Semantics of Hoare Logic

Aquinas Hobor and Martin Henz



What does a Hoare tuple mean?

19} P {9}

Informal meaning (already given):

“If the program P is run in a state that satisfies
¢ and P terminates, then the state resulting
from P’s execution will satisfy 1).”



We would like to formalize

19} P {9}

Informal meaning (already given):

“If the program P is run in a state that satisfies
¢ and P terminates, then the state resulting
from P’s execution will satisfy 1).”



We would like to formalize

19} P {9}

Need to define:

1. Running a program P

AW

P terminates

. State satisfies ¢

Resulting state satisfies 1.



Operational Semantics

* Numeric Expressions E:
-n|x|(-E)| (E+E)|(E-E) [ (E=*E)

* Boolean Expressions B:
— true | false | (IB) | (B&B) | (B||B) | (E < E)

e Commands C:
—x=E | C,C | if B{C}else {C} | while B {C}



Expressions: syntax and semantics

* Numeric Expressions E:
—n|x]|(-E) | (E+E) | (E-E) [ (E*E)

Now, what does evaluation of an E mean”?

We want to write E U n to mean “the expression
E evaluates to the numeric n”

But what about E = x? By itself, we don’t know
what to do...



We have to specify exactly
how each evaluates

* Numeric Expressions E:
-n|x|(-E)| (E+E)|(E-E) [ (E=*E)

Define a context «y to be a function from

variables to numbers.



We have to specify exactly
how each evaluates

* Numeric Expressions E:
-n|x|(-E)| (E+E)|(E-E) [ (E=*E)

Now define 4y E U n to mean “in context ~,

the expression E evaluates to the numeric n.”



Boolean Evaluation

* Boolean Expressions B:
— true | false | (!B) | (B&B) | (B||B) | (E < E)

Since B includes E, we will need contexts to
evaluate Bs.

What do we evaluate to? How about propositions?

So define v+ B U P to mean “in context «, the
expression B evaluates to the proposition P.”



Commands

e Commands C:
—x=E | C,C | if B{C} else {C} | while B {C} | crash

All of these look normal except for “crash” — which
you can think of as dividing by zero. We add it to
make the language a bit more interesting.



Command Evaluation

ldea: executing command C for one step moves the
machine from one state to the next

What is a state ¢?
Pair of context «y (data) and control k (code)

Control k is either kStop (we are done) or kSeq C k

— We can write C e k for kSeq if that is easier
— We can also write B for kHalt



Step relation, assign

We now define the step relation, written
o, 0,
that is, “state o, steps to state ¢,”, in parts:

vHEUn v =[x —=n]7y
(7, (x=E) @ k) = (v, k)



Step relation, seq

(7, (C;; C)ek)—= (v, C, e (C, ®k))



Step relation, if (1 and 2)

1FBUTme
(v, (if B then {C,} else {C,}) ® k) > (v, C, ® k)

~vF B U False
(v, (if B then {C,} else {C,}) @ k) > (v, C, @ k)



Step relation, while (1 and 2)

1FBUTme
(v, (while B {C}) @ k) > (v, C @ (while B {C} @ k))

~vF B U False
(v, (while B {C}) ® k) > (4, k))



Entire step relation
yFEUn v =[x —=n]7y
(7, (x=E) @ k) = (7, k)

(7, (C;;C,)) @k) = (v, C, o (C, ®k))

v+ B U True
(7, (if B then {C,} else {C,}) ® k) > (v, C, ® k)

~v+ B U False
(79, (if B then {C;} else {C,}) ® k) > (v, C, ® k)

v+ B U True

(~, (while B{C}) @ k) = (~, C ® (while B {C} ® k)

~vF B U False
(v, (while B {C}) @ k) > (v, k))




What about crash??

* The point is that crash does not step
anywhere — it just stops the machine in some
kind of invalid state.

e This is different from M, which also does not

step anywhere but which is consider to be a
“proper” way to stop the program.



