08—Program Verification II

CS 5209: Foundation in Logic and AI

Martin Henz and Aquinas Hobor

March 11, 2010

- Review
- 2 Hoare Triples; Partial and Total Correctness
- 3 Practical Aspects of Correctness Proofs
- Correctness of the Factorial Function
- 5 Proof Calculus for Total Correctness

Hoare Triples; Partial and Total Correctness Practical Aspects of Correctness Proofs Correctness of the Factorial Function Proof Calculus for Total Correctness

- Review
- 2 Hoare Triples; Partial and Total Correctness
- Practical Aspects of Correctness Proofs
- Correctness of the Factorial Function
- 5 Proof Calculus for Total Correctness

Expressions in Core Language

Expressions come as arithmetic expressions *E*:

$$E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E * E)$$

Expressions in Core Language

Expressions come as arithmetic expressions *E*:

$$E ::= n | x | (-E) | (E + E) | (E - E) | (E * E)$$

and boolean expressions B:

$$B ::= true \mid false \mid (!B) \mid (B\&B) \mid (B||B) \mid (E < E)$$

Expressions in Core Language

Expressions come as arithmetic expressions *E*:

$$E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E * E)$$

and boolean expressions B:

$$B ::= true \mid false \mid (!B) \mid (B\&B) \mid (B||B) \mid (E < E)$$

Where are the other comparisons, for example ==?

Commands in Core Language

Commands cover some common programming idioms. Expressions are components of commands.

$$C ::= x = E \mid C; C \mid \text{if } B \{C\} \text{ else } \{C\} \mid \text{while } B \{C\}$$

Consider the factorial function:

$$0! \stackrel{\text{def}}{=} 1$$
$$(n+1)! \stackrel{\text{def}}{=} (n+1) \cdot n!$$

We shall show that after the execution of the following Core program, we have y = x!.

$$y = 1;$$

 $z = 0;$
while $(z != x) \{ z = z + 1; y = y * z; \}$

- Review
- Hoare Triples; Partial and Total Correctness
- 3 Practical Aspects of Correctness Proofs
- Correctness of the Factorial Function
- 5 Proof Calculus for Total Correctness

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

 We need to be able to say that at the end, y is x!, provided that at the beginning, we have x > 0.

Assertions on Programs

Shape of assertions

$$(\phi) P (\psi)$$

Assertions on Programs

Shape of assertions

$$(\phi) P (\psi)$$

Informal meaning

If the program P is run in a state that satisfies ϕ , then the state resulting from P's execution will satisfy ψ .

Partial Correctness

Definition

We say that the triple $(\![\phi]\!]$ $P(\![\psi]\!]$ is satisfied under partial correctness if, for all states which satisfy ϕ , the state resulting from P's execution satisfies ψ , provided that P terminates.

Partial Correctness

Definition

We say that the triple $(\![\phi]\!]$ $P(\![\psi]\!]$ is satisfied under partial correctness if, for all states which satisfy ϕ , the state resulting from P's execution satisfies ψ , provided that P terminates.

Notation

We write $\models_{par} (\!(\phi)\!) P (\!(\psi)\!)$.

Total Correctness

Definition

We say that the triple $(\!(\phi)\!) P(\!(\psi)\!)$ is satisfied under total correctness if, for all states which satisfy ϕ , P is guaranteed to terminate and the resulting state satisfies ψ .

Notation

We write $\models_{\text{tot}} (\![\phi]\!]) P (\![\psi]\!])$.

Back to Factorial

Consider Fac1:

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

- $\bullet \models_{\text{tot}} (x \ge 0) \text{ Facl } (y = x!)$
- $\not\models_{\text{tot}} (\!\mid \top \!\mid) \text{ Fac1 } (\!\mid y = x!)$

Back to Factorial

Consider Fac1:

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

- $\bullet \models_{\text{tot}} (x \ge 0) \text{ Facl } (y = x!)$
- $\models_{\text{par}} (\!(\top)\!) \text{ Fac1 } (\!(y = x!)\!)$

Rules for Partial Correctness

$$(\phi \land B) C_1 (\psi) \qquad (\phi \land \neg B) C_2 (\psi)$$

$$(\phi) \text{ if } B \{ C_1 \} \text{ else } \{ C_2 \} (\psi)$$

$$(\psi \land B) C (\psi)$$

$$(\psi) \text{ while } B \{ C \} (\psi \land \neg B)$$

Proof Tableaux

Proofs have tree shape

All rules have the structure

something

something else

As a result, all proofs can be written as a tree.

Practical concern

These trees tend to be very wide when written out on paper. Thus we are using a linear format, called *proof tableaux*.

Interleave Formulas with Code

```
(\phi) C_1 (\eta) (\eta) C_2 (\psi)
                                     —[Composition]
          (\![\phi]\!] C_1; C_2 (\![\psi]\!]
Shape of rule suggests format for proof of C_1; C_2; ...; C_n:
 (\phi_0)
 C_1;
 (\phi_1)
             justification
 C_2;
             justification
 (\phi_{n-1})
 Cn:
 (\phi_n)
             justification
```

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some condition ψ holds.

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some condition ψ holds.

Common situation

If P has the shape C_1 ; . . . ; C_n , we need to find the weakest formula ψ' such that

$$(\psi')$$
 C_n (ψ)

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some condition ψ holds.

