
CS5126: Logic Programming
and Constraints

Joxan Jaffar

March 3 - April 7, 2008

Readings
Textbook:

Programming with Constraints, K. Marriott and P. Stuckey, MIT Press, 2000

Additional reading:

Constraint Logic Programming using ECLiPSe, K.R. Apt and M. Wallace,
Cambridge Univ Press, 2007.

P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, 1989.

A CLP Survey, by J. Jaffar and M. Maher, Journal of Logic Programming, 1994. (Advanced)

Why CLP?
I Constraints support relationships among programmer-defined

entities
I The CLP Scheme applies to various constraint domains
I Logic Programming supports declarative reasoning
I Constraints + LP support search
I CLP is not just a programming language; its a methodology

Modern CLP Systems:

I CLP(R)
I CHIP
I ECLiPSe

I SicsTus Prolog
I B-Prolog

Constraint Logic Programming
I The CLP Scheme

I various constraint domains
I CLP Evaluation

I partial constraint solving: true, false and unknown solutions
I Advanced Programming Techniques

I literal and rule orderings, and coroutining
I redundant constraints

I Finite Domains
I complex constraints
I ordering variables and values
I domain splitting
I FD modelling techniques

I Algorithms for Solvers
I finite and infinite trees
I boolean
I linear arithmetic
I finite domains

I Mathematical Foundations (may be nonexaminable)

The CLP Scheme
I a first-order language L of

I variables (X , Y , · · ·)
I function symbols Σ (eg : +, −, fib(.), · · ·)
I constraint symbols Π (eg : <, is_prime(.), · · ·)
I predicate symbols (user defined in programs)
I a term is either a variable, or of the form f (t1, t2, · · · , tn)

where f ∈ Σ and ti , 0≤ i ≤ n, are terms. Eg X +2∗Y −1).
I a constraint is of the form c(t1, t2, · · · , tn) where c is a constraint symbol,

and the ti , 0≤ i ≤ n, are terms
I an atom is of the form p(t1, t2, · · · , tn) where p is a predicate symbol,

and the ti , 0≤ i ≤ n, are terms

I a structure D
is an algebra with an underlying domain of discourse (eg
integers), and a number of basic operations (eg: +, −)

I A constraint domain is defined by a language of constraints, and
an associated structure.

Example Constraint Domains
I Term Structures (Trees)

Structure D : the set of terms constructible from Σ

Function symbols Σ: any collection of n-ary function symbols, for all n ≥ 0
Constraint symbols Π: = 6=

I Integers
Structure D : the integers with addition, multiplication, order
Function symbols Σ: −1 0 +1 + ∗
Constraint symbols Π: = < ≤

Examples:
X = 1, X ∗Y < 5, 2∗X = 1 (unsatisfiable)
4∗X 3 +5∗X 2−7∗X = 17 (unsatisfiable), · · ·

I Real numbers
As above, except that the structure is the real number algebra.
Examples:
X = 1, X ∗Y < 5, 2∗X = 1 (satisfiable)
4∗X 3 +5∗X 2−7∗X = 17 (satisfiable), · · ·

Basic Operations on Constraints
I Testing for consistency or satisfiability: D |= ∃̃ c.

A function solve() maps a constraint into {true, false,maybe}.
It is complete if it only returns {true, false}.

I Obtaining the projection of a constraint c0 onto variables x̃ to obtain a
constraint c1 such that D |= c1↔∃−x̃ c0. (It is always possible to take c1 to
be ∃−x̃ c0, but the aim is to compute the simplest c1 with fewest quantifiers. In
general it is not possible to eliminate all uses of the existential quantifier.)

I Testing for entailment of one constraint by another: D |= c0→ c1. (More
generally, we may ask whether a disjunction of constraints is implied by a
constraint: D |= c0→

∨n
i=1 ci .)

I Detecting that, given a constraint c, there is only one value that a variable x
can take that is consistent with c. (D |= c(x , z̃)∧ c(y , w̃)→ x = y or,
equivalently, D |= ∃z∀x , ỹ c(x , ỹ)→ x = z.)