From step to step™

e Usually we want to run our program for more
than one step.

* We write 0 =" ¢’ to mean that the state o
steps to the state ¢’ in some number of steps.



From step to step™

O— O

O—0 O 0

oH— O



We would like to formalize

19} P {9}

Need to define:

1.

Running a program P

2. P terminates
3.
4. Resulting state satisfies 1.

State satisfies ¢



First Attempt:
Terminates means eventually halted

* We say a state (v, k) is halted when k =

(First Attempt:)

e oterminates if 3 ¢’ such that o =" ¢’ and ¢’ is
halted.

* This works well... except that it is terrible when we
want to use it as a hypothesis.



Example: sequence rule

* Consider trying to prove the following rule

Wi, Ixd  {xlc, {4}
{W¥}cy;c, (P}

Premise 1:if ... c1 terminates ... then ...
Premise 2:if ... c2 terminates ... then ...

C,; C, *does not terminate* after running c, — it then
starts on c,. But that means that we can’t use premise
1 in our proof (or at least not very easily).



We would like to formalize

19} P {9}

Need to define:

1. Running a program P

AW

P terminates  (Deferred until step 4)

. State satisfies ¢

Resulting state satisfies 1.



What is an assertion?

The idea is that an assertion is a formula whose
truth depends on the context:

¢+ y—={LF}
We can even write v F 9 as shorthand for ()

We will see that this approach is very similar to
modal logic (but not for a few more weeks)



Lifting Assertions to Metalogic

Now we want to define how the logical operators:

YEPAY = (YEY)A(YE @)
vyEB = ~FBJUTrue
YEXxX—e]Yy = [x—=nlyEY

(where vy e Un)

etc.



Implication of Assertions

It is also useful to have a notion that one formula
implies another for any context.

pFEY = Vv, (yFo)= (yEY)

Note that this is very different from implication at the
object level:

YEY=090 = (yF)=(vFQ



We would like to formalize

19} P {9}

Need to define:

1.

Running a program P

2. P terminates
3.
4. Resulting state satisfies 1.

State satisfies ¢



Better Approach

Define safe(o) as,
- Vo. o0 =
(d0”.0'+—>0”) VvV (0 is halted)

Among other things, if o is safe then it never reaches
crash.

Define guards(P, k) as,
— Vv vEP = safe(vy, k)

The idea is that if P guards the control k, then as
long as P is true then k is safe to run.



Putting it all together

{v} C{o} V k. guards(o, k) =

guards (¢, C e k)
That is, for any continuation (rest of program) k, if ¢
is enough to make k safe, then ¢ is enough to make

C followed by k safe.

Question: does ¢ hold after executing C?



Testers

Answer: yes! We pick a k that “tests ¢”.

For example, if ® = x = 3, then we pick
— k= if x =3 then x = x else crash
— (this is why crash is useful to add to the language!)

Obviously, if v F ¢, then this k is safe (since x=x
does no harm).

But if @ does not hold, then this program will not
be safe.



Putting it all together

{v} C{o} V k. guards(o, k) =

guards (¢, C e k)

Thus in fact, if we know {1} C {¢}, we know that C
must make ¢ true after it executes (assuming that ¢

was true before running C)



Now what?

* Prove the Hoare rules as lemmas from
definitions!

Wi, Ixt  {xtc, {6}
{WY}c,; c, (P}

{[x—=>E]¢Y} x=E {3}



If, While Rules

{¢ A B} C1 {'Qb} {¢ A% B} Cz {¢}

{p} if B{C,}else {C,} {4}

{p AB} C {¢}

(b} while B {C} {t) A — B}



Implied Rule

¢ o {pIC{Y} H

{9’} C{Y')



Your task on the next homework:
Prove these lemmas

HT Seqg : 10 points

HT Asgn : 10 points

HT If : 10 poilnts

HT Implied : 5 points

HT While : 20 points extra credit
(good luck!)



