# CS5126: Logic Programming and Constraints

Joxan Jaffar

March 3 - April 7, 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

# Readings

#### Textbook:

Programming with Constraints, K. Marriott and P. Stuckey, MIT Press, 2000

#### Additional reading:

Constraint Logic Programming using *ECL<sup>i</sup>PS<sup>e</sup>*, K.R. Apt and M. Wallace, Cambridge Univ Press, 2007.

P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, 1989.

A CLP Survey, by J. Jaffar and M. Maher, Journal of Logic Programming, 1994. (Advanced)

(日)

# Why CLP?

- Constraints support relationships among programmer-defined entities
- The CLP Scheme applies to various constraint domains
- Logic Programming supports declarative reasoning
- Constraints + LP support search
- CLP is not just a programming language; its a methodology

うして 山田 ふかく ボット 日本 しんの

Modern CLP Systems:

- ▶ CLP(𝔅)
- CHIP
- ECL<sup>i</sup>PS<sup>e</sup>
- SicsTus Prolog
- B-Prolog

# **Constraint Logic Programming**

#### The CLP Scheme

- various constraint domains
- CLP Evaluation
  - partial constraint solving: true, false and unknown solutions
- Advanced Programming Techniques
  - literal and rule orderings, and coroutining
  - redundant constraints

#### Finite Domains

- complex constraints
- ordering variables and values
- domain splitting
- FD modelling techniques

#### Algorithms for Solvers

- finite and infinite trees
- boolean
- linear arithmetic
- finite domains

#### Mathematical Foundations (may be nonexaminable)

### The CLP Scheme

- a *first-order* language  $\mathscr{L}$  of
  - ▶ variables (X, Y, ···)
  - function symbols  $\Sigma$  (*eg*: +, -, *fib*(.), ···)
  - constraint symbols  $\Pi$  (*eg* : <, *is\_prime*(.), ···)
  - predicate symbols (user defined in programs)
  - ► a *term* is either a variable, or of the form  $f(t_1, t_2, \dots, t_n)$ where  $f \in \Sigma$  and  $t_i$ ,  $0 \le i \le n$ , are terms. Eg X + 2 \* Y - 1).
  - ► a *constraint* is of the form  $c(t_1, t_2, \dots, t_n)$  where *c* is a constraint symbol, and the  $t_i$ ,  $0 \le i \le n$ , are terms
  - an atom is of the form p(t<sub>1</sub>, t<sub>2</sub>, · · · , t<sub>n</sub>) where p is a predicate symbol, and the t<sub>i</sub>, 0 ≤ i ≤ n, are terms

#### ▶ a *structure D*

is an algebra with an underlying *domain of discourse* (eg integers), and a number of basic operations (eg: +, -)

A constraint domain is defined by a language of constraints, and an associated structure.

### **Example Constraint Domains**

#### Term Structures (Trees)

Structure  $\mathscr{D}$ : the set of terms constructible from  $\Sigma$ Function symbols  $\Sigma$ : any collection of *n*-ary function symbols, for all  $n \ge 0$ Constraint symbols  $\Pi$ :  $= \neq$ 

#### Integers

Structure  ${\mathscr D}$ : the integers with addition, multiplication, order Function symbols  $\Sigma: -1 \ 0 \ +1 \ + \ *$  Constraint symbols  $\Pi: = < \leq$ 

#### Examples:

X = 1, X \* Y < 5, 2 \* X = 1 (unsatisfiable)  $4 * X^3 + 5 * X^2 - 7 * X = 17$  (unsatisfiable), ...

#### Real numbers

As above, except that the structure is the real number algebra.

Examples:

X = 1, X \* Y < 5, 2 \* X = 1 (satisfiable)  $4 * X^3 + 5 * X^2 - 7 * X = 17$  (satisfiable), ...

#### うせん 聞 ふぼやふぼや 1 日本

### **Basic Operations on Constraints**

• Testing for *consistency* or *satisfiability*:  $\mathscr{D} \models \tilde{\exists} c$ .

A function *solve*() maps a constraint into {*true*, *false*, *maybe*}. It is *complete* if it only returns {*true*, *false*}.