The CLP Scheme

A constraint domain D defines a programming language
clp(D) which is an instance of the CLP Scheme.

A clp(D) program consists of a finite number of rules:

A0←− c1, · · · ,cn,A1, · · · ,Am.

where

I n ≥ 0,m ≥ 0,
I the ci are constraints over X
I the Ai are atoms over X

clp(FT) — PROLOG
Structure: 〈Finite trees (Σ), {f, g, ...},=〉
Solver: standard unifier

add(0, B, C) :- B = C.
add(s(A), B, s(C)) :- add(A, B, C).
fib(0, s(0)).
fib(s(0), s(0)).
fib(s(s(N)), X) :-

fib(s(N), X1),
fib(N, X2),
add(X1, X2, X).

Goal: ?- fib(s5(0), X).
Answer: X = s8(0).

Goal: ?- fib(X, s8(0)).
Answer: X = s5(0).

clp(N)
Structure: 〈Natural numbers,+,−,<,≤,=〉
Solver: integer linear inequalities

fib(0, 1).
fib(1, 1).
fib(N, X + Y) :-

N >= 2,
fib(N - 2, X),
fib(N - 1, Y).

Goal: ?- fib(14, Z).
Answer: Z = 610.

Goal: ?- fib(Z, 610).
Answer: Z = 14.

Goal: ?- fib(Z, N), N >= 600, N <= 620.
Answer: Z = 14.

clp(B)
Structure: 〈{0,1},+,×,⊕,¬,=〉
Solver: boolean unifier

adder(In1, In2, In3, Out1, Out2) :-
In1 ⊕ In2 = X1,
In1 × In2 = A1,
X1 ⊕ In3 = Out1,
In3 × X1 = A2,
A1 + A2 = Out2.

Goal: ?- adder(1, 1, 1, Out1, Out2).
Answer: Out1 = 1, Out2 = 1.

Goal: ?- adder(1, 1, In3, Out1, 1).
Answer: Out1 = In3.

clp(S)
Structure: 〈Strings(Σ), ., =〉
Solver: equations on strings

unit(a).
unit(b).
palindrome(ε).
palindrome(X) :- unit(X).
palindrome(X.Y.X) :-

unit(X),
palindrome(Y).

Goal: ?- palindrome(a.b.a.b.a).
Answer: true

Goal: ?- palindrome(X.b.a).
Answers: X = a, X = a.b, X = a.b.a, · · ·

clp(R)
Structure: 〈Real numbers,+,−,<,≤,=〉
Solver: real inequalities

mortgage(P, T, I, B, M) :-
T <= 1,
B = P * T * (P*I/1200 - M).

mortgage(P, T, I, B, M) :-
T > 1,
mortgage(P * (1 + I/1200) - M, T - 1, I, B, M).

Goal: ?- mortgage(100000, 360, 7.25, 0, M).
Answer: M = 682.17

Goal: ?- mortgage(P, 360, 7.25, 0, 682.17).
Answer: P = 100000.

Goal: ?- mortgage(P, 360, 7.25, B, M).
Answer: P = 0.114*B + 146.59*M

CLP Operational Model
Repeatedly reduce atoms in subgoals, ensuring that all constraints are
not known to be unsatisfiable, until the subgoal contains only constraints.

?- c1,A1 A2←− c2,B2.

?- c1,A1 = A2,c2,B2 A3←− c3,B3.

?- c1,A1 = A2,c2,B2 = A3,c3,B3 A4←− c4.

?- c1,A1 = A2,c2,B2 = A3,c3,B3 = A4,c4.

?

�
�

�
�

�
�

�
�

�
�+

?

�
�

�
�

�
�

�
�+

?

�
�

�
�

�
�

�+

The answer constraint is obtained by projecting the final constraint
onto the variables in the initial goal.

The atom selection strategy and search strategy are left unspecified.

Example
(Rule 1) fact(0, 1).
(Rule 2) fact(N, N * M) :- N >= 1, fact(N - 1, M).