Finally

Definition x : wvar := 0.
Definition y : var := 1.
Definition z : wvar := 2.

Open Local Scope Z scope.

Definition neqg (nel neZ : nExpr) : bExpr :=
Or (LT nel nez2) (LT ne2 nel).

Definition factorial prog : Coms :=
Seq (Assign y (Num 1)) (* vy =1 *)
(Seq (Assign z (Num 0)) (* z := 0 *)
(While (neq (Var z) (Var x)) (* while z <> x { *)
(Seq (Assign z (Plus (Var z) (Num 1)))
(* z = z + 1 *)
(Assign y (Times (Var y) (Var z)))(* y 1=y * z *)

) (* } 7)

36



Statement of Theorem

Definition Top : assertion := fun => True.

Open Local Scope nat scope.

Fixpoint factorial (n : nat) :=
match n with
| O => 1
| S n' => n * (factorial n')
end.

Open Local Scope Z scope.

Lemma factorial good:
HTuple Top factorial prog
(fun g => g y = Z of nat (factorial (Zabs nat (g x)))).



Casts

Definition Top : assertion := fun => True.

Open Local Scope nat scope.

Fixpoint factorial (n : nat) :=
match n with
| O => 1
| S n' => n * (factorial n')
end.

Open Local Scope Z scope.

Lemma factorial good:
HTuple Top factorial prog
(fun g => g y = 72 of nat (factorial (Zabs nat (g x)))).

38



Proof of Theorem

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z > 0 /\ g y = Zz of nat
(factorial (Zabs nat (g z))))
((fun g => g z > 0 /\ gy = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1)
= 7 of nat (factorial (Zabs nat ((g z)
+ 1))))

(fun g ctx => gz - 1> 0/\ gy-=
Z of nat (factorial (Zabs nat (g

z)))) -
repeat intro.
destruct H.
destruct H.
clear HO.
rewrite HI.
split; auto.
remember (g z)
clear -H.
destruct n;
simpl.
rewrite <- Pplus one succ r.
rewrite nat of P succ morphism.
simpl.
remember
clear.
rewrite

as n.

auto.

(factorial (nat of P p)).
Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq 7Z of nat o nat of P.

rewrite
rewrite
rewrite
ring.
elimtype False.
auto with zarith.

apply HT Seq with (fun g => g z - 1 >= 0

\'gy * gz =172 of nat (factorial
(zabs_nat (g z)))).
replace (fun g var -=> Z => gz > 0 /\ g
y * (g z + 1) = Z of nat (factorial
(zabs nat (g z + 1)))) with
[z => (Plus (Var z) (Num 1)) @ (fun g

var => Z => gz -1 >0 /\ gy * gz
= Z of nat (factorial (Zabs nat (g
z)))) 1. -
apply HT Asgn.
extensionality g.

apply prop_ext.
firstorder.

unfold upd ctx in H.
simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

replace (fun g var -=> Z => g z - 1 >= 0

/\N'gy *gz=2of nat (factorial
(Zabs_nat (g z)))) with

[y => (Times (Var y) (Var z)) @ (fun g

var => Z => g z - 1> 0 /\ gy =
Z_of nat (factorial (Zabs nat (g
z))))].

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.

39



The good news...

Your HW does not require you to do one of
these yourself (we are not without mercy...)

Still... why did | show it to you?



Seems like a lot of work... why bother?

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z > 0 /\ g y = Zz of nat
(factorial (Zabs nat (g z))))
((fun g => g z > 0 /\ gy = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g =

= 7Z of nat

y) * ((g z) + 1)

> gz >=0 /\ (g
1 (zabs nat ((g z)

(factoria

+1))))

(fun g

Z_of nat

z)))) -
repeat i
destruct
destruct
clear HO
rewrite
split; a
remember

ctx => gz - 1> 0/\ gy-=
(factorial (Zabs nat (g

ntro.
H.
H.

H1.

uto.

