08—Program Verification Il

CS 5209: Foundation in Logic and Al

Martin Henz and Aquinas Hobor

March 11, 2010

Generated on Thursday 11t March, 2010, 16:10

CS 5209: Foundation in Logic and Al 08—Program Verification I

Q Review

9 Hoare Triples; Partial and Total Correctness

e Practical Aspects of Correctness Proofs
e Correctness of the Factorial Function

e Proof Calculus for Total Correctness

CS 5209: Foundation in Logic and Al 08—Program Verification I

Review

0 Review

CS 5209: Foundation in Logi

Review

Expressions in Core Language

Expressions come as arithmetic expressions E:

E:x=n|x|(-E)|(E+E)|(E—E)|(E«E)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Review

Expressions in Core Language

Expressions come as arithmetic expressions E:
E:=n|x|(-E)|(E+E)|(E—-E)|(E*E)
and boolean expressions B:

B:=true|false|(!B)|(B&B)|(B|B)|(E <E)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Review

Expressions in Core Language

Expressions come as arithmetic expressions E:
E:=n|x|(-E)|(E+E)|(E—-E)|(E*E)
and boolean expressions B:
B:=true|false|(!B)|(B&B)|(B|B)|(E <E)

Where are the other comparisons, for example ==?

CS 5209: Foundation in Logic and Al 08—Program Verification I

Review

Commands in Core Language

Commands cover some common programming idioms.
Expressions are components of commands.

C:=x=E|C;C|ifB{C}else{C}|whileB{C}

CS 5209: Foundation in Logic and Al 08—Program Verification I

Review

Example

Consider the factorial function:
def
=

0!
(n+1)!

1
(n+1)-n!

e

We shall show that after the execution of the following Core
program, we have y = x!.

y = 1,

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

e Hoare Triples; Partial and Total Correctness

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Example

y =1
z = 0;
while (z !'= x) { z =

CS 5209: Foundation in Logic and Al

z+ 1, y=yxz;}

rogram Verification Il

Hoare Triples; Partial and Total Correctness

Example

y = 1,
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ We need to be able to say that at the end, y is x!,
provided that at the beginning, we have x > 0.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Assertions on Programs

Shape of assertions

(¢) P (4D

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Assertions on Programs

Shape of assertions

(¢) P (4D

Informal meaning

If the program P is run in a state that satisfies ¢, then the state
resulting from P’s execution will satisfy 1.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Partial Correctness

Definition

We say that the triple (¢) P () is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies 1, provided that P terminates.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Partial Correctness

Definition

We say that the triple (¢) P () is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies 1, provided that P terminates.

We write Fpar (¢) P ().

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Total Correctness

Definition

We say that the triple (¢|) P (%) is satisfied under total
correctness if, for all states which satisfy ¢, P is guaranteed to
terminate and the resulting state satisfies .

We write ot (¢) P ().

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

y = 1;

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }
9 ot (x > 0) Facl (y = x!)
9 £ (T) Facl (y =x!)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

y = 1

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }
9 ot (x > 0) Facl (y = x!)
@ =pa (T) Facl (y =x!)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Rules for Partial Correctness

(@) Can) (n) Cz2 (%)

[Composition]

(#) C1:Ca (¥)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Rules for Partial Correctness (continued)

[Assignment]

(x — Elp) x = E (¥)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Rules for Partial Correctness (continued)

(@AB)Ci(v) (¢A-B)Ca(v)

[If-statement]
(p)if B{Cy} else {Ca} (v)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Rules for Partial Correctness (continued)

(@AB)Ci(v) (¢A-B)Ca(v)

[If-statement]
(p)if B{Cy} else {Ca} (v)

(¢ AB) C (4]
[Partial-whil€]

(¥)whileB {C}(yvA-B)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Correctness

Rules for Partial Correctness (continued)

Far @' — ¢ (¢) C (¥) Far ¢ — ¢

[Implied]
(¢') € (4D

CS 5209: Foundation in Logic and Al 08—Program Verification I

Hoare Triples; Partial and Total Corre
Practical Aspects of Correctness Proofs
Cor of the IF
Pro fol

Proof Tableaux

Proofs have tree shape

All rules have the structure

something

something else

As a result, all proofs can be written as a tree.

A\

Practical concern

These trees tend to be very wide when written out on paper.
Thus we are using a linear format, called proof tableaux.

\

CS 5209: Foundation in Logic and Al 08—Program Verification Il

Practical Aspects of Correctness Proofs

Interleave Formulas with Code

(@) Caln) (n) Cz2 (%)

[Composition]

(#) C1:Ca (¥)

Shape of rule suggests format for proof of Cy;Cs;...;Cp:
(¢o)
Cu;
(o1) justification
Ca;

(én_1) justification

n»
(én) justification

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition v holds.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition v holds.

Common situation
If P has the shape Cy;...; Cy, we need to find the weakest
formula ¢’ such that

(%) Ca (¥)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition v holds.

