03b—Inductive Definitions

CS 5209: Foundation in Logic and AI

Martin Henz and Aqinas Hobor

January 28, 2010

Generated on Thursday 28th January, 2010, 18:25

Inductive definitions

- Often one wishes to define a set with a collection of rules that determine the elements of that set. Simple examples:
 - Binary trees
 - Natural numbers
- What does it mean to define a set by a collection of rules?

- is a binary tree;
- if *I* and *r* are binary trees, then so is

Examples of binary trees:

•

- is a binary tree;
- if *I* and *r* are binary trees, then so is

Examples of binary trees:

- •
- 4

- is a binary tree;
- if *I* and *r* are binary trees, then so is

Examples of binary trees:

- •
- •
- •

- is a binary tree;
- if *I* and *r* are binary trees, then so is

Examples of binary trees:

- **a**
- •
- •
- •

- Z is a natural;
- if n is a natural, then so is S(n).

- Z is a natural;
- if n is a natural, then so is S(n).

zero
$$\equiv Z$$

- Z is a natural;
- if n is a natural, then so is S(n).

zero
$$\equiv$$
 Z one \equiv S(Z)

- Z is a natural;
- if n is a natural, then so is S(n).

$$\begin{array}{cccc} \mathbf{zero} & \equiv & Z \\ \mathbf{one} & \equiv & S(Z) \\ \mathbf{two} & \equiv & S(S(Z)) \\ \end{array}$$

- Z is a natural;
- if n is a natural, then so is S(n).

```
\begin{array}{cccc} \mathbf{zero} & \equiv & Z \\ \mathbf{one} & \equiv & S(Z) \\ \mathbf{two} & \equiv & S(S(Z)) \end{array}
```

It's possible to view naturals as trees, too:

zero	=	Z	Z
one	≡	S(Z)	S <i>Z</i>
two	≡	S(S(Z))	s -s -z

Examples (more formally)

Binary trees: The set Tree is defined by the rules

$$\frac{t_l \quad t_r}{c_l}$$

Naturals: The set Nat is defined by the rules

$$\frac{n}{Z}$$
 $\frac{n}{S(n)}$

Given a collection of rules, what set does it define?

- What is the set of trees?
- What is the set of naturals?

Do the rules pick out a unique set?

There can be many sets that satisfy a given collection of rules

- $MyNum = \{Z, S(Z), ...\}$
- YourNum = MyNum $\cup \{\infty, S(\infty), ...\}$, where ∞ is an arbitrary symbol.

Both *MyNum* and *YourNum* satisfy the rules defining numerals (i.e., the rules are true for these sets).

There can be many sets that satisfy a given collection of rules

- $MyNum = \{Z, S(Z), ...\}$
- YourNum = MyNum $\cup \{\infty, S(\infty), ...\}$, where ∞ is an arbitrary symbol.

Both *MyNum* and *YourNum* satisfy the rules defining numerals (i.e., the rules are true for these sets).

Really?

MyNum Satisfies the Rules

$$\frac{n}{Z}$$
 $S(n)$

$$MyNum = \{Z, Succ(Z), S(S(Z)), \ldots\}$$

Does MyNum satisfy the rules?

- $Z \in MyNum. \sqrt{ }$
- If $n \in MyNum$, then $S(n) \in MyNum$. $\sqrt{}$

YourNum Satisfies the Rules

$$\frac{n}{Z}$$
 $S(n)$

$$YourNum = \{Z, S(Z), S(S(Z)), \ldots\} \cup \{\infty, S(\infty), \ldots\}$$

Does YourNum satisfy the rules?

- $Z \in YourNum. \sqrt{ }$
- If $n \in YourNum$, then $S(n) \in YourNum$. $\sqrt{}$

... "And That's All!"

- Both MyNum and YourNum satisfy all rules.
- It is not enough that a set satisfies all rules.
- Something more is needed: an extremal clause.
 - "and nothing else"
 - "the least set that satisfies these rules"

An inductively defined set is the **least set** for the given rules.

Example: $MyNum = \{Z, S(Z), S(S(Z)), ...\}$ is the least set that satisfies these rules:

- Z ∈ Num
- if $n \in Num$, then $S(n) \in Num$.

What do we mean by "least"?

Answer: The smallest with respect to the subset ordering on sets.

- Contains no "junk", only what is required by the rules.
- Since YourNum

 MyNum, YourNum is ruled out by the extremal clause.
- MyNum is "ruled in" because it has no "junk". That is, for any set S satisfying the rules, S ⊃ MyNum

We almost always want to define sets with inductive definitions, and so have some simple notation to do so quickly:

$$S = Constructor_1(...) \mid Constructor_2(...) \mid ...$$

where *S* can appear in the ... on the right hand side (along with other things). The Constructor; are the names of the different rules (sometimes text, sometimes symbols). This is called a *recursive definition*.