(g z) as n.

clear -H.

destruct
simpl.
rewrite
rewrite
simpl.
remember
clear.
rewrite
rewrite
rewrite
rewrite
ring.
elimtype
auto wit
apply HT S
\ gy

(Zabs nat

replace (f
y * (g

(Zabs nat

[z => (P
var —->

= Z_of nat

z))))]
apply HT A
extensio

n; auto.

<- Pplus_one succ r.

nat of P succ morphism.
(factorial (nat of P p)).

Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq Z of nat o nat of P.

False.

h zarith.

eq with (fun g => gz - 1 >= 0
* g z = Z of nat (factorial

(g z)))).

un g var -=> Z => gz > 0 /\ g
z + 1) = Z of nat (factorial
(g z + 1)))) with

lus (Var z) (Num 1)) @ (fun g
Z=>gz-1>0/\gy*gaz
(factorial (Zabs nat (g
sgn.

nality g.

replace

apply prop_ext.

firstorder.

unfold upd ctx in H.

simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

(fun g var -> Z => g
/\ gy *gz=2of nat
(Zabs_nat with

(g z))))
[y => (Times (Var y) (Var z)) @ (fun g
var => Z => g z - 1> 0 /\ gy =
Z_of nat (factorial (Zabs nat (g

z)))) 1.

z - 1>0
(factorial

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.

41



Bug in Paper Proof

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z))))
((fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1)
= 7 of nat (factorial (Zabs nat ((g z)
+ 1))))

(fun g ctx => gz - 1> 0 /\gy-=
Z of nat (factorial (Zabs nat (g

z)))) -
repeat intro.
destruct H.
destruct H.
clear HO.
rewrite HI.
split; auto.
remember (g z)
clear -H.
destruct n;
simpl.
rewrite <- Pplus one succ r.
rewrite nat of P succ morphism.
simpl.
remember
clear.
rewrite

as n.

auto.

(factorial (nat of P p)).
Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq 7Z of nat o nat of P.

rewrite
rewrite
rewrite
ring.
elimtype False.
auto with zarith.

apply HT Seq with (fun g => g z - 1 >= 0

\'gy * gz =172 of nat (factorial
(zabs_nat (g z)))).
replace (fun g var -=> Z => g z >= 0 /\ g
y * (g z + 1) = Z of nat (factorial
(zabs nat (g z + 1)))) with
[z => (Plus (Var z) (Num 1)) @ (fun g

var => Z => g z -1 >0 /\ gy * gz
= Z of nat (factorial (Zabs nat (g
z)))) 1. -
apply HT Asgn.
extensionality g.

apply prop_ext.
firstorder.

unfold upd ctx in H.
simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

replace (fun g var -=> Z => g z - 1 >= 0

/\N'gy *gz=2of nat (factorial
(Zabs_nat (g z)))) with

[y => (Times (Var y) (Var z)) @ (fun g

var => Z => g z - 1> 0 /\ gy =
Z_of nat (factorial (Zabs nat (g
z))))].

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.

42



Forgot to track boundary condition
z >=0 at all times in the loop)

Lemma factorial good:
HTuple Top factorial prog (fun g => g y =

Z of nat (factorial (Zabs nat (g
x)))) -
Proof.
apply HT Seq with (fun g => g y = 1).
replace Top with ([y => (Num 1) @ (fun g

ctx => gy =1)]).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.

simpl.
apply prop_ext.
firstorder.
apply HT Seq with (fun g :ctx => g z =0
\gy=1).
replace (fun g var -=> 7Z => gy = 1)
with
([z => (Num 0) @ (fun g :ctx
=>gz=0/\gy=11).
apply HT Asgn.
extensionality g.
unfold assertReplace, Top, upd ctx.
simpl.
apply prop_ext.
firstorder.
apply HT Implied with
(fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z))))
((fun g => g z >= 0 /\ g y = Z of nat
(factorial (Zabs nat (g z)))) &&
[bNeg (neq (Var z) (Var x))1).