- Obtaining the *projection* of a constraint c<sub>0</sub> onto variables x̃ to obtain a constraint c<sub>1</sub> such that D ⊨ c<sub>1</sub> ↔ ∃<sub>-x̃</sub> c<sub>0</sub>. (It is always possible to take c<sub>1</sub> to be ∃<sub>-x̃</sub> c<sub>0</sub>, but the aim is to compute the simplest c<sub>1</sub> with fewest quantifiers. In general it is not possible to eliminate all uses of the existential quantifier.)
- ▶ Testing for *entailment* of one constraint by another:  $\mathscr{D} \models c_0 \rightarrow c_1$ . (More generally, we may ask whether a disjunction of constraints is implied by a constraint:  $\mathscr{D} \models c_0 \rightarrow \bigvee_{i=1}^{n} c_i$ .)
- ▶ Detecting that, given a constraint *c*, there is only *one value* that a variable *x* can take that is consistent with *c*. ( $\mathscr{D} \models c(x,\tilde{z}) \land c(y,\tilde{w}) \rightarrow x = y$  or, equivalently,  $\mathscr{D} \models \exists z \forall x, \tilde{y} \ c(x, \tilde{y}) \rightarrow x = z$ .)

うして 山田 ふかく ボット 日本 しんの

### **The CLP Scheme**

A constraint domain  $\mathscr{D}$  defines a programming language  $clp(\mathscr{D})$  which is an *instance* of the CLP Scheme.

A  $\mathit{clp}(\mathscr{D})$  program consists of a finite number of rules:

$$A_0 \longleftarrow c_1, \cdots, c_n, A_1, \cdots, A_m$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

where

- $n \ge 0, m \ge 0$ ,
- the  $c_i$  are constraints over  $\mathscr{X}$
- the  $A_i$  are *atoms* over  $\mathscr{X}$



Structure: (Finite trees ( $\Sigma$ ), {f, g, ...},=) Solver: standard unifier

```
add(0, B, C) :- B = C.
add(s(A), B, s(C)) :- add(A, B, C).
fib(0, s(0)).
fib(s(0), s(0)).
fib(s(s(N)), X) :-
    fib(s(N), X1),
    fib(N, X2),
    add(X1, X2, X).
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

# $clp(\mathcal{N})$

Structure: (Natural numbers,  $+, -, <, \leq, =$ ) Solver: integer linear inequalities

```
fib(0, 1).
fib(1, 1).
fib(N, X + Y) :-
    N >= 2,
    fib(N - 2, X),
    fib(N - 1, Y).
```

```
Goal: ?- fib(14, Z).
```

Answer: Z = 610.

Goal: ?- fib(Z, 610).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Answer: Z = 14.



#### Structure: $\langle \{0,1\},+,\times,\oplus,\neg,=\rangle$ Solver: boolean unifier

```
adder(In1, In2, In3, Out1, Out2) :-
    In1 ⊕ In2 = X1,
    In1 × In2 = A1,
    X1 ⊕ In3 = Out1,
    In3 × X1 = A2,
    A1 + A2 = Out2.
```

```
Goal: ?- adder(1, 1, 1, Out1, Out2).
Answer: Out1 = 1, Out2 = 1.
Goal: ?- adder(1, 1, In3, Out1, 1).
Answer: Out1 = In3.
```



Structure:  $\langle Strings(\Sigma), ., = \rangle$ Solver: equations on strings

```
unit(a).
unit(b).
palindrome(E).
palindrome(X) :- unit(X).
palindrome(X.Y.X) :-
    unit(X),
    palindrome(Y).
```

Goal: ?- palindrome(a.b.a.b.a).
Answer: true
Goal: ?- palindrome(X.b.a).
Answers: X = a, X = a.b, X = a.b.a, ···



Structure: (Real numbers, +, -, <,  $\leq$ , =) Solver: real inequalities

```
mortgage(P, T, I, B, M) :-

T <= 1,

B = P * T * (P*I/1200 - M).

mortgage(P, T, I, B, M) :-

T > 1,

mortgage(P * (1 + I/1200) - M, T - 1, I, B, M).
```

```
Goal: ?- mortgage(100000, 360, 7.25, 0, M).

Answer: M = 682.17

Goal: ?- mortgage(P, 360, 7.25, 0, 682.17).

Answer: P = 100000.

Goal: ?- mortgage(P, 360, 7.25, B, M).