Common situation

If P has the shape C_1 ; ...; C_n , we need to find the weakest formula ψ' such that

$$(\psi')$$
 C_n (ψ)

Terminology

The weakest formula ψ' is called weakest precondition.

$$(y < 3)$$

 $(y + 1 < 4)$ Implied
 $y = y + 1$;
 $(y < 4)$ Assignment

Another Example

Can we claim u = x + y after z = x; z = z + y; u = z; ?

Another Example

Can we claim
$$u = x + y$$
 after $z = x$; $z = z + y$; $u = z$; ?

$$(|T|)$$

 $(x + y = x + y)$ Implied
 $z = x;$
 $(z + y = x + y)$ Assignment
 $z = z + y;$
 $(z = x + y)$ Assignment
 $u = z;$
 $(u = x + y)$ Assignment

An Alternative Rule for If

We have:

Sometimes, the following *derived rule* is more suitable:

$$(\phi_1) C_1 (\psi) (\phi_2) C_2 (\psi)$$

$$(B \to \phi_1) \land (\neg B \to \phi_2)) \text{ if } B \{ C_1 \} \text{ else } \{ C_2 \} (\psi)$$

◆ロ → ◆部 → ◆ 章 → ◆ 章 → り へ ○

Consider this implementation of Succ:

```
a = x + 1;
if (a - 1 == 0) {
   y = 1;
} else {
   y = a;
}
```

Can we prove (\top) Succ (y = x + 1)?

Another Example

```
if (a - 1 == 0)
  (1 = x + 1)
                     If-Statement 2
  y = 1;
  (y = x + 1)
                     Assignment
} else {
  (a = x + 1)
                     If-Statement 2
  y = a;
  (v = x + 1)
                     Assignment
  (v = x + 1)
                     If-Statement 2
```

Another Example

```
(|\top|)
((x+1-1=0 \rightarrow 1=x+1) \land
(\neg(x+1-1=0)\to x+1=x+1)
                                      Implied
a = x + 1:
((a-1=0 \to 1=x+1) \land
(\neg (a-1=0) \to a=x+1)
                                      Assignment
if (a - 1 == 0) {
  (1 = x + 1)
                                      If-Statement 2
   v = 1:
  (v = x + 1)
                                      Assignment
} else {
  (a = x + 1)
                                      If-Statement 2
   v = a:
  (v = x + 1)
                                      Assignment
```

Recall: Partial-while Rule

Factorial Example

We shall show that the following Core program Fac1 meets this specification:

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}

Thus, to show:

(\top) \text{ Facl } (y = x!)
```

Partial Correctness of Fac1

```
(y = z!)
while (z != x) {
  (y = z! \land z \neq x)
                               Invariant
  (y \cdot (z+1) = (z+1)!)
                               Implied
   z = z + 1;
  (y \cdot z = z!)
                               Assignment
   V = V * Z;
  (y=z!)
                               Assignment
(y = z! \land \neg(z \neq x))
                               Partial-while
(|y = x!|)
                               Implied
```

Partial Correctness of Fac1

```
((1 = 0!))
                       Implied
y = 1;
(v = 0!)
                       Assignment
z = 0:
(y=z!)
                       Assignment
while (z != x) {
(y = z! \land \neg(z \neq x))
                     Partial-while
(|y = x!|)
                       Implied
```

- Review
- 2 Hoare Triples; Partial and Total Correctness
- Practical Aspects of Correctness Proofs
- Correctness of the Factorial Function
- Proof Calculus for Total Correctness

- The only source of non-termination is the while command.
- If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination.

- The only source of non-termination is the while command.
- If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination.
 Whv?

- The only source of non-termination is the while command.
- If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination.
 - Why? Well-foundedness of natural numbers

- The only source of non-termination is the while command.
- If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination.
 Why? Well-foundedness of natural numbers
- We shall include this argument in a new version of the while rule.

Rules for Partial Correctness (continued)

Factorial Example (Again!)

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

What could be a good variant E?

Factorial Example (Again!)

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

What could be a good variant *E*?

E must strictly decrease in the loop, but not become negative.

Factorial Example (Again!)

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.

Answer:

$$X - Z$$

Total Correctness of Fac1

```
(v = z! \land 0 < x - z)
while (z = x)
  \{ v = z \mid \land z \neq x \land 0 < x - z = E_0 \}
                                                              Invariant
  (y \cdot (z+1) = (z+1)! \land 0 < x - (z+1) < E_0)
                                                              Implied
  z = z + 1:
  \{ y \cdot z = z! \land 0 \le x - z < E_0 \}
                                                             Assignment
  V = V * Z:
  \{y = z! \land 0 < x - z < E_0\}
                                                             Assignment
(y = z! \land \neg(z \neq x))
                                                             Total-while
(|y = x!|)
                                                              Implied
```

Total Correctness of Fac1

```
(|x|<0)
(1 = 0! \land 0 < x - 0)
                           Implied
v = 1:
\{y = 0! \land 0 < x - 0\}
                          Assignment
z = 0;
(y = z! \land 0 \le x - z)
                          Assignment
while (z = x)
                          Total-while
(y = z! \land \neg(z \neq x))
(|y = x!|)
                           Implied
```