?- fact(A,2) fact(N1,N1 ∗M1) :- N1 >= 1, fact(N1−1,M1)

?-
A = N1,2 = N1 ∗M1,
N1 ≥ 1,
fact(N1−1,M1)

fact(N2,N2 ∗M2) :- N2 >= 1, fact(N2−1,M2)

?-

A = N1,2 = N1 ∗M1,
N1 ≥ 1,
N1−1 = N2,M1 = N2 ∗M2,
N2 ≥ 1,
fact(N2−1,M2)

fact(0,1).

?-

A = N1,2 = N1 ∗M1,
N1 ≥ 1
N1−1 = N2,M1 = N2 ∗M2,
N2 ≥ 1,
N2−1 = 0,M2 = 1
Answer: A = 2

?

�
�

�
�

�
��+

?

�
�

�
�

�
�+

?

�
�

�
�

�
�

�
�

�
�+

Example
mg(P,M,1) :- 1.01 * P = M.
mg(P,M,T) :- T >= 2, mg(1.01*P - M, M, T-1).

?- mg(P,M,2)
mg(P1,M1,T1) :- T1 >= 2,

mg(1.01∗P1−M1,M1,T1−1)

?-
P = P1,M = M1,2 = T1,T1 >= 2,
mg(1.01∗P1−M1,M1,T1−1) mg(P2,M2,1) :- 1.01∗P1 = M1.

?-
P = P1,M = M1,2 = T1,T1 >= 2,
1.01∗P1−M1 = P2,M1 = M2,T1−1 = 1,
1.01∗P2 = M2

Answer: P = (1.01)2 ∗M (P = 1.9704∗M)

?

�
�

�
�

�
�

�
�+

?

�
�

�
�

�
�

�
�+

Derivations
A literal is either an atom or a constraint.

A goal G is a sequence of atoms or constraints.

A state is of the form (G | C) where G is a goal and C a sequence of constraints.

Suppose G1 is of the form L1, · · · ,Li , · · · ,Lm where Li is an atom p(t1, · · · , tn). Let R be a
rule of the form p(s1, · · · ,sn):-B. Then a rewriting of G using R is the goal
L1, · · · ,Li−1,θ(s1) = t1, · · · ,θ(sn) = tn),Li+1, · · · ,Lm
where θ is a renaming of s1, · · · ,sn away from G .

A derivation step from a state (G1 | C 1) to a state (G2 | C 2), written
(G1 | C 1) =⇒ (G2 | C 2), is defined as follows. Suppose G1 is of the form L1, · · · ,Ln.

I L1 is a constraint:
Then G2 is L2, · · · ,Ln and C 2 is C 1∧L1.
If solve(C 2)≡ false, then (G2 | C 2) is a false state.

I L1 is an atom:
Then C 2 is C 1, and G2 is a rewriting of G1 at L1 using some rule R.
The variables in G2 are renamed away from (G1 | C 1).
If there is no such R, then then (G2 | C 2) is a false state.

Note: we have described a left-to-right selection stategy

Example Derivation
fact(2,X) | true
⇓ (rule2)

2 = N,X = N ∗F ,N ≥ 1, fact(N−1,F) | true
⇓

X = N ∗F ,N ≥ 1, fact(N−1,F) | 2 = N
⇓

N ≥ 1, fact(N−1,F) | 2 = N,X = N ∗F
⇓

fact(N−1,F) | 2 = N,X = N ∗F ,N ≥ 1
⇓ (rule2)

N−1 = N ′,F = N ′ ∗F ′,N ′ ≥ 1, fact(N ′−1,F ′) | 2 = N,X = N ∗F ,N ≥ 1
⇓
· · ·
⇓

fact(N ′−1,F ′) | 2 = N,X = N ∗F ,N ≥ 1,N−1 = N ′,F = N ′ ∗F ′,N ′ ≥ 1
⇓ (rule1)

N ′−1 = 0,F ′ = 1 | 2 = N,X = N ∗F ,N ≥ 1,N−1 = N ′,F = N ′ ∗F ′,N ′ ≥ 1
⇓
· · ·
⇓

2 | 2 = N,X = N ∗F ,N ≥ 1,N−1 = N ′,F = N ′ ∗F ′,N ′ ≥ 1,N ′−1 = 0,F ′ = 1

Successful and Failed Derivations,
Derivation Trees

A success state (G | C) is such that G ≡2 and solve(C) 6≡ false.

