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What does a Hoare tuple mean?

19} P {9}

Informal meaning (already given):

“If the program P is run in a state that satisfies
¢ and P terminates, then the state resulting
from P’s execution will satisfy 1).”



We would like to formalize

19} P {9}

Informal meaning (already given):

“If the program P is run in a state that satisfies
¢ and P terminates, then the state resulting
from P’s execution will satisfy 1).”



We would like to formalize

19} P {9}

Need to define:

1. Running a program P

AW

P terminates

. State satisfies ¢

Resulting state satisfies 1.



Operational Semantics

* Numeric Expressions E:
-n|x|(-E)| (E+E)|(E-E) [ (E=*E)

* Boolean Expressions B:
— true | false | (IB) | (B&B) | (B||B) | (E < E)

e Commands C:
—x=E | C,C | if B{C}else {C} | while B {C}



Expressions: syntax and semantics

* Numeric Expressions E:
—n|x]|(-E) | (E+E) | (E-E) [ (E*E)

Now, what does evaluation of an E mean”?

We want to write E U n to mean “the expression
E evaluates to the numeric n”

But what about E = x? By itself, we don’t know
what to do...



We have to specify exactly
how each evaluates

* Numeric Expressions E:
-n|x|(-E)| (E+E)|(E-E) [ (E=*E)

Define a context «y to be a function from

variables to numbers.



We have to specify exactly
how each evaluates

* Numeric Expressions E:
-n|x|(-E)| (E+E)|(E-E) [ (E=*E)

Now define 4y E U n to mean “in context ~,

the expression E evaluates to the numeric n.”



Boolean Evaluation

* Boolean Expressions B:
— true | false | (!B) | (B&B) | (B||B) | (E < E)

Since B includes E, we will need contexts to
evaluate Bs.

What do we evaluate to? How about propositions?

So define v+ B U P to mean “in context «, the
expression B evaluates to the proposition P.”



Commands

e Commands C:
—x=E | C,C | if B{C} else {C} | while B {C} | crash

All of these look normal except for “crash” — which
you can think of as dividing by zero. We add it to
make the language a bit more interesting.



Command Evaluation

ldea: executing command C for one step moves the
machine from one state to the next

What is a state ¢?
Pair of context «y (data) and control k (code)

Control k is either kStop (we are done) or kSeq C k

— We can write C e k for kSeq if that is easier
— We can also write B for kHalt



Step relation, assign

We now define the step relation, written
o, 0,
that is, “state o, steps to state ¢,”, in parts:

vHEUn v =[x —=n]7y
(7, (x=E) @ k) = (v, k)



Step relation, seq

(7, (C;; C)ek)—= (v, C, e (C, ®k))



Step relation, if (1 and 2)

1FBUTme
(v, (if B then {C,} else {C,}) ® k) > (v, C, ® k)

~vF B U False
(v, (if B then {C,} else {C,}) @ k) > (v, C, @ k)



Step relation, while (1 and 2)

1FBUTme
(v, (while B {C}) @ k) > (v, C @ (while B {C} @ k))

~vF B U False
(v, (while B {C}) ® k) > (4, k))



Entire step relation
yFEUn v =[x —=n]7y
(7, (x=E) @ k) = (7, k)

(7, (C;;C,)) @k) = (v, C, o (C, ®k))

v+ B U True
(7, (if B then {C,} else {C,}) ® k) > (v, C, ® k)

~v+ B U False
(79, (if B then {C;} else {C,}) ® k) > (v, C, ® k)

v+ B U True

(~, (while B{C}) @ k) = (~, C ® (while B {C} ® k)

~vF B U False
(v, (while B {C}) @ k) > (v, k))




What about crash??

* The point is that crash does not step
anywhere — it just stops the machine in some
kind of invalid state.

e This is different from M, which also does not

step anywhere but which is consider to be a
“proper” way to stop the program.



From step to step™

e Usually we want to run our program for more
than one step.

* We write 0 =" ¢’ to mean that the state o
steps to the state ¢’ in some number of steps.



From step to step™

O— O

O—0 O 0

oH— O



We would like to formalize

19} P {9}

Need to define:

1.

Running a program P

2. P terminates
3.
4. Resulting state satisfies 1.

State satisfies ¢



First Attempt:
Terminates means eventually halted

* We say a state (v, k) is halted when k =

(First Attempt:)

e oterminates if 3 ¢’ such that o =" ¢’ and ¢’ is
halted.

* This works well... except that it is terrible when we
want to use it as a hypothesis.



