
CS5126: Logic Programming
and Constraints

Joxan Jaffar

March 3 - April 7, 2008

Searching a Derivation Tree
Rule Order
Does not affect the answers, only in the sequence they are discovered. However, it can

I affect how quickly an answer is found,
I determine if an answer is ever found

Literal Order
A selection derivation step (G1 | C 1) =⇒ (G2 | C 2), is defined as follows. Suppose G1 is
of the form L1, · · · ,Li , · · · ,Ln where Li is selected.

I Li is a constraint:
G2 is L2, · · · ,Ln and C 2 is C 1∧Li .
If solve(C 2)≡ false, then (G2 | C 2) is a false state.

I Li is an atom:
C 2 is C 1, and G2 is a rewriting of G1 at Li using some rule R.
The variables in G2 are renamed away from (G1 | C 1). If there is no such R, then then
(G2 | C 2) is a false state.

If the solver were complete, then computing answers is is independent of literal order.
Otherwise, we can get infinite derivations when in fact the constraints are unsatisfiable.

Any answer constraint is always correct (it never describes an error state) regardless of
the solver.

Modes of Usage

A mode of usage for a predicate p is a description of the arguments of p encountered at
runtime.

A goal G satisfies a mode of usage if for every state in the derivation tree for G of the form:

p(s1, · · · ,sn),L1, · · · ,Lm | C

the effect of the constraint store C on the arguments s1, · · · ,sn of p is correctly described
by the mode of usage.

Examples of Descriptions
I boundedness

“the second argument is bound”
I eg. bound to anything: p(X ,Y) | Y = [Head |Tail]
I eg. bound to a fixed length list: p(X ,Y) | Y = [Z1,Z2,Z3]

I groundness
“the second argument is ground”

I eg. equal to anything: p(X ,Y) | Y = 3.
I eg. equal to some specific value: p(X ,Y) | Y = 3.

I constrained
“the second argument satsifies a certain constraint: p(X ,Y) | 1≤ Y ≤ 9.

Example
sumlist([], 0).
sumlist([N | L], N + S) :- sumlist(L, S).

Mode of Usage: first argument is grounded to a list of numbers

I Goals satisfing the MoU:
I ?- sumlist([1], S).
I L = [1, 2], S > Z, sumlist(L, S)

I Goals not satisfing the MoU:
I ?- sumlist(L, 2).
I S > 3, sumlist(L, S), L = [1, 2].

Check:

sumlist([1],S) | true
⇓

sumlist(L1,S1) | [1] = [N1|L1],S = N1 +S1

⇓
2 | [1] = [N1|L1],S = N1 +S1,L1 = [],S1 = 0

In this mode of usage, the derivation tree is linear in the size of the input list.

Note: When considering tree, an important factor is whether one (or a few) solutions are
sought, or if all solutions are sought.

Example
(1) sum(N, S + N) :- sum(N - 1, S).
(2) sum(0, 0).

A classic example of wrong rule order:
sum(1,S) | true

sum(0,S1) | S = 1+S1 2 | 1 = 0(false)

sum(−1,S2) | S = 1+S2 2 | S = 1

sum(−2,S3) | S = 1+S3 2 | −1 = 1(false)

· · ·

?

XXXXXXXXXXXz

?

XXXXXXXXXXXz

?

XXXXXXXXXXXz

Example - attempt 2
(3) sum(0, 0).
(4) sum(N, S + N) :- sum(N - 1, S).

We have reversed the rule order, but still:

sum(1,0) | true

⇓
sum(0,−1) | true

⇓
sum(−1,−1) | true

⇓
sum(−2,0) | true

⇓
sum(−3,2) | true

⇓
· · ·

Clearly the intended mode of usage is that the first argument is non-negative.

Example - attempt 3
(5) sum(0, 0).
(6) sum(N, S + N) :- sum(N - 1, S), N >= 1.

Note that the (new) constraint N ≥ 1 is redundant.

sum(1,0) | true

⇓
sum(0,−1),0≥ 1 | true

⇓
sum(−1,−1)−1≥ 1,0≥ 1 | true

⇓
sum(−2,0)−2≥ 1,−1≥ 1,0≥ 1 | true

⇓
sum(−3,2)−3≥ 1,−2≥ 1,−1≥ 1,0≥ 1 | true

⇓
· · ·

The problem is that the new constraint is reachable only after
the recursive call because of left-to-right selection.

Example - final attempt 4
(7) sum(0, 0).
(8) sum(N, S + N) :- N >= 1, sum(N - 1, S).

I ?- sum(0, 1) is finitely failed

I ?- sum(1, S) returns S = 1

Literal Ordering
A general guidline:
ensure failure occurs as soon as possible,
and delay choices to as late as possible.

We have seen examples of early failure.

Example of Late Choice: run goals with ONE answer first.

A tree is deterministic if it is finite and each node has at most one descendant
which is not failed. A predicate is deterministic (for a mode of usage)
if for any goal p(· · ·) (satisfying the mode), the tree is deterministic.

For the mode sum(· · ·) where the first argument is ground, the predicate sum is not
deterministic in:

(5) sum(0, 0).
(6) sum(N, S + N) :- sum(N - 1, S), N >= 1.

but is deterministic in:

(7) sum(0, 0).
(8) sum(N, S + N) :- N >= 1, sum(N - 1, S).

Deterministic Predicates
father(a, b).
...
mother(b, c).
...
grandfather(Z, X) :- father(Z, Y), father(Y, X).
grandfather(Z, X) :- father(Z, Y), mother(Y, X).