Examples:

- Binary trees: $\tau = \bullet \mid \tau$
- Naturals: $\mathbb{N} = Z \mid S(\mathbb{N})$

There is a close connection between a recursive definition and a definition by rules:

• Binary trees:
$$\tau = \bullet \mid \tau$$

$$\begin{array}{c|c}
\hline
 & t_l & t_r \\
\hline
 & \hline
 & t_l & t_r
\end{array}$$

• Naturals: $\mathbb{N} = Z \mid S(\mathbb{N})$

$$\frac{n}{Z}$$
 $S(n)$

"recursive definition style" means that the extremal clause holds.

What's the Big Deal?

Inductively defined sets "come with" an *induction principle*. Suppose *I* is inductively defined by rules *R*.

- To show that every x ∈ I has property P, it is enough to show that regardless of which rule is used to "build" x, P holds; this is called taking cases or inversion.
- Sometimes, taking cases is not enough; in that case we can attempt a more complicated proof where we show that P is preserved by each of the rules of R; this is called structural induction or rule induction.

Example: Sign of a Natural

Consider the following definition:

- The natural Z has sign 0.
- For any natural n, the natural S(n) has sign 1.

Let *P* be the following property: Every natural has sign **0** or **1**.

Example: Sign of a Natural

Consider the following definition:

- The natural Z has sign 0.
- For any natural n, the natural S(n) has sign 1.

Let *P* be the following property: Every natural has sign **0** or **1**.

Does
$$P$$
 satisfy the rules $\frac{n}{Z}$ $S(n)$

To show that every $n \in Nat$ has property P, it is enough to show:

- Z has property P.
- For any n, S(n) has property P.

To show that every $n \in Nat$ has property P, it is enough to show:

- Z has property P.
- For any n, S(n) has property P.

Recall:

- The natural Z has sign 0.
- For any natural n, the natural S(n) has sign 1.

Let P = "Every natural has sign **0** or **1**.". Does P hold for all \mathbb{N} ?

To show that every $n \in Nat$ has property P, it is enough to show:

- Z has property P.
- For any n, S(n) has property P.

Recall:

- The natural Z has sign 0.
- For any natural n, the natural S(n) has sign 1.

Let P = "Every natural has sign **0** or **1**.". Does P hold for all \mathbb{N} ?

Proof. We take cases **on the structure of n** as follows:

• Z has sign **0**, so P holds for Z. $\sqrt{}$

To show that every $n \in Nat$ has property P, it is enough to show:

- Z has property P.
- For any n, S(n) has property P.

Recall:

- The natural Z has sign 0.
- For any natural n, the natural S(n) has sign 1.

Let P = "Every natural has sign **0** or **1**.". Does P hold for all \mathbb{N} ?

Proof. We take cases on the structure of n as follows:

- Z has sign **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has sign 1, so P holds for any S(n). $\sqrt{}$

Thus, P holds for all naturals.

Example: Even and Odd Naturals

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

Let *P* be: Every natural has parity **0** or parity **1**.

Example: Even and Odd Naturals

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

Let *P* be: Every natural has parity **0** or parity **1**.

Can we prove this by taking cases?

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases **on the structure of n** as follows:

• Z has parity **0**, so P holds for Z. $\sqrt{}$

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases **on the structure of n** as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases **on the structure of n** as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity well...

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity well... hmmm...

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity well... hmmm... it is unclear;

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If n is a natural with parity $\mathbf{0}$, then S(n) has parity $\mathbf{1}$.
- If n is a natural with parity 1, then S(n) has parity 0.

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity well... hmmm... it is unclear; it depends on the parity of n.

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If n is a natural with parity $\mathbf{0}$, then S(n) has parity $\mathbf{1}$.
- If n is a natural with parity 1, then S(n) has parity 0.

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity well... hmmm... it is unclear; it depends on the parity of n. X

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.

Where parity is defined by

- The natural Z has parity 0.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases **on the structure of n** as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity well... hmmm... it is unclear; it depends on the parity of n. X

We are stuck! We need an extra fact about *n*'s parity....

Induction hypothesis

This fact is called an *induction hypothesis*. To get such an induction hypothesis we do *induction*, which is a more powerful way to take cases. To show that every $n \in Num$ has property P, we must show that every rule preserves P; that is:

- Z has property P.
- if *n* has property *P*, then S(n) has property *P*.

The new part is "if n has property P, then ..."; this is the induction hypothesis.

Induction hypothesis

This fact is called an *induction hypothesis*. To get such an induction hypothesis we do *induction*, which is a more powerful way to take cases. To show that every $n \in Num$ has property P, we must show that every rule preserves P; that is:

- Z has property P.
- if *n* has property *P*, then S(n) has property *P*.

The new part is "if n has property P, then ..."; this is the induction hypothesis.

Note that for the naturals, structural induction is just ordinary mathematical induction!

Every natural has parity **0** or parity **1**.

Proof. We take cases **on the structure of n** as follows:

• Z has parity **0**, so P holds for Z. $\sqrt{}$

Every natural has parity **0** or parity **1**.