A failed state (G | C) is such that solve(C)equivfalse.

A derivation sequence is successful if its last state is a success state. The
answer constraint of this sequence is obtained by a projection of
constraints in the success state onto the variables in the original goal.

A derivation sequence is failed if its last state is a failed state.

A derivation tree for a goal G and a program P is a tree with states as
nodes. The root is G | true. Each descendant node is a state that can be
reached in a derivation step from its parent. A node which has two or more
descendants is called a choicepoint.

A goal is finitely failed if its derivation tree is finite and all its derivations are
failed.

Example of Finite Failure
(Rule 1) fact(0, 1).
(Rule 2) fact(N, N * F) :- N >= 1, fact(N - 1, F).

Using rule 1:

fact(0,2) | true
⇓

0 = 0,2 = 1 | true
⇓

2 = 1 | 0 = 0
⇓

2 | 0 = 0,2 = 1

Using rule 2:

fact(0,2) | true
⇓

0 = N,2 = N ∗F ,N ≥ 1, fact(N−1,F) | true
⇓

2 = N ∗F ,N ≥ 1, fact(N−1,F) | 0 = N
⇓

N ≥ 1, fact(N−1,F) | 0 = N,2 = N ∗F
⇓

2 | 0 = N,2 = N ∗F ,N ≥ 1

Searching a Derivation Tree
Rule Order
Does not affect the answers, only in the sequence they are discovered. However, it can

I affect how quickly an answer is found,
I determine if an answer is ever found

Literal Order
A selection derivation step (G1 | C 1) =⇒ (G2 | C 2), is defined as follows. Suppose G1 is
of the form L1, · · · ,Li , · · · ,Ln where Li is selected.

I Li is a constraint:
G2 is L2, · · · ,Ln and C 2 is C 1∧Li .
If solve(C 2)≡ false, then (G2 | C 2) is a false state.

I Li is an atom:
C 2 is C 1, and G2 is a rewriting of G1 at Li using some rule R.
The variables in G2 are renamed away from (G1 | C 1). If there is no such R, then then
(G2 | C 2) is a false state.

If the solver were complete, then computing answers is is independent of literal order.
Otherwise, we can get infinite derivations when in fact the constraints are unsatisfiable.

Any answer constraint is always correct (it never describes an error state) regardless of
the solver.

Efficiency

Critial aspects:

I Completeness of the Solver
I Choosing rule order
I Choosing literals

Most CLP systems allow the use of different solvers, dynamic
consideration of rule order, and dynamic literal selection.

(More on this later ...)

Modeling Techniques (Arithmetic
Examples)

I choice
I iteration
I data structures
I hierarchical modelling

More on CLP(R)
The Constraint Domain R:

I structure: finite trees of real numbers
I Constraint symbols: + − ∗ / pow sin cos
I Tree symbols (functors): f/2, cons/2, is_prime/1, ...
I Constraints:

(a) aritmetic relations using = < > ≤ ≥
(b) term equations, eg: X = a, f(X, a) = Y, ...

Solver (incomplete) of R:

I linear constraints: interpret in the usual way
I nonlinear constraints: delay consideration until it becomes linear (Eg. delay

X ∗Y = Z until one of X or Y becomes known.)
I term equations:
f(t1, ... , tN) = f(u1, ... , uN) is true only if
t1 = u1, t2 = u2, · · · , tN = uN .
All other cases are false.

I Example: f (X ,X) = f (Y ,Z) would be equivalent to Y = Z .