Answer: P = 0.114*B + 146.59*M
```

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

# **CLP Operational Model**

Repeatedly reduce atoms in subgoals, ensuring that all constraints are not known to be unsatisfiable, until the subgoal contains only constraints.



The *answer constraint* is obtained by projecting the final constraint onto the variables in the initial goal.

The atom selection strategy and search strategy are left unspecified.

### Example

(Rule 1) fact(0, 1). (Rule 2) fact (N, N  $\star$  M) :- N >= 1, fact (N - 1, M). ?- fact (A.2) fact  $(N_1, N_1 * M_1)$  :-  $N_1 \ge 1$ , fact  $(N_1 - 1, M_1)$  $A = N_1, 2 = N_1 * M_1,$ ?-  $N_1 > 1$ , fact  $(N_2, N_2 * M_2)$  :-  $N_2 >= 1$ , fact  $(N_2 - 1, M_2)$  $fact(N_1-1, M_1)$  $A = N_1, 2 = N_1 * M_1,$  $N_1 > 1$ ,  $2 - N_1 - 1 = N_2, M_1 = N_2 * M_2,$ fact(0.1).  $N_2 \geq 1$ ,  $fact(N_2-1, M_2)$  $A = N_1, 2 = N_1 * M_1$  $N_1 > 1$  $_{?-}$   $N_1 - 1 = N_2, M_1 = N_2 * M_2,$  $N_2 > 1$ .  $N_2 - 1 = 0, M_2 = 1$ Answer: A = 2

### Example



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

### **Derivations**

A *literal* is either an atom or a constraint.

A goal G is a sequence of atoms or constraints.

A state is of the form  $(\mathscr{G} \mid \mathscr{C})$  where  $\mathscr{G}$  is a goal and  $\mathscr{C}$  a sequence of constraints.

Suppose  $\mathscr{G}_1$  is of the form  $L_1, \dots, L_i, \dots, L_m$  where  $L_i$  is an atom  $p(t_1, \dots, t_n)$ . Let R be a rule of the form  $p(s_1, \dots, s_n) : -B$ . Then a *rewriting* of G using R is the goal  $L_1, \dots, L_{i-1}, \theta(s_1) = t_1, \dots, \theta(s_n) = t_n), L_{i+1}, \dots, L_m$  where  $\theta$  is a renaming of  $s_1, \dots, s_n$  away from  $\mathscr{G}$ .

A *derivation step* from a state  $(\mathscr{G}_1 | \mathscr{C}_1)$  to a state  $(\mathscr{G}_2 | \mathscr{C}_2)$ , written  $(\mathscr{G}_1 | \mathscr{C}_1) \Longrightarrow (\mathscr{G}_2 | \mathscr{C}_2)$ , is defined as follows. Suppose  $\mathscr{G}_1$  is of the form  $L_1, \dots, L_n$ .

L1 is a constraint:

Then  $\mathscr{G}_2$  is  $L_2, \dots, L_n$  and  $\mathscr{C}_2$  is  $\mathscr{C}_1 \wedge L_1$ . If *solve*( $\mathscr{C}_2$ )  $\equiv$  *false*, then ( $\mathscr{G}_2 | \mathscr{C}_2$ ) is a *false* state.

•  $L_1$  is an atom:

Then  $\mathscr{C}_2$  is  $\mathscr{C}_1$ , and  $\mathscr{G}_2$  is a rewriting of  $\mathscr{G}_1$  at  $L_1$  using some rule R. The variables in  $\mathscr{G}_2$  are renamed away from  $(\mathscr{G}_1 | \mathscr{C}_1)$ . If there is no such R, then then  $(\mathscr{G}_2 | \mathscr{C}_2)$  is a *false* state.

Note: we have described a left-to-right selection stategy

# **Example Derivation**

$$fact(2, X) | true 
\Downarrow (rule2) 
2 = N, X = N * F, N \ge 1, fact(N - 1, F) | true 
\Downarrow 
X = N * F, N \ge 1, fact(N - 1, F) | 2 = N 
N \ge 1, fact(N - 1, F) | 2 = N, X = N * F 
\downarrow 
fact(N - 1, F) | 2 = N, X = N * F, N \ge 1 
\Downarrow (rule2) 
N - 1 = N', F = N' * F', N' \ge 1, fact(N' - 1, F') | 2 = N, X = N * F, N \ge 1 
\downarrow (rule2) 
N - 1 = N', F = N' * F', N' \ge 1, fact(N' - 1, F') | 2 = N, X = N * F, N \ge 1 
\downarrow (rule1) 
N' - 1 = 0, F' = 1 | 2 = N, X = N * F, N \ge 1, N - 1 = N', F = N' * F', N' \ge 1 
\downarrow (rule1) 
N' - 1 = 0, F' = 1 | 2 = N, X = N * F, N \ge 1, N - 1 = N', F = N' * F', N' \ge 1 
\downarrow 
... 
\downarrow 
... 
$$\downarrow$$$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ・ シヘぐ

# Successful and Failed Derivations, Derivation Trees

A success state  $(\mathscr{G} | \mathscr{C})$  is such that  $\mathscr{G} \equiv \Box$  and solve  $(C) \not\equiv$  false.

A *failed state*  $(\mathcal{G} \mid \mathcal{C})$  is such that *solve*(*C*)*equivfalse*.

A derivation sequence is *successful* if its last state is a success state. The *answer constraint* of this sequence is obtained by a projection of constraints in the success state onto the variables in the original goal.

A derivation sequence is *failed* if its last state is a failed state.

A *derivation tree* for a goal  $\mathscr{G}$  and a program *P* is a tree with states as nodes. The root is  $\mathscr{G} \mid true$ . Each descendant node is a state that can be reached in a derivation step from its parent. A node which has two or more descendants is called a *choicepoint*.

A goal is *finitely failed* if its derivation tree is finite and *all* its derivations are failed.