Consider the mode of grandfather(Z, X) where X is ground
(who is the grandfather of X?).

Note that the first literal in both rules are NOT deterministic.

Now swap literals so that deterministic ones come first:

gradfather(Z, X) :- father(Y, X), father(Z, Y).
gradfather(Z, X) :- mother(Y, X), father(Z, Y).

This is nore efficient. (Why?)

Deterministic Predicates
As a natural extension to determinism is the guideline:
run predicates with fewer answers first.

parent(Y, X) :- father(Y, X).
parent(Y, X) :- mother(Y, X).
grandfather(Z, X) :- father(Z, Y), parent(Y, X).

Consider the mode of grandfather(Z, X) where X is ground
(who is the grandfather of X?).

The above is not efficient. Much better is:

grandfather(Z, X) :- parent(Y, X), father(Z, Y).

(Why?)

If-Then-Else and Once
If-Then-Else

(G −→ Gt ;Ge) | C executes as follows: if (G | C)

I succeeds with answer C1, then we derive (Gt | C1)

I finitely fails, then we derive (Ge | C)

Example:

abs(X, Y) :- (X >= 0 -> Y = X ; Y = -X).

Once

(once(G), L̃) | C executes as follows: if (G | C)

I succeeds with answer C1, then we derive (L̃ | C1)

I finitely fails, then we obtain finite failure.

Adding Redundant Constraints

Two kinds of redundancy in adding a constraint to a rule/goal:

I Answer redundancy
This is when we add a constraint that is redundant because it does not
change the answers of the program

I Solver redundancy
This is when we add a constraint that is redundant because it does not
change the answers of the constraint solver

Answer Redundancy
(1) sum(0, 0).
(2) sum(N, S + N) :- N >= 1, sum(N - 1, S).

sum(N,7) | true

⇓
sum(N1,S1) | N = N1 +1,S1 = 6−N1,N1 ≥ 0

⇓
sum(N2,S2) | N = N2 +2,S2 = 4−2∗N2,N2 ≥ 0

⇓
sum(N3,S3) | N = N3 +3,S3 = 1−3∗N3,N3 ≥ 0

⇓
sum(N4,S4) | N = N4 +4,S4 =−3−4∗N4,N4 ≥ 0

⇓
· · ·

Problem: none of the constraints above are unsatisfiable.
Solution:
(3) sum(0, 0).
(4) sum(N, S + N) :- N >= 1, S >= 0, sum(N - 1, S).

Note that this change does not change the answers.

Solver Redundancy
A constraint is solver redundant if it is entailed by the constraint store.

Adding (solver) redundant constraints can be useful when it makes explicit information
which an incomplete solver is incapable of determining.

(1) fact(0, 1).
(2) fact(N, N*F) :- N >= 1, F >= 1, fact(N - 1, F).
(Note: F >= 1 is answer-redundant)

The goal fact(N, 7) runs forever.
fact(N,7) | true

⇓
fact(N−1,F1) | F1 ≥ 1,N ≥ 1,7 = N ∗F1

⇓
fact(N−2,F2) | F2 ≥ 1,N ≥ 2,7 = N ∗ (N−1)∗F2

⇓
fact(N−3,F3) | F3 ≥ 1,N ≥ 3,7 = N ∗ (N−1)∗ (N−2)∗F3

⇓
fact(N−4,F4) | F4 ≥ 1,N ≥ 4,7 = N ∗ (N−1)∗ (N−2)∗ (N−3)∗F4

⇓
· · ·

Solver Redundancy
In the previous state:

fact(N−4,F4) | F4 ≥ 1,N ≥ 4,7 = N ∗ (N−1)∗ (N−2)∗ (N−3)∗F4

in fact, the expression N ∗ (N−1)∗ (N−2)∗ (N−3)∗F4 must be greater than 24.
However, many constraint solvers may not be be able to determine this.

Now add the fact that the factorial of N is always larger than N:

(3) fact(0, 1).
(4) fact(N, FN) :-

FN = F * N, N >= 1, F >= 1, N <= FN,
fact(N - 1, F).

The goal fact(N, 7) now will in fact terminate (finitely fail).

Optimization
Running a goal derives one more answers. Optimization involves deriving the best answer.

Recall the “Options Trading” Example and the butterfly combination bets that a stock price
remains in a certain range and bounds the loss.

call_option(B, S, C, E, P) :- 0 ≤ S, S ≤ E/100, P = -C*B.
call_option(B, S, C, E, P) :- S ≥ E/100, P = (100*S - E - C) * B.

put_option(B, S, C, E, P) :- 0 ≤ S, S ≤ E/100, P = (E-100*S-C) * B.
put_option(B, S, C, E, P) :- S ≥ E/100, P = -C * B.

butterfly(S, P1 + 2*P2 + P3) :-
Buy = 1, Sell = -1,
call_option(Buy, S, 100, 500, P1),
call_option(Sell, S, 200, 300, P2),
call_option(Buy, S, 400, 100, P3).

Optimization would be to discover the maximum P for ?- butterfly(S, P).
(S = 3, P = 100).

Simple Optimization

solve(X, C): find one solution X with cost C
try(soln1, soln2): given soln1, find a better soln2.

try(soln(X0, C0), soln(X, C)) :-
C1 < C0,
solve(X1, C1),
try(soln(X1, C1), soln(X, C)).

try(soln(X, C), soln(X, C)).

I Needs an initial call to solve to obtain a first value of C
I The search process implements a basic branch-and-bound strategy

In what follows, we study more advanced techniques of search,
for both feasible solutions as well as optimal solutions.