Example: sequence rule

* Consider trying to prove the following rule

Wi, Ixd  {xlc, {4}
{W¥}cy;c, (P}

Premise 1:if ... c1 terminates ... then ...
Premise 2:if ... c2 terminates ... then ...

C,; C, *does not terminate* after running c, — it then
starts on c,. But that means that we can’t use premise
1 in our proof (or at least not very easily).



We would like to formalize

19} P {9}

Need to define:

1. Running a program P

AW

P terminates  (Deferred until step 4)

. State satisfies ¢

Resulting state satisfies 1.



What is an assertion?

The idea is that an assertion is a formula whose
truth depends on the context:

¢+ y—={LF}
We can even write v F 9 as shorthand for ()

We will see that this approach is very similar to
modal logic (but not for a few more weeks)



Lifting Assertions to Metalogic

Now we want to define how the logical operators:

YEPAY = (YEY)A(YE @)
vyEB = ~FBJUTrue
YEXxX—e]Yy = [x—=nlyEY

(where vy e Un)

etc.



Implication of Assertions

It is also useful to have a notion that one formula
implies another for any context.

pFEY = Vv, (yFo)= (yEY)

Note that this is very different from implication at the
object level:

YEY=090 = (yF)=(vFQ



We would like to formalize

19} P {9}

Need to define:

1.

Running a program P

2. P terminates
3.
4. Resulting state satisfies 1.

State satisfies ¢



Better Approach

Define safe(o) as,
- Vo. o0 =
(d0”.0'+—>0”) VvV (0 is halted)

Among other things, if o is safe then it never reaches
crash.

Define guards(P, k) as,
— Vv vEP = safe(vy, k)

The idea is that if P guards the control k, then as
long as P is true then k is safe to run.



Putting it all together

{v} C{o} V k. guards(o, k) =

guards (¢, C e k)
That is, for any continuation (rest of program) k, if ¢
is enough to make k safe, then ¢ is enough to make

C followed by k safe.

Question: does ¢ hold after executing C?



Testers

Answer: yes! We pick a k that “tests ¢”.

For example, if ® = x = 3, then we pick
— k= if x =3 then x = x else crash
— (this is why crash is useful to add to the language!)

Obviously, if v F ¢, then this k is safe (since x=x
does no harm).

But if @ does not hold, then this program will not
be safe.



Putting it all together

{v} C{o} V k. guards(o, k) =

guards (¢, C e k)

Thus in fact, if we know {1} C {¢}, we know that C
must make ¢ true after it executes (assuming that ¢

was true before running C)



Now what?

* Prove the Hoare rules as lemmas from
definitions!

Wi, Ixt  {xtc, {6}
{WY}c,; c, (P}

{[x—=>E]¢Y} x=E {3}



If, While Rules

{¢ A B} C1 {'Qb} {¢ A% B} Cz {¢}

{p} if B{C,}else {C,} {4}

{p AB} C {¢}

(b} while B {C} {t) A — B}



Implied Rule

¢ o {pIC{Y} H

{9’} C{Y')



Your task on the next homework:
Prove these lemmas

HT Seqg : 10 points

HT Asgn : 10 points

HT If : 10 poilnts

HT Implied : 5 points

HT While : 20 points extra credit
(good luck!)



Finally

Definition x : wvar := 0.
Definition y : var := 1.
Definition z : wvar := 2.

Open Local Scope Z scope.

Definition neqg (nel neZ : nExpr) : bExpr :=
Or (LT nel nez2) (LT ne2 nel).

Definition factorial prog : Coms :=
Seq (Assign y (Num 1)) (* vy =1 *)
(Seq (Assign z (Num 0)) (* z := 0 *)
(While (neq (Var z) (Var x)) (* while z <> x { *)
(Seq (Assign z (Plus (Var z) (Num 1)))
(* z = z + 1 *)
(Assign y (Times (Var y) (Var z)))(* y 1=y * z *)

) (* } 7)
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Statement of Theorem

Definition Top : assertion := fun => True.

Open Local Scope nat scope.

Fixpoint factorial (n : nat) :=
match n with
| O => 1
| S n' => n * (factorial n')
end.

Open Local Scope Z scope.

Lemma factorial good:
HTuple Top factorial prog
(fun g => g y = Z of nat (factorial (Zabs nat (g x)))).



Casts

Definition Top : assertion := fun => True.

Open Local Scope nat scope.

Fixpoint factorial (n : nat) :=
match n with
| O => 1
| S n' => n * (factorial n')
end.

