elimtype False.
    (fun g \Rightarrow g z >= 0 / g y = Z of nat
                                                                                                           contradiction HO; auto.
                                                        auto with zarith.
      (factorial (Zabs nat (q z)))
                                                                                                           destruct H2.
                                                      apply HT Seg with (fun q \Rightarrow q z - 1 >= 0
    ((fun q \Rightarrow q z >= 0 / q v = Z of nat
                                                          / \ g y * g z = Z of nat (factorial)
                                                                                                           rewrite <- H2.
      (factorial (Zabs nat (g z))) &&
                                                          (Zabs nat (q z)) \overline{)}.
                                                                                                           trivial.
      [bNeq (neq (Var z) (Var x))]).
                                                      replace (fun q: var \rightarrow Z \Rightarrow q z \Rightarrow 0 /\ q
                                                                                                           contradiction HO.
    repeat intro.
                                                          y * (q z + 1) = Z \text{ of nat (factorial)}
                                                                                                           right.
    destruct H.
                                                          (Zabs nat (g z + \overline{1}))) with
                                                                                                           apply Zqt lt .
                                                        [z \Rightarrow (Plus (Var z) (Num 1)) @ (fun q :
    rewrite H, HO.
                                                                                                           trivial.
                                                          var \rightarrow Z \Rightarrow gz - 1 >= 0 / gy * gz
    simpl.
                                                          = Z of nat (factorial (Zabs nat (g
    firstorder.
                                                          z)))))].
  apply HT While.
                                                     apply HT Asgn.
  apply HT Implied with
                                                        extensionality g.
```

Forgot to track boundary condition $(z \ge 0 \text{ at all times in the loop})$

```
Lemma factorial good:
                                                        (\text{fun } g \Rightarrow g z >= 0 / (g y) * ((g z) + 1)
                                                                                                           apply prop ext.
                                                         = Z of nat (factorial (Zabs nat ((g z)
  HTuple Top factorial proq (fun q => q y =
                                                                                                           firstorder.
      Z of nat (factorial (Zabs nat (g
                                                                                                           unfold upd ctx in H.
                                                        (\text{fun g : ctx => g z - 1 >= 0 /\ g y =}
      x\overline{)}))\overline{)}.
                                                                                                           simpl in H.
                                                         Z of nat (factorial (Zabs nat (g
Proof.
                                                                                                           auto with zarith.
                                                         z\overline{)}))\overline{)}.
  apply HT Seq with (fun q \Rightarrow q y = 1).
                                                        repeat intro.
                                                                                                           simpl.
  replace Top with ([y => (Num 1) @ (fun q :
                                                                                                           unfold upd ctx.
                                                        destruct H.
      ctx => q y = 1)).
                                                                                                           simpl.
                                                        destruct H.
  apply HT Asqn.
                                                                                                           auto with zarith.
                                                        clear HO.
    extensionality q.
                                                                                                        replace (fun g : var \rightarrow Z \Rightarrow g z \rightarrow 1 \Rightarrow 0
                                                        rewrite H1.
    unfold assertReplace, Top, upd ctx.
                                                                                                             /\ g y * g z = Z of nat (factorial)
                                                        split; auto.
    simpl.
                                                                                                             (Zabs nat (g z))) with
                                                        remember (g z) as n.
    apply prop ext.
                                                                                                           [y \Rightarrow (Times (Var y) (Var z)) @ (fun q :
                                                        clear -H.
    firstorder.
                                                                                                             var -> Z => g z - 1>= 0 /\ g y =
                                                       destruct n; auto.
                                                                                                             Z of nat (factorial (Zabs nat (g
  apply HT Seq with (fun q :ctx \Rightarrow q z = 0
                                                                                                             z\overline{)}))\overline{)}].
      / \ q y = 1).
                                                        simpl.
                                                                                                        apply HT Asgn.
  replace (fun q : var \rightarrow Z \Rightarrow q y = 1)
                                                        rewrite <- Pplus one succ r.
                                                                                                           extensionality q.
                                                        rewrite nat of P succ morphism.
                 ([z \Rightarrow (Num 0) @ (fun g :ctx)]
                                                                                                           apply prop ext.
      => g z = 0 / (g y = 1)).
                                                                                                           firstorder.
                                                        remember (factorial (nat of P p)).
  apply HT Asqn.
                                                                                                           repeat intro; firstorder.
                                                        clear.
    extensionality q.
                                                                                                           repeat intro.
                                                        rewrite Zpos succ morphism.
    unfold assertReplace, Top, upd ctx.
                                                                                                           destruct H.
                                                        rewrite ini plus.
    simpl.
                                                                                                           destruct H.
                                                        rewrite inj mult.
    apply prop ext.
                                                                                                           rewrite H1.
                                                        rewrite <- Zpos eq Z of nat o nat of P.
    firstorder.
                                                                                                           simpl in HO.
  apply HT Implied with
                                                                                                           destruct (Ztrichotomy (g z) (g x)).
                                                       elimtype False.
    (fun g \Rightarrow g z >= 0 / g y = Z of nat
                                                                                                           contradiction HO; auto.
                                                       auto with zarith.
      (factorial (Zabs nat (g z))))
                                                                                                           destruct H2.
                                                     apply HT Seq with (fun q \Rightarrow q z - 1 >= 0
    ((fun q \Rightarrow q z >= 0 / q v = Z of nat
                                                         / \ g y * g z = Z of nat (factorial)
                                                                                                           rewrite <- H2.
      (factorial (Zabs nat (g z)))) &&
                                                         (Zabs nat (q z)) \overline{)}.
                                                                                                           trivial.
      [bNeq (neq (Var z) (Var x))]).
                                                     replace (fun q : var \rightarrow Z \Rightarrow g z \Rightarrow 0 /\ g
                                                                                                           contradiction HO.
    repeat intro.
                                                         y * (q z + 1) = Z \text{ of nat (factorial)}
                                                                                                           right.
    destruct H.
                                                         (Zabs nat (g z + \overline{1}))) with
                                                                                                           apply Zqt lt .
                                                        [z \Rightarrow (Plus (Var z) (Num 1)) @ (fun q :
    rewrite H, HO.
                                                                                                           trivial.
                                                         var \rightarrow Z \Rightarrow gz - 1 >= 0 / gy * gz
    simpl.
                                                         = Z of nat (factorial (Zabs nat (g
    firstorder.
                                                         z))))).
  apply HT While.
                                                     apply HT Asgn.
  apply HT Implied with
                                                       extensionality q.
```

Coercions (easily forgotten about...)