Modelling Choice - Options Trading
An option is a contract allowing one to buy (a call option) or sell (a put option) something
(eg: 100 stock shares whose unit price is S) a at a particular price (the exercise price E) at
a particular time. The option itself costs C. Then:

payoff (S,C,E) =
{
−C, if 0≤ S ≤ E/100
100∗S−E−C, if S ≥ E/100

Example: C = 200, E = 300: Payoff for Call Option

1 2 3 4 5 6 7

-200

-100

0

100

200

1 2 3 4 5 6 7

buying
selling

Example: C = 100, E = 500: Payoff for Put Option

0

-100

-200

100

200

1 2 3 4 5 6 1 2 3 4 5 6

buying

selling

Options Trading
call_option(B, S, C, E, P) :- 0 ≤ S, S ≤ E/100, P = -C*B.
call_option(B, S, C, E, P) :- S ≥ E/100, P = (100*S - E - C) * B.
put_option(B, S, C, E, P) :- 0 ≤ S, S ≤ E/100, P = (E-100*S-C) * B.
put_option(B, S, C, E, P) :- S ≥ E/100, P = -C * B.

Options trading involves buying and selling complex combinations of options, in order to satisfy a
certain risk profile. Example: a butterfly combination bets that a stock price remains in a certain
range (ex: between $2 and $4) and bounds the loss (ex: never lose more than $100).

Example:
I buy a call of exercise $500 for $100,
I buy another call of exercise $100 for $400, and
I sell two calls of exercise $300 at $200 each.

butterfly(S, P1 + 2*P2 + P3) :-
Buy = 1, Sell = -1,
call_option(Buy, S, 100, 500, P1),
call_option(Sell, S, 200, 300, P2),
call_option(Buy, S, 400, 100, P3).

Butterfly Option

100

200

-100

-200

-300

-400

1 2 3 4 5 6 1 2 3 4 5 6

100

200

-100

1 2 3 4 5

Call option costing $400
Call option costing $100

Total payoff

Running ?- P ≥ 0, butterfly(S, P) returns exactly two answers:

I P = 100∗S−200,2≤ S,S ≤ 3
I P =−100∗S +400,3≤ S,S ≤ 4

Iteration - Mortgage Example
mortgage(P, T, I, R, B) :-

T ≥ 1
mortgage(P + P*I - R, T - 1, I, R, B).

mortgage(P, T, I, R, B) :- T = 0, B = P.

We have seen:

I How much can I borrow?
mortgage(P,3,0.1,150,0) =⇒ P = 373

I What is the relationship between P,B, and R?
mortgage(P,10,0.1,R,B) =⇒ P = 0.38∗B +6.14∗R

How about:

I How much interest?
mortgage(120,2, IR,0,80) =⇒ 80 = (0.1∗ IR +40)∗ (0.000833∗ IR +1)

Note that the CLP system will return this constraint and “maybe” because it cannot
determine if this constraint is satisfiable. However, this constraint is correct.

I How much time?
mortgage(373,T ,0.1,150,0) =⇒ ···?

This wouldn’t terminate. Why?

Data Structures - Laplace Example
Finite element modelling is used to approximate a continuous object by a grid of discrete
points. Eg. to model temperature on a metal sheet we can use a grid of variables to
capture temperature values: T11 T12 T13 T14

T21 T22 T23 T24
T31 T32 T33 T34

We then require the constraints

T22 = T12+T21+T23+T32
4

T23 = T13+T22+T24+T33
4

In general:

rows([_, _]).
rows([H1, H2, H3 | T]):-

cols(H1, H2, H3),
rows([H2, H3 | T]).

cols([TL, T, TR | T1], [ML, M, MR | T2], [BL, B, BR | T3]):-
B + T + ML + MR - 4 * M = 0,
cols([T,TR|T1],[M,MR|T2],[B,BR|T3]).

cols([_, _], [_, _], [_, _]).

Laplace Example
?- X = [[0,0,0,0,0,0,0,0,0,0,0],

[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,100,100,100,100,100,100,100,100,100,100]], rows(X).