repeat intro.
destruct H.
rewrite H, HO.
simpl.
firstorder.

apply HT While.

apply HT Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1)
= 7 of nat (factorial (Zabs nat ((g z)
+ 1))))

(fun g ctx => gz - 1> 0 /\gy-=
Z of nat (factorial (Zabs_nat (g

z)))) -
repeat intro.
destruct H.
destruct H.
clear HO.
rewrite HI.
split; auto.
remember (g z)
clear -H.
destruct n;
simpl.
rewrite <- Pplus one succ r.
rewrite nat of P succ morphism.
simpl.
remember
clear.
rewrite

as n.

auto.

(factorial (nat of P p)).
Zpos_succ_morphism.

inj plus.

inj mult.

<- Zpos_eq 7Z of nat o nat of P.

rewrite
rewrite
rewrite
ring.
elimtype False.
auto with zarith.

apply HT Seq with (fun g => g z - 1 >= 0

\'gy * gz =172 of nat (factorial
(Zabs nat (g z)))) .
replace (fun g var -=> Z => g z >= 0 /\ g
y * (g z+ 1) =72 of nat (factorial
(Zabs nat (g z + 1)))) with
[z => (Plus (Var z) (Num 1)) @ (fun g

var => Z => g z -1 >0 /\ gy * gz
= Z of nat (factorial (Zabs nat (g
z)))) 1. -
apply HT Asgn.
extensionality g.

apply prop_ext.
firstorder.

unfold upd ctx in H.
simpl in H.

auto with zarith.

simpl.

unfold upd ctx.

simpl.

auto with zarith.

replace (fun g var -=> Z => g z - 1 >= 0

/\N'gy *gz=2of nat (factorial
(Zabs_nat (g z)))) with

[y => (Times (Var y) (Var z)) @ (fun g

var -> Z => g z - 1>= 0 /\ gy =
Z_of nat (factorial (Zabs nat (g
z))))].

apply HT Asgn.

Qed.

extensionality g.
apply prop_ext.
firstorder.
repeat intro;
repeat intro.
destruct H.
destruct H.
rewrite HI.
simpl in HO.
destruct (Ztrichotomy (g z)
contradiction HO; auto.
destruct H2.

firstorder.

(g x)).

rewrite <- H2.
trivial.
contradiction HO.
right.

apply Zgt 1t
trivial.

43



Coercions (easily forgotten about...)

Fixpoint factorial (n : nat) :=
match n with
| O => 1
| S n' => n * (factorial n')
end.
fun g =>

g v = Z of nat (factorial (Zabs nat (g x)))).

We define factorial on nats because that way we have the
best chance of not making a mistake in our specification.

But there is a cost: we must coerce from Zto N and back to Z...



Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the
integer x, get the absolute value of it, and then
calculate factorial on nats (and then coerce back to Z)...

while (z <> x) {
{y=z! Az<>x} Now use Implied

iy *(z+1)=(z+1)!}



Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the
integer x, get the absolute value of it, and then
calculate factorial on nats (and then coerce back to Z)...

while (z <> x) {
ly=z! Az<>x} Now use Implied
ly*(z+1)=(z+1)!} <€ Butwait! Whatifz<0?

Tryy=3,z=-4:
3*(-4+1) = -9
(-4+1)!=(-3)!=3! = 6



The Explosion of the Ariane 5

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency exploded just forty seconds after its lift-
off from Kourou, French Guiana.

The rocket was on its first voyage, after a decade of development
costing S7 billion. The destroyed rocket and its cargo were valued
at $500 million.

A board of inquiry investigated the causes of the explosion and in
two weeks issued a report.

It turned out that the cause of the failure was a software error in
the inertial reference system. Specifically a 64 bit floating point
number relating to the horizontal velocity of the rocket with
respect to the platform was converted to a 16 bit signed integer.
The number was larger than 32,767, the largest integer storable in
a 16 bit signed integer, and thus the conversion failed.






