
1

Logic Programming and Constraints

In the Lecture Series Logic Programming and Constraints

Prologue to Prolog

Presented by Stéphane Bressan

Logic Programming and Constraints

Aims and Objectives

This course aims to discuss the basic aspects of constraint
and logic programming.

It will focus on constraint logic programming and its
realisation in Eclipse, a system that extends Prolog
language by means of constraints.

The course will focus on problem modelling by means of
constraints, and on logic programming techniques
concerned with constraints.

Students will learn in detail a number of modules of the
Eclipse system that aims to increase the versatility of
programming by means of constraints. These include: fd
(programming over finite domains), clp(R) (solving
equations over reals), CHR (constraint handling rules).

Logic Programming and Constraints

Lecturers

• Logic Programming (weeks 1-6)
Stephane Bressan
COM1-03-44
6516 3543
steph@nus.edu.sg

• Constraint Logic Programming (weeks 7-12)
Joxan Jaffar
COM1-03-11
6516 4782
dcsjj@nus.edu.sg

Logic Programming and Constraints

Textbooks

• Logic Programming
Sterling and Shapiro

• Constraint Logic Programming
Marriott and Stuckey

Logic Programming and Constraints

Communication

• IVLE
• Announcements
• Lesson plan
• Email
• Forum
• Workbin

Logic Programming and Constraints

Assessment

• final examination (50%)
• Quizzes (15%)
• Home assignments (15%)
• Project (20%)

2

Logic Programming and Constraints

Prolog Program

/* hello.pl */

:-writeln(“Hello World!”).

Logic Programming and Constraints

Prolog Program

/* royal.pl */

parent(X, Y):- father(X, Y).
parent(X, Y):- mother(X, Y).

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

% from http://128.118.2.23/~saw/royal/

father("Louis XVIII, King of France", "Dauphin Louis").
father("Maria of Poland LECZINSKA", "Stanislaw LECZINSKI, King of Poland").
father("Dauphin Louis", "Louis XV, King of France").
father("Louis XV, King of France", "Louis, Duke of Burgundy").

mother("Dauphin Louis", "Maria of Poland LECZINSKA").
mother("Louis XVIII, King of France", "Marie-Josephe de Saxe").
mother("Louis XV, King of France", "Marie Adelaide of Savoy").

%
:-grand_parent("Louis XVIII, King of France", Y).

Logic Programming and Constraints

Intuitively: Facts

• Dauphin Louis is the father of Louis XVIII,
King of France

father("Louis XVIII, King of France", "Dauphin Louis").

Logic Programming and Constraints

ECLiPSe Prolog

• ECLiPSe is a free and open-source Prolog
system

• http://eclipse.crosscoreop.com/

Logic Programming and Constraints

Using ECLiPSe

Logic Programming and Constraints

Using ECLiPSe

3

Logic Programming and Constraints

Using ECLiPSe

Logic Programming and Constraints

Intuitively: Goals

• is Dauphin Louis the father of Louis XVIII,
King of France?

:- father("Louis XVIII, King of France", "Dauphin Louis").

Notice the message ‘solution 1, maybe more’.

What happens if we ask for more?

How does it compare to procedure in procedural languages?

Logic Programming and Constraints

Intuitively: Goals

Logic Programming and Constraints

Intuitively: Goals

• Who is the father of Louis XVIII, King of
France?

:- father("Louis XVIII, King of France", Y).

Y = "Dauphin Louis"

We say that the variable Y is unified with the string "Dauphin Louis"

Logic Programming and Constraints

Intuitively: Variable and Unification vs Assignment

Y := "Dauphin Louis “; Y:= "Louis XVIII, King of France“;

:- Y = "Dauphin Louis ", Y= "Louis XVIII, King of France“.

Logic Programming and Constraints

Intuitively: Goals

• Who is the child of Dauphin Louis?

:-father(X, "Dauphin Louis").

4

Logic Programming and Constraints

Intuitively: Goals

• Who’s the father of who?

:-father(X, Y).

How does it compare to procedure call in procedural languages?

success/failure versus call/return

Logic Programming and Constraints

Intuitively: Rules

• Y is parent of X if Y is the father of X

parent(X, Y):- father(X, Y).