=⇒
X =

[[0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00]
[100.00 51.11 32.52 24.56 21.11 20.12 21.11 24.56 32.52 51.11 100.00]
[100.00 71.91 54.41 44.63 39.74 38.26 39.74 44.63 54.41 71.91 100.00]
[100.00 82.12 68.59 59.80 54.97 53.44 54.97 59.80 68.59 82.12 100.00]
[100.00 87.97 78.03 71.00 66.90 65.56 66.90 71.00 78.03 87.97 100.00]
[100.00 91.71 84.58 79.28 76.07 75.00 76.07 79.28 84.58 91.71 100.00]
[100.00 94.30 89.29 85.47 83.10 82.30 83.10 85.47 89.29 94.30 100.00]
[100.00 96.20 92.82 90.20 88.56 88.00 88.56 90.20 92.82 96.20 100.00]
[100.00 97.67 95.59 93.96 92.93 92.58 92.93 93.96 95.59 97.67 100.00]
[100.00 98.89 97.90 97.12 96.63 96.46 96.63 97.12 97.90 98.89 100.00]
[100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00]]

Laplace Example
?- rows([

[B11, B12, B13, B14],
[B21, M22, M23, B24],
[B31, M32, M33, B34],
[B41, B42, B43, B44]

]).

=⇒

B12 = -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43
B13 = -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43
M22 = -B31 + 4*M32 - M33 - B42
M23 = -M32 + 4*M33 - B34 - B43

Hierarchical Modelling - Circuits
circuit(resistor(R), V, I) :- V = I * R.
circuit(series(N1, N2), V, I) :-

V = V1 + V2,
circuit(N1, V1, I), circuit(N2, V2, I).

circuit(parallel(N1, N2), V, I) :-
I = I1 + I2,
circuit(N1, V, I1), circuit(N2, V, I2).

R2 R3

R1

I

V

series series

resistor resistorR1

R2 R3

parallel

Figure: Circuit

?- circuit(
parallel(resistor(R1), series(resistor(R2), resistor(R3))),
V, I).

Answer: V = I2∗ (R2+R3),V = (I− I2)∗R1

?- R1 = 4, R2 = 5, R3 = 6,
circuit(

parallel(resistor(R1), series(resistor(R2), resistor(R3))),
V, I).

Answer: V = 2.9333∗ I

Circuit with Complex Numbers
c_equal(c(Re, Im), c(Re, Im)).
c_add(c(Re1, Im1), c(Re2, Im2), c(Re1 + Re2, Im1 + Im2)).
c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-

Re3 = Re1 * Re2 - Im1 * Im2,
Im3 = Re1 * Im2 + Re2 * Im1.

circuit(resistor(R), V, I, W) :- c_mult(V, I, c(R, 0)).
circuit(inductor(L), V, I, W) :- c_mult(V, I, c(0, W * L)).
circuit(capacitor(C), V, I, W) :-

c_mult(V, I, c(0, -1 / (W * C))).
circuit(series(N1, N2), V, I, W) :-

c_equal(I, I1), c_equal(I, I2),
c_add(V, V1, V2),
circuit(N1, V1, I1, W),
circuit(N2, V2, I2, W).

circuit(parallel(N1, N2), V, I, W) :-
c_equal(V, V1), c_equal(V, V2),
c_add(I, I1, I2),
V = V1, V = V2,
I = I1 + I2,
circuit(N1, V1, I1, W),
circuit(N2, V2, I2, W).

Can we program LP to be CLP?

CLP: p(X, Y, Z) :- · · · X + Y = Z · · ·

LP
p(X, Y, Z) :- · · · add(X, Y, Z) · · ·
add(0, N, N).
add(s(N), M, s(K)) :- add(N, M, K).

Goal: ?- p(N, M, K), p(N, M, K+1)

I fails in CLP
I runs forever in LP

The essential difference:

?- add(N, M, K) does not return a complete representation
of the set of solutions.

Summary of CLP Introduction

I The CLP Scheme

I Constraint Solving, complete and incomplete

I CLP evaluation

I Modelling with arithmetic constraints

I NEXT: controlling search