Common situation

If P has the shape Cy;...; Cy, we need to find the weakest
formula ¢’ such that

(%) Ca (¥)

Terminology
The weakest formula ¢’ is called weakest precondition.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Example

(y <3)

(y +1<4) Implied
y=y+1

ly < 4) Assignment

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Another Example

Canweclamu=x+yafterz=x; z=z+y;, u=2z;?

CS 5209: Foundation in Logic and Al rogram Verification Il

Practical Aspects of Correctness Proofs

Another Example

Canweclamu=x+yafterz=x; z=z+y;, u=2z;?

(D

(x+y=x+y) Implied
z=x;

(z+y=x+y) Assignment
Z=z+Yy,

(z=x+Yy) Assignment
u=z;

(u=x-+y) Assignment

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

An Alternative Rule for If

We have:

(¢AB)Ca() (#A-B)Ca (4]
[If-statement]

(p)if B{Cy} else {Cy}(¥)

Sometimes, the following derived rule is more suitable:

(¢1) Ca (v) (¢2) C2 (¥)

[If-stmt 2]
(B —=d1)A(-B—a2))if B{Cy} else {Cy}(¥)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Example

Consider this implementation of Succ:

a=x+ 1;
if (a—1==0) {

y = 1
} else {
y = a;

}

Can we prove (T)) Succ [y =x + 1) ?

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Another Example

if (a—1==0)

(1=x+1) If-Statement 2
y=1
ly =x+1) Assignment
} else {
(a=x+1) If-Statement 2
y=a
ly =x+1) Assignment
}
ly =x+1) If-Statement 2

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Another Example

(
(X+1-1=0—1=x+1)A
(~(x+1-1=0)—x+1=x+1)) Implied

a=x+1,
(@—1=0—-1=x+1)A
(-(a-1=0)—a=x+1)) Assignment
if (a—1==0) {
(1=x+1) If-Statement 2
y=1
ly =x+1) Assignment
} else {
(a=x+1) If-Statement 2
y=a
ly =x+1) Assignment

CS 5209: Foundation in Logic and Al 08—Program Verification I

Practical Aspects of Correctness Proofs

Recall: Partial-while Rule

(¥ AB) C (4]

[Partial-whil€]
() whileB{C}(vA-B)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Correctness of the Factorial Function

Factorial Example

We shall show that the following Core program Facl meets this
specification:
y =1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }
Thus, to show:
(T) Facl (y =x!)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Correctness of the Factorial Function

Partial Correctness of Facl

(y =21)

while (z = x) {
ly=z'Az #x) Invariant
ly - (z+1)=(z+1)!) Implied
z=2z+1;
ly-z=2!) Assignment
y=Yy*z
ly =z!) Assignment
}
ly =z!A=(z #X)) Partial-while
ly =x!) Implied

CS 5209: Foundation in Logic and Al 08—Program Verification I

Correctness of the Factorial Function

Partial Correctness of Facl

(TD

((L=0h) Implied
y=1

(y =0!) Assignment
z=0;

y =2!) Assignment

while (z = x) {

: i
(y =z!A—=(z #x)) Partial-while
(y =x!) Implied

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

e Proof Calculus for Total Correctness

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

Why?

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

Why? Well-foundedness of natural numbers

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

Why? Well-foundedness of natural numbers

@ We shall include this argument in a new version of the
whi | e rule.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Rules for Partial Correctness (continued)

(¥ AB) C (4]

[Partial-whil€]
() whileB{C}(vA-B)

(WABAO<E =Eg)C (¥A0<E < Eg)

[Total-while]
(v NO<E)whileB {C}(¢¥A-B)

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Factorial Example (Again!)

y = 1;
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

What could be a good variant E?

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Factorial Example (Again!)

y = 1,
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Factorial Example (Again!)

1;
z = 0;
while (z '=x) {z=2z+ 1,y =y x z; }

What could be a good variant E?
E must strictly decrease in the loop, but not become negative.

Answer:

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Total Correctness of Facl

'(]y:z!/\ng—zl)
while (z!=x) {

ly=z'Nz#xAN0<x—-2z=E) Invariant
by - (z+1)=(z+1)!A0<x—(z+1) <Eg) Implied
z=z+1;
y-z=z'AN0<x -2z <Ep) Assignment
y =Yy *2z
ly=2'"0<x-2z<Eg) Assignment
}
ly =z!A=(z #X)) Total-while
ly =x!) Implied

CS 5209: Foundation in Logic and Al 08—Program Verification I

Proof Calculus for Total Correctness

Total Correctness of Facl

(x <0)

(L=0'A0<x—0) Implied

y =1

(ly =0'A0<x—-0) Assignment
z=0;

y=z'A0<x—2z) Assignment
while (z!'=x) {

\ :
(y=z!A=(z #x)) Total-while
(y =x!) Implied

CS 5209: Foundation in Logic and Al 08—Program Verification I

	Review
	Hoare Triples; Partial and Total Correctness
	Practical Aspects of Correctness Proofs
	Correctness of the Factorial Function
	Proof Calculus for Total Correctness