Open Local Scope Z scope.

Lemma factorial good:
HTuple Top factorial prog
(fun g => g y = 72 of nat (factorial (Zabs nat (g x)))).
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Proof of Theorem

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z > 0 /\ g y = Zz of nat
(factorial (Zabs nat (g z))))
((fun g => g z > 0 /\ gy = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1)
= 7 of nat (factorial (Zabs nat ((g z)
+ 1))))

(fun g ctx => gz - 1> 0/\ gy-=
Z of nat (factorial (Zabs nat (g

z)))) -
repeat intro.
destruct H.
destruct H.
clear HO.
rewrite HI.
split; auto.
remember (g z)
clear -H.
destruct n;
simpl.
rewrite <- Pplus one succ r.
rewrite nat of P succ morphism.
simpl.
remember
clear.
rewrite

as n.

auto.

(factorial (nat of P p)).
Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq 7Z of nat o nat of P.

rewrite
rewrite
rewrite
ring.
elimtype False.
auto with zarith.

apply HT Seq with (fun g => g z - 1 >= 0

\'gy * gz =172 of nat (factorial
(zabs_nat (g z)))).
replace (fun g var -=> Z => gz > 0 /\ g
y * (g z + 1) = Z of nat (factorial
(zabs nat (g z + 1)))) with
[z => (Plus (Var z) (Num 1)) @ (fun g

var => Z => gz -1 >0 /\ gy * gz
= Z of nat (factorial (Zabs nat (g
z)))) 1. -
apply HT Asgn.
extensionality g.

apply prop_ext.
firstorder.

unfold upd ctx in H.
simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

replace (fun g var -=> Z => g z - 1 >= 0

/\N'gy *gz=2of nat (factorial
(Zabs_nat (g z)))) with

[y => (Times (Var y) (Var z)) @ (fun g

var => Z => g z - 1> 0 /\ gy =
Z_of nat (factorial (Zabs nat (g
z))))].

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.
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The good news...

Your HW does not require you to do one of
these yourself (we are not without mercy...)

Still... why did | show it to you?



Seems like a lot of work... why bother?

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z > 0 /\ g y = Zz of nat
(factorial (Zabs nat (g z))))
((fun g => g z > 0 /\ gy = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g =

= 7Z of nat

y) * ((g z) + 1)

> gz >=0 /\ (g
1 (zabs nat ((g z)

(factoria

+1))))

(fun g

Z_of nat

z)))) -
repeat i
destruct
destruct
clear HO
rewrite
split; a
remember

ctx => gz - 1> 0/\ gy-=
(factorial (Zabs nat (g

ntro.
H.
H.

H1.

uto.

(g z) as n.

clear -H.

destruct
simpl.
rewrite
rewrite
simpl.
remember
clear.
rewrite
rewrite
rewrite
rewrite
ring.
elimtype
auto wit
apply HT S
\ gy

(Zabs nat

replace (f
y * (g

(Zabs nat

[z => (P
var —->

= Z_of nat

z))))]
apply HT A
extensio

n; auto.

<- Pplus_one succ r.

nat of P succ morphism.
(factorial (nat of P p)).

Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq Z of nat o nat of P.

False.

h zarith.

eq with (fun g => gz - 1 >= 0
* g z = Z of nat (factorial

(g z)))).

un g var -=> Z => gz > 0 /\ g
z + 1) = Z of nat (factorial
(g z + 1)))) with

lus (Var z) (Num 1)) @ (fun g
Z=>gz-1>0/\gy*gaz
(factorial (Zabs nat (g
sgn.

nality g.

replace

apply prop_ext.

firstorder.

unfold upd ctx in H.

simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

(fun g var -> Z => g
/\ gy *gz=2of nat
(Zabs_nat with

(g z))))
[y => (Times (Var y) (Var z)) @ (fun g
var => Z => g z - 1> 0 /\ gy =
Z_of nat (factorial (Zabs nat (g

z)))) 1.

z - 1>0
(factorial

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.

41



Bug in Paper Proof

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z))))
((fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1)
= 7 of nat (factorial (Zabs nat ((g z)
+ 1))))

(fun g ctx => gz - 1> 0 /\gy-=
Z of nat (factorial (Zabs nat (g

z)))) -
repeat intro.
destruct H.
destruct H.
clear HO.
rewrite HI.
split; auto.
remember (g z)
clear -H.
destruct n;
simpl.
rewrite <- Pplus one succ r.
rewrite nat of P succ morphism.
simpl.
remember
clear.
rewrite

as n.

auto.