### **Example of Finite Failure**

(Rule 1) fact (0, 1). (Rule 2) fact (N, N  $\star$  F) :- N >= 1, fact (N - 1, F). Using rule 2: Using rule 1:  $fact(0,2) \mid true$ fact(0,2) | true 0 = N, 2 = N \* F, N > 1, fact(N - 1, F) | true0 = 0, 2 = 1 | true1  $2 = N * F, N > 1, fact(N-1, F) \mid 0 = N$  $2 = 1 \mid 0 = 0$  $N \ge 1$ , fact $(N - 1, F) \mid 0 = N, 2 = N * F$  $\Box \mid 0 = 0, 2 = 1$  $\Box \mid 0 = N, 2 = N * F, N > 1$ 

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ◆○ ◆

# **Searching a Derivation Tree**

#### **Rule Order**

Does not affect the answers, only in the sequence they are discovered. However, it can

- affect how quickly an answer is found,
- determine if an answer is ever found

#### Literal Order

A selection derivation step  $(\mathcal{G}_1 | \mathcal{C}_1) \Longrightarrow (\mathcal{G}_2 | \mathcal{C}_2)$ , is defined as follows. Suppose  $\mathcal{G}_1$  is of the form  $L_1, \dots, L_i, \dots, L_n$  where  $L_i$  is selected.

- ▶  $L_i$  is a constraint:  $\mathscr{G}_2$  is  $L_2, \dots, L_n$  and  $\mathscr{C}_2$  is  $\mathscr{C}_1 \land L_i$ . If *solve*( $\mathscr{C}_2$ ) ≡ *false*, then ( $\mathscr{G}_2 | \mathscr{C}_2$ ) is a *false* state.
- L<sub>i</sub> is an atom:

 $\mathscr{C}_2$  is  $\mathscr{C}_1$ , and  $\mathscr{G}_2$  is a rewriting of  $\mathscr{G}_1$  at  $L_i$  using some rule R.

The variables in  $\mathscr{G}_2$  are renamed away from  $(\mathscr{G}_1 | \mathscr{C}_1)$ . If there is no such *R*, then then  $(\mathscr{G}_2 | \mathscr{C}_2)$  is a *false* state.

If the solver were *complete*, then computing answers is is *independent* of literal order. Otherwise, we can get infinite derivations when in fact the constraints are unsatisfiable.

Any answer constraint is *always correct* (it never describes an error state) regardless of the solver.

# Efficiency

Critial aspects:

- Completeness of the Solver
- Choosing rule order
- Choosing literals

Most CLP systems allow the use of different solvers, dynamic consideration of rule order, and dynamic literal selection.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(More on this later ...)

# Modeling Techniques (Arithmetic Examples)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

- choice
- iteration
- data structures
- hierarchical modelling

## More on $CLP(\mathcal{R})$

The Constraint Domain  $\mathscr{R}$ :

- structure: finite trees of real numbers
- Constraint symbols: + \* / pow sin cos
- Tree symbols (functors): f/2, cons/2, is\_prime/1, ...
- Constraints:
  - (a) aritmetic relations using  $= \langle \rangle \leq \geq$
  - (b) term equations, eg: X = a, f(X, a) = Y, ...

Solver (incomplete) of  $\mathcal{R}$ :

- Inear constraints: interpret in the usual way
- nonlinear constraints: *delay* consideration until it becomes linear (Eg. delay X \* Y = Z until one of X or Y becomes known.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

term equations:

$$f(t_1, \ldots, t_N) = f(u_1, \ldots, u_N)$$
 is true only if  $t_1 = u_1 + u_2 + u_3$ 

 $t_1 = u_1, t_2 = u_2, \cdots, t_N = u_N.$ 

All other cases are false.

• Example: f(X,X) = f(Y,Z) would be equivalent to Y = Z.

# **Modelling Choice - Options Trading**

An *option* is a contract allowing one to buy (a *call* option) or sell (a *put* option) something (eg: 100 stock shares whose unit price is S) a at a particular price (the exercise price E) at a particular time. The option itself costs C. Then:

$$payoff(S, C, E) = \begin{cases} -C, & \text{if } 0 \le S \le E/100\\ 100 * S - E - C, & \text{if } S \ge E/100 \end{cases}$$

Example: C = 200, E = 300: Payoff for Call Option



Example: C = 100, E = 500: Payoff for Put Option



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# **Options Trading**

call\_option(B, S, C, E, P) :- 0  $\leq$  S, S  $\leq$  E/100, P = -C\*B. call\_option(B, S, C, E, P) :- S  $\geq$  E/100, P = (100\*S - E - C) \* B. put\_option(B, S, C, E, P) :- 0  $\leq$  S, S  $\leq$  E/100, P = (E-100\*S-C) \* B. put\_option(B, S, C, E, P) :- S  $\geq$  E/100, P = -C \* B.

Options trading involves buying and selling complex *combinations* of options, in order to satisfy a certain risk profile. Example: a *butterfly* combination bets that a stock price remains in a certain range (ex: between \$2 and \$4) and bounds the loss (ex: never lose more than \$100).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example:

- buy a call of exercise \$500 for \$100,
- buy another call of exercise \$100 for \$400, and
- sell two calls of exercise \$300 at \$200 each.