```
Fixpoint factorial (n : nat) :=
  match n with
    | 0 => 1
    | S n' => n * (factorial n')
  end.

fun g =>
  g y = Z of nat (factorial (Zabs nat (g x)))).
```

We define factorial on nats because that way we have the best chance of not making a mistake in our specification.

But there is a cost: we must coerce from Z to N and back to Z...

Where you need this fact in the proof

Our "x!" has an implicit coercion in it: first we take the integer x, get the absolute value of it, and then calculate factorial on nats (and then coerce back to Z)...

```
while (z <> x) { \{y = z! \land z <> x\} Now use Implied \{y * (z + 1) = (z + 1)!\}
```

Where you need this fact in the proof

Our "x!" has an implicit coercion in it: first we take the integer x, get the absolute value of it, and then calculate factorial on nats (and then coerce back to Z)...

```
while (z <> x) { \{y = z! \land z <> x\} Now use Implied \{y * (z + 1) = (z + 1)!\} \leftarrow But wait! What if z < 0?
```

Try y = 3, z = -4:

$$3 * (-4 + 1)$$
 = -9
 $(-4 + 1)! = (-3)! = 3!$ = 6

The Explosion of the Ariane 5

- On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency exploded just forty seconds after its liftoff from Kourou, French Guiana.
- The rocket was on its first voyage, after a decade of development costing \$7 billion. The destroyed rocket and its cargo were valued at \$500 million.
- A board of inquiry investigated the causes of the explosion and in two weeks issued a report.
- It turned out that the cause of the failure was a software error in the inertial reference system. Specifically a 64 bit floating point number relating to the horizontal velocity of the rocket with respect to the platform was converted to a 16 bit signed integer. The number was larger than 32,767, the largest integer storable in a 16 bit signed integer, and thus the conversion failed.