(factorial (nat of P p)).
Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq 7Z of nat o nat of P.

rewrite
rewrite
rewrite
ring.
elimtype False.
auto with zarith.

apply HT Seq with (fun g => g z - 1 >= 0

\'gy * gz =172 of nat (factorial
(zabs_nat (g z)))).
replace (fun g var -=> Z => g z >= 0 /\ g
y * (g z + 1) = Z of nat (factorial
(zabs nat (g z + 1)))) with
[z => (Plus (Var z) (Num 1)) @ (fun g

var => Z => g z -1 >0 /\ gy * gz
= Z of nat (factorial (Zabs nat (g
z)))) 1. -
apply HT Asgn.
extensionality g.

apply prop_ext.
firstorder.

unfold upd ctx in H.
simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

replace (fun g var -=> Z => g z - 1 >= 0

/\N'gy *gz=2of nat (factorial
(Zabs_nat (g z)))) with

[y => (Times (Var y) (Var z)) @ (fun g

var => Z => g z - 1> 0 /\ gy =
Z_of nat (factorial (Zabs nat (g
z))))].

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.
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Forgot to track boundary condition
z >=0 at all times in the loop)

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z))))
((fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1)
= 7 of nat (factorial (Zabs nat ((g z)
+ 1))))

(fun g ctx => gz - 1> 0 /\gy-=
Z of nat (factorial (Zabs_nat (g

z)))) -
repeat intro.
destruct H.
destruct H.
clear HO.
rewrite HI.
split; auto.
remember (g z)
clear -H.
destruct n;
simpl.
rewrite <- Pplus one succ r.
rewrite nat of P succ morphism.
simpl.
remember
clear.
rewrite

as n.

auto.

(factorial (nat of P p)).
Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq 7Z of nat o nat of P.

rewrite
rewrite
rewrite
ring.
elimtype False.
auto with zarith.

apply HT Seq with (fun g => g z - 1 >= 0

\'gy * gz =172 of nat (factorial
(Zabs nat (g z)))) .
replace (fun g var -=> Z => g z >= 0 /\ g
y * (g z+ 1) =72 of nat (factorial
(Zabs nat (g z + 1)))) with
[z => (Plus (Var z) (Num 1)) @ (fun g

var => Z => g z -1 >0 /\ gy * gz
= Z of nat (factorial (Zabs nat (g
z)))) 1. -
apply HT Asgn.
extensionality g.

apply prop_ext.
firstorder.

unfold upd ctx in H.
simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

replace (fun g var -=> Z => g z - 1 >= 0

/\N'gy *gz=2of nat (factorial
(Zabs_nat (g z)))) with

[y => (Times (Var y) (Var z)) @ (fun g

var -> Z => g z - 1>= 0 /\ gy =
Z_of nat (factorial (Zabs nat (g
z))))].

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.
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Coercions (easily forgotten about...)

Fixpoint factorial (n : nat) :=
match n with
| O => 1
| S n' => n * (factorial n')
end.
fun g =>

g v = Z of nat (factorial (Zabs nat (g x)))).

We define factorial on nats because that way we have the
best chance of not making a mistake in our specification.

But there is a cost: we must coerce from Zto N and back to Z...



Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the
integer x, get the absolute value of it, and then
calculate factorial on nats (and then coerce back to Z)...

while (z <> x) {
{y=z! Az<>x} Now use Implied

iy *(z+1)=(z+1)!}



Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the
integer x, get the absolute value of it, and then
calculate factorial on nats (and then coerce back to Z)...

while (z <> x) {
ly=z! Az<>x} Now use Implied
ly*(z+1)=(z+1)!} <€ Butwait! Whatifz<0?

Tryy=3,z=-4:
3*(-4+1) = -9
(-4+1)!=(-3)!=3! = 6



The Explosion of the Ariane 5

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency exploded just forty seconds after its lift-
off from Kourou, French Guiana.

The rocket was on its first voyage, after a decade of development
costing S7 billion. The destroyed rocket and its cargo were valued
at $500 million.

A board of inquiry investigated the causes of the explosion and in
two weeks issued a report.

It turned out that the cause of the failure was a software error in
the inertial reference system. Specifically a 64 bit floating point
number relating to the horizontal velocity of the rocket with
respect to the platform was converted to a 16 bit signed integer.
The number was larger than 32,767, the largest integer storable in
a 16 bit signed integer, and thus the conversion failed.