• Or, the mother
parent(X, Y):- mother(X, Y).

Logic Programming and Constraints

Intuitively: Rules

• if Y is the father of X
then Y is parent of X

• Or if Y is mother of X and Y
then Y is parent of X

(father(X, Y) ⇒ parent(X, Y)) ∨ (mother(X, Y) ⇒ parent(X, Y))

Logic Programming and Constraints

Intuitively: Rules

• If Z is parent of X and Y is parent of Z then
Y is grand parent of Y

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

parent(X, Z) ∧ parent(Z, Y) ⇒ grand_parent(X, Y)

Logic Programming and Constraints

Intuitively: Goals

• Who is grand parent of Louis XV, King of
France?

:-grand_parent("Louis XVIII, King of France", Y).

Logic Programming and Constraints

Using ECLiPSe

5

Logic Programming and Constraints

Using ECLiPSe

Logic Programming and Constraints

Using ECLiPSe

Logic Programming and Constraints

Prolog Program

• A prolog program consists of a list of clauses

parent(X, Y):- father(X, Y).
parent(X, Y):- mother(X, Y).

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

father("Louis XVIII, King of France", "Dauphin Louis").
father("Maria of Poland LECZINSKA", "Stanislaw LECZINSKI, King of Poland").
father("Dauphin Louis", "Louis XV, King of France").
father("Louis XV, King of France", "Louis, Duke of Burgundy").

mother("Dauphin Louis", "Maria of Poland LECZINSKA").
mother("Louis XVIII, King of France", "Marie-Josephe de Saxe").
mother("Louis XV, King of France", "Marie Adelaide of Savoy").

:-grand_parent("Louis XVIII, King of France", Y).

Logic Programming and Constraints

Clauses

• A clause has a head and a body separated by the
symbol ‘:-’ and ends with dot ‘.’

parent(X, Y):- mother(X, Y).

• If the head is empty the clause is a goal

:-grand_parent("Louis XVIII, King of France", Y).

• If the body is empty the clause is a fact

father("Louis XVIII, King of France", "Dauphin Louis").

• Otherwise it is sometimes referred to as a rule

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

Logic Programming and Constraints

Clauses

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

• The head of a clause is formed of one
literal

grand_parent(X, Y)

• The body of clause is a list (a
conjunction) of zero or more literals
separated by commas ‘,’

parent(X, Z), parent(Z, Y)

Logic Programming and Constraints

Literals

• A literal is formed of a predicate and its
arguments

grand_parent (X, Y)

• Arguments of a predicate are terms
• The number of arguments of a predicate is

called its arity

grand_parent/2

6

Logic Programming and Constraints

Terms

• A term can be a constant, i.e. an atom, a
number, or a string

louis, 15, "Louis XV, King of France"

• A term can be a variable

X, Louis, _L15

• A term can be a complex term

couple(“Louis XV, King of France", "Maria of Poland LECZINSKA")

Logic Programming and Constraints

Complex Terms

• A complex term is composed of a functor (or function
symbol) and arguments

couple ("Louis XV, King of France", "Maria of Poland LECZINSKA")

• Arguments are terms

"Louis XV, King of France", "Maria of Poland LECZINSKA"

• The number of argument of a functor is called its arity

couple/2

• A functor of arity 0 is an atom

a

Logic Programming and Constraints

Complex Terms: Lists (Special Notation)

• The list of the three numbers 1, 2 and 3

[1,2,3]

• The empty list (it is an atom)

[]

• The list starting with the number 1 and finishing
with the list of the two numbers 2 and 3

[1|[2,3]]

Logic Programming and Constraints

Prefix and Infix Notations

• Usually predicates and functors are
prefixes
couple("Louis XV, King of France", "Maria of Poland LECZINSKA")
'+' (1, 2)

• Binary predicates and functors can be
(defined as) infix
"Louis XV, King of France" couple "Maria of Poland LECZINSKA"
"Louis XV, King of France" + "Maria of Poland LECZINSKA"
1 + 2

• Unary predicates can be prefix without
parenthesis
king "Louis XV"
- 5

Logic Programming and Constraints

Royal Genealogy

• Look at http://128.118.2.23/~saw/royal/
• Download and compile the three files:

• individual.pl
• father.pl
• mother.pl

Logic Programming and Constraints

Royal Genealogy

• The square brackets [...] or the compile/1
predicate are used to compile a file

• Find the name of the kings
• Use split_string/4

• Find the names of kings whose father was
a king

• Find the pairs of siblings (same father and
mother) who are both kings

7

Logic Programming and Constraints

Built-in Arithmetic

• ECLiPSe has several numeric types:
• Integers
• Rationals
• Floating Point Numbers
• Bounded Real Numbers

• ECLiPSe has built-in arithmetic
predicates/functions on numeric data

Logic Programming and Constraints

Arithmetic Predicates/Functions

• '+'(1, 1, 2).
• '+'(1, 1, 3).
• '+'(1, 1, X).
• '+'(1, X, 2).
• instantiation fault in +(1, X, 2)

Logic Programming and Constraints

Arithmetic Predicates/Functions

• plus(1, 1, 2).
• plus(1, 1, 3).
• plus(1, 1, X).
• plus(X, 1, 2).
• plus(1, X, 2).
• plus(X, Y, 2).
• See times/3

Logic Programming and Constraints

Arithmetic Expressions

• The predicate is/2 evaluates its second argument if it is an arithmetic
expression and unifies it with the first argument.

• If the first and second arguments are not of the same type or the
second is not an arithmetic expression it yields an error (but there is
some type coercion)

is(X, 1 + 1).

X is 1 + 1.

2 is 1 + 1.

2.0 is 1 + 1.

2.0 is 1.0 + 1.

X is blabla. (notice the error message)

Logic Programming and Constraints

Arithmetic Expressions

• Expr1 < Expr2
• succeeds if (after evaluation and type coercion) Expr1 is less than Expr2.

• Expr1 >= Expr2
• succeeds if (after evaluation and type coercion) Expr1 is greater or equal to

Expr2.

• Expr1 > Expr2
• succeeds if (after evaluation and type coercion) Expr1 is greater than Expr2.

• Expr1 =< Expr2
• succeeds if (after evaluation and type coercion) Expr1 is less or equal to Expr2.

• Expr1 =:= Expr2
• succeeds if (after evaluation and type coercion) Expr1 is equal to Expr2.

• Expr1 =\= Expr2
• succeeds if (after evaluation and type coercion) Expr1 is not equal to Expr2.

Logic Programming and Constraints

Arithmetic Predicates/Functions

• + E unary plus number number
• - E unary minus number number
• abs(E) absolute value number number
• sgn(E) sign value number integer
• floor(E) round down to integral value number number
• ceiling(E) round up to integral value number number
• round(E) round to nearest integral value number number
• E1 + E2 addition number x number number
• E1 - E2 subtraction number x number number
• E1 * E2 multiplication number x number number
• E1 / E2 division number x number see below
• E1 // E2 integer division integer x integer integer

8

Logic Programming and Constraints

Arithmetic Predicates/Functions

• \ E bitwise complement integer integer
• E1 /\ E2 bitwise conjunction integer x integer integer
• E1 \/ E2 bitwise disjunction integer x integer integer
• xor(E1,E2) bitwise exclusive disjunction integer x integer

integer
• E1 >> E2 shift E1 right by E2 bits integer x integer

integer
• E1 << E2 shift E1 left by E2 bits integer x integer integer
• setbit(E1,E2) set bit E2 in E1 integer x integer integer
• clrbit(E1,E2) clear bit E2 in E1 integer x integer integer
• getbit(E1,E2) get of bit E2 in E1 integer x integer integer

Logic Programming and Constraints

Arithmetic Predicates/Functions

• E1 mod E2 modulus operation integer x integer integer
• gcd(E1,E2) greatest common divisor integer x integer

integer
• lcm(E1,E2) least common multiple integer x integer

integer
• E1 ^ E2 power operation number x number number
• min(E1,E2) minimum of 2 values number x number

number
• max(E1,E2) maximum of 2 values number x number

number
• sum(L) sum of list elements list number
• min(L) minimum of list elements list number
• max(L) maximum of list elements list number
• eval(E) evaluate runtime expression term number