```
butterfly(S, P1 + 2*P2 + P3) :-
Buy = 1, Sell = -1,
call_option(Buy, S, 100, 500, P1),
call_option(Sell, S, 200, 300, P2),
call_option(Buy, S, 400, 100, P3).
```

# **Butterfly Option**



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

**Running** ?-  $P \ge 0$ , butterfly(S, P) returns *exactly* two answers:

- $P = 100 * S 200, 2 \le S, S \le 3$
- $P = -100 * S + 400, 3 \le S, S \le 4$

# **Iteration - Mortgage Example**

mortgage(P, T, I, R, B) :-T ≥ 1 mortgage(P + P\*I - R, T - 1, I, R, B). mortgage(P, T, I, R, B) :- T = 0, B = P.

We have seen:

How much can I borrow?

mortgage  $(P, 3, 0.1, 150, 0) \implies P = 373$ 

What is the relationship between P, B, and R? mortgage (P, 10, 0.1, R, B) ⇒ P = 0.38 \* B + 6.14 \* R

How about:

How much interest?

mortgage  $(120, 2, IR, 0, 80) \implies 80 = (0.1 * IR + 40) * (0.000833 * IR + 1)$ 

Note that the CLP system will return this constraint and "maybe" because it cannot determine if this constraint is satisfiable. However, this constraint is *correct*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

How much time?

mortgage  $(373, T, 0.1, 150, 0) \implies \cdots?$ 

This wouldn't terminate. Why?

### **Data Structures - Laplace Example**

Finite element modelling is used to approximate a continuous object by a grid of discrete points. Eg. to model temperature on a metal sheet we can use a grid of variables to capture temperature values:

$$\begin{bmatrix} T_{11} & T_{12} & T_{13} & T_{14} \\ T_{21} & T_{22} & T_{23} & T_{24} \\ T_{31} & T_{32} & T_{33} & T_{34} \end{bmatrix}$$

We then require the constraints

$$T_{22} = \frac{T_{12} + T_{21} + T_{23} + T_{32}}{4}$$
$$T_{23} = \frac{T_{13} + T_{22} + T_{24} + T_{33}}{4}$$

In general:

```
rows([_, _]).
rows([H1, H2, H3 | T]):-
    cols(H1, H2, H3),
    rows([H2, H3 | T]).

cols([TL, T, TR | T1], [ML, M, MR | T2], [BL, B, BR | T3]):-
    B + T + ML + MR - 4 * M = 0,
    cols([T,TR|T1], [M,MR|T2], [B,BR|T3]).
cols([_, _], [_, _], [_, _]).
```

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

### Laplace Example

?- X = [[0,0,0,0,0,0,0,0,0,0], [100,-,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,100], [100,-,-,-,-,-,-,100], [100,-,0,0,100,100,100,100,100,100,100]], rows(X).

⇒ X =

### Laplace Example

```
?- rows([
    [B11, B12, B13, B14],
    [B21, M22, M23, B24],
    [B31, M32, M33, B34],
    [B41, B42, B43, B44]
]).
```

 $\implies$ 

B12 = -B21 - 4\*B31 + 16\*M32 - 8\*M33 + B34 - 4\*B42 + B43 B13 = -B24 + B31 - 8\*M32 + 16\*M33 - 4\*B34 + B42 - 4\*B43 M22 = -B31 + 4\*M32 - M33 - B42M23 = -M32 + 4\*M33 - B34 - B43

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

### **Hierarchical Modelling - Circuits**

```
circuit(resistor(R), V, I) :- V = I * R.
circuit(series(N1, N2), V, I) :-
V = V1 + V2,
circuit(N1, V1, I), circuit(N2, V2, I).
circuit(parallel(N1, N2), V, I) :-
I = I1 + I2,
circuit(N1, V, I1), circuit(N2, V, I2).
```



Figure: Circuit

```
?- circuit (
    parallel(resistor(R1), series(resistor(R2), resistor(R3))),
    V, I).
Answer: V = I2*(R2+R3), V = (I-I2)*R1
?- R1 = 4, R2 = 5, R3 = 6,
    circuit (
        parallel(resistor(R1), series(resistor(R2), resistor(R3))),
    V, I).
Answer: V = 2.9333*/
```

▲□▶▲□▶▲□▶▲□▶ □ つくで

### **Circuit with Complex Numbers**

```
c_equal(c(Re, Im), c(Re, Im)).
c add(c(Re1, Im1), c(Re2, Im2), c(Re1 + Re2, Im1 + Im2)).
c mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
  Re3 = Re1 * Re2 - Im1 * Im2,
  Im3 = Re1 * Im2 + Re2 * Im1.
circuit (resistor (R), V, I, W) :- c_{mult}(V, I, c(R, 0)).
circuit (inductor (L), V, I, W) :- c mult (V, I, c(0, W \star L)).
circuit(capacitor(C), V, I, W) :-
  c mult(V, I, c(0, -1 / (W * C))).
circuit (series (N1, N2), V, I, W) :-
  c equal(I, I1), c equal(I, I2),
  c_add(V, V1, V2),
  circuit (N1, V1, I1, W),
  circuit (N2, V2, I2, W).
circuit (parallel (N1, N2), V, I, W) :-
  c equal(V, V1), c equal(V, V2),
  c add(I, I1, I2),
  V = V1, V = V2,
  I = I1 + I2,
  circuit (N1, V1, I1, W),
  circuit (N2, V2, I2, W).
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

### Can we program LP to be CLP?

The essential difference:

?- add (N, M, K) does not return a *complete* representation of the set of solutions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

# **Summary of CLP Introduction**

- The CLP Scheme
- Constraint Solving, complete and incomplete

うして 山田 ふかく ボット 日本 しんの

- CLP evaluation
- Modelling with arithmetic constraints

NEXT: controlling search