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, we can't determine the parity of S(n) until we know something about the parity of n. X

Every natural has parity **0** or parity **1**.

Proof. We take cases **on the structure of n** as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, we can't determine the parity of S(n) until we know something about the parity of n. X

Proof. We **do induction on the structure of n** as follows:

• Z has parity **0**, so P holds for Z. $\sqrt{}$

Every natural has parity **0** or parity **1**.

Proof. We take cases **on the structure of n** as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, we can't determine the parity of S(n) until we know something about the parity of n. X

Proof. We do induction on the structure of n as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- Given an *n* such that *P* holds on *n*, show that *P* holds on *S*(*n*). Since *P* holds on *n*, the parity of *n* is **0** or **1**. If the parity of *n* is **0**, then the parity of *S*(*n*) is **1**. If the parity of *s*(*n*) is **1**, then the parity of *s*(*n*) is **1**. In either case, the parity of *s*(*n*) is **1** or **1**, so if *P* holds on *n* then *P* holds on *s*(*n*). √

Extending case analysis and structural induction to trees

Case analysis: to show that every tree has property P, prove that

- has property P.
- for all τ_1 and τ_2 ,

$$\overbrace{\tau_1 \quad \tau_2}$$
 has property P .

Structural induction: to show that every tree has property *P*, prove

- has property P.
- if τ_1 and τ_2 have property P, then τ_1 and τ_2 has property P.

$$\tau_1$$
 has property P .

Extending case analysis and structural induction to trees

Case analysis: to show that every tree has property *P*, prove that

- has property P.
- for all τ_1 and τ_2 ,

$$\overbrace{\tau_1 \quad \tau_2}$$
 has property P .

Structural induction: to show that every tree has property *P*, prove

- has property P.
- if τ_1 and τ_2 have property P, then τ_1 has property P.

Note that we do not require that τ_1 and τ_2 be the same height!

Let *I* be a set inductively defined by rules *R*.

 Case analysis is really a lightweight "special case" of structural induction where we do not use the induction hypothesis. If structural induction is sound, then case analysis will be as well.

- Case analysis is really a lightweight "special case" of structural induction where we do not use the induction hypothesis. If structural induction is sound, then case analysis will be as well.
- One way to think of a property P is that it is exactly the set of items that have property P. We would like to show that if you are in the set I then you have property P, that is, $P \supseteq I$.

- Case analysis is really a lightweight "special case" of structural induction where we do not use the induction hypothesis. If structural induction is sound, then case analysis will be as well.
- One way to think of a property P is that it is exactly the set of items that have property P. We would like to show that if you are in the set I then you have property P, that is, $P \supseteq I$.
- Remember that *I* is (by definition) the smallest set satisfying the rules in *R*.

- Case analysis is really a lightweight "special case" of structural induction where we do not use the induction hypothesis. If structural induction is sound, then case analysis will be as well.
- One way to think of a property P is that it is exactly the set of items that have property P. We would like to show that if you are in the set I then you have property P, that is, $P \supseteq I$.
- Remember that *I* is (by definition) the smallest set satisfying the rules in *R*.
- Hence if P satisfies (is preserved by) the rules of R, then P ⊃ I.

- Case analysis is really a lightweight "special case" of structural induction where we do not use the induction hypothesis. If structural induction is sound, then case analysis will be as well.
- One way to think of a property P is that it is exactly the set of items that have property P. We would like to show that if you are in the set I then you have property P, that is, $P \supseteq I$.
- Remember that *I* is (by definition) the smallest set satisfying the rules in *R*.
- Hence if P satisfies (is preserved by) the rules of R, then P ⊃ I.
- This is why the extremal clause matters so much!

Example: Height of a Tree

- To show: Every tree has a height, defined as follows:
 - The height of is 0.
 - If the tree I has height h_I and the tree r has height h_r , then the tree f has height f has hei
- Clearly, every tree has at most one height, but does it have any height at all?

Example: Height of a Tree

- To show: Every tree has a height, defined as follows:
 - The height of is 0.
 - If the tree I has height h_I and the tree r has height h_r , then the tree $\int_{-r}^{r} has height <math>1 + max(h_I, h_r)$.
- Clearly, every tree has at most one height, but does it have any height at all?
- It may seem obvious that every tree has a height, but notice that the justification relies on structural induction!
 - An "infinite tree" does not have a height!
 - But the extremal clause rules out the infinite tree!

Example: height

- Formally, we prove that for every tree t, there exists a number h satisfying the specification of height.
- Proceed by induction on the structure of trees, showing that the property "there exists a height h for t" satisfies (is preserved by) these rules.

Example: height

- Rule 1: is a tree.
 Does there exist h such that h is the height of Empty?
 Yes! Take h=0.
- Rule 2: \int_{-r}^{r} is a tree if l and r are trees. Suppose that there exists h_l and h_r , the heights of l and r, respectively (the induction hypothesis). Does there exist h such that h is the height of Node(l, r)? Yes! Take $h = 1 + max(h_l, h_r)$.

Thus, we have proved that all trees have a height.