Logic Programming and Constraints

Arithmetic Predicates/Functions

• sin(E) trigonometric function number float
• cos(E) trigonometric function number float
• tan(E) trigonometric function number float
• asin(E) trigonometric function number float
• acos(E) trigonometric function number float
• atan(E) trigonometric function number float
• exp(E) exponential function e^x number float
• ln(E) natural logarithm number float
• sqrt(E) square root number float
• pi the constant pi = 3.1415926... --- float
• e the constant e = 2.7182818... --- float

Logic Programming and Constraints

Arithmetic Predicates/Functions

• fix(E) convert to integer (truncate) number integer
• float(E) convert to float number float
• rational(E) convert to rational number rational
• rationalize(E) convert to rational number rational
• numerator(E) extract numerator of a rational integer or

rational integer
• denominator(E) extract denominator of a rational integer

or rational integer
• breal(E) convert to bounded real number breal
• breal_from_bounds(Lo, Hi) make bounded real from

bounds float x float breal
• breal_min(E) lower bound of bounded real breal float
• breal_max(E) upper bound of bounded real breal float

Logic Programming and Constraints

SEND + MORE = MONEY

S E N D
+ M O R E

M O N E Y

Logic Programming and Constraints

SEND + MORE = MONEY

• Substitute digits from 0 to 9 to each letter
• M and S cannot be 0

9

Logic Programming and Constraints

SEND + MORE = MONEY

9 0 0 0
+ 1 0 0 0

1 0 0 0 0

Logic Programming and Constraints

SEND + MORE = MONEY

smm :-
d(D), e(E), m(M), n(N), o(O), r(R), s(S), y(Y),
writeln([D, E, M, N, O, R, S, Y]),

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =:=

10000*M + 1000*O + 100*N + 10*E + Y,
writeln(“Solution> "), write([D, E, M, N, O, R, S, Y]).

d(0).
d(1).
d(2).
d(3).
d(4).
d(5).
d(6).
d(7).
d(8).
d(9).

Logic Programming and Constraints

SEND + MORE = MONEY

• Substitute digits from 0 to 9 to each letter
• M and S cannot be 0
• Each letter is a different digit

Logic Programming and Constraints

SEND + MORE = MONEY

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

Logic Programming and Constraints

SEND + MORE = MONEY

:-lib(fd).
smm :-

d(D), e(E), m(M), n(N), o(O), r(R), s(S), y(Y),
writeln([D, E, M, N, O, R, S, Y]),

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =:=

10000*M + 1000*O + 100*N + 10*E + Y,
alldistinct([S,E,N,D,M,O,Y]),

writeln(“Solution> "), write([D, E, M, N, O, R, S, Y]).

d(0).
d(1).
d(2).
d(3).
d(4).
d(5).
d(6).
d(7).
d(8).
d(9).

Logic Programming and Constraints

Zebra Puzzle

There are five houses numbered 1 to 5. They are painted a different color.
Their inhabitants are of different national extractions, own different pets,
drink different beverages and smoke different brands of cigarettes

1. The Englishman lives in the red house.
2. The Spaniard owns the dog.
3. Coffee is drunk in the green house.
4. The Ukrainian drinks tea.
5. The green house is immediately after the ivory house.
6. The Old Gold smoker owns snails.
7. Kools are smoked in the yellow house.
8. Milk is drunk in the middle house.
9. The Norwegian lives in the first house.
10.The man who smokes Chesterfields lives in the house next to the man with

the fox.
11.Kools are smoked in the house next to the house where the horse is kept.
12.The Lucky Strike smoker drinks orange juice.
13.The Japanese smokes Parliaments.
14.The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra?

10

Logic Programming and Constraints

Solution

• House: 1 2 3 4 5
• Color: yellow blue red ivory green
• Nationality: Norwegian Ukrainian

Englishman Spaniard Japanese
• Drink: water teamilkorange juice coffee
• Smoke: Kools Chesterfield OldGold

LuckyStrike Parliament
• Pet: fox horse snails dog zebra

Logic Programming and Constraints

Credits

Clipart and media are licensed from
Microsoft Office Online Clipart

and Media

Copyright © 2008 by Stéphane Bressan

