
1

Logic Programming and Constraints

In the Lecture Series Logic Programming and Constraints

Constraints: a Preview

Presented by Stéphane Bressan

Logic Programming and Constraints

Prolog II geler/2 (Freeze)

:- writeln(X), writeln(2), X = 1.

Logic Programming and Constraints

Prolog II geler/2 (Freeze)

:- freeze(X, writeln(X)), writeln(2), X = 1.

The goal writeln(X) is frozen until X is
instantiated

The output is 21

But this does not work in ECLiPSe

Logic Programming and Constraints

Delay Clause

delay mywriteln(X) if var(X).
mywriteln(X) :- writeln(X).

A delay clause is very similar to a normal Prolog clause. It has the form:

delay <Head> if <Body>.

A predicate may have one or more delay clauses. They have to be textually before and consecutive
with the normal clauses of the predicate they belong to.

When a procedure with delay clauses is called, then the delay clauses are executed before executing
the procedure itself. If one of the delay clauses succeeds, the call is suspended, otherwise they
are all tried in sequence and, if all delay clauses fail, the procedure is executed as usual.

Delay clauses are used with pattern matching

For instance with:

delay p(a, X) if var(X).

the variables in the call cannot be bound by the matching, e.g. the head of the delay clause does
not match the goal p(A, b) but it matches the goal p(a, b).

Logic Programming and Constraints

Freeze with Delay Clauses

/* freeze.pl */

delay freeze(X, Goal) if var(X).
freeze(_, Goal) :- call (Goal).

Logic Programming and Constraints

Suspensions

• suspend(+Goal, +Priority, +CondList)

• Priority is an integer between 1 and 12 that determines the priority with
which the Goal will be scheduled when woken (1 being the most urgent and
12 the least urgent), or it is 0, in which case the priority defaults to the
priority setting of the predicate which is called in Goal.

• CondList is one term or a list of terms of the form:

Vars->Cond.

The condition Cond is the name of a predefined suspension list (can also be
library or user defined triggers).

• inst: wake when a variable gets instantiated
• bound: wake when a variable gets instantiated or bound to another variable
• constrained: wake when a variable gets instantiated or bound to another variable

or becomes otherwise constrained

2

Logic Programming and Constraints

ECLiPSe Resolvant

Next Goal Next Goal Next Goal

Next Goal Next Goal Next GoalNext Goal :-

Suspended
Goal

Suspended
Goal

Suspended
Goal

Suspend

wake

Be careful if you use cuts together with suspensions!

Logic Programming and Constraints

Freeze with Suspend

:- suspend(writeln(X), 1, X->inst), write(2),
X=1.-

Logic Programming and Constraints

Freeze with Suspend

/* freeze.pl */

freeze(X, Goal):-
suspend(Goal, 1, X-> inst).

Logic Programming and Constraints

Tracing Variables Life

report(X) :-
suspend(report1(X), 1, X->constrained).

report1(X) :-
(nonground(X) ->
(writeln(constrained(X)),
term_variables(X, L),
suspend(report1(L), 1, L->constrained))
;
writeln(instantiated(X))).

Logic Programming and Constraints

Following a variable’s Life

:- report([X]), X = f(Y, Z), Z=g(H), Y = 1.

Logic Programming and Constraints

Attributed Variables

Attributed variables or metaterms are
variables that have attributes, e.g:

X{attribute:value}

It is necessary to redefined unification for
theses variables by defining a handler (the
handler is called when the variable is
unified)

3

Logic Programming and Constraints

Attribute

• meta_attribute(+Name, +Handlers)

• Declares the variable attribute Name with the
corresponding handlers and the procedures
that implement them (unify, print, etc.)

Logic Programming and Constraints

Example

/* Attributed Variables */

:- meta_attribute(enum,
[unify:unify_enum/2,
print:print_enum/2]).

Logic Programming and Constraints

Enumeration Domain

As an example, let us implement variables
of enumerable types using attributes.

We choose to represent these variable as
attributed variables whose attribute is a list
of possible values

Logic Programming and Constraints

Enumeration Domain

:- module(enum).
:- meta_attribute(enum, [unify:unify_enum/2, print:print_enum/2]).
:- import setarg/3 from sepia_kernel.

:-export enum/2.

enum(X, Y):- add_attribute(X, enum(Y)).

unify_enum(_, Attr) :- var(Attr).
unify_enum(Term, Attr) :- compound(Attr), unify_term_enum(Term, Attr).

unify_term_enum(Value, enum(ListY)) :-nonvar(Value), memberchk(Value, ListY).
unify_term_enum(Y{AttrY}, AttrX) :- -?-> unify_enum_enum(Y, AttrX, AttrY).

unify_enum_enum(_, AttrX, AttrY) :-
var(AttrY), % no attribute for this extension
AttrX = AttrY. % share the attribute

unify_enum_enum(Y, enum(ListX), AttrY) :-
nonvar(AttrY), AttrY = enum(ListY), intersection(ListX, ListY, ListXY),
(ListXY = [Val] -> Y = Val ; ListXY \= [], setarg(1, AttrY, ListXY)).

print_enum(_{enum(V)}, A) :- -?-> A = V.

Logic Programming and Constraints

Finite Domains Library

:- lib(fd).

Logic Programming and Constraints

Finite Domains

• ?Vars :: ?Domain
• Terms in Vars have the domain Domain.

Example:
:- X :: 23..54.
:- X :: 23..54, Y :: 36..100.
:- X :: 23..54, Y :: 36..100, X = Y.

4

Logic Programming and Constraints

Finite Domains

• ?X #= ?Y
• X is equal to Y
• This constraints states that the two linear terms are

equal.
• It is activated whenever the maximum or minimum of

a domain variable is updated that might require
updating other domains. When propagating domain
updates, the system takes into account only
maximum and minimum values of the whole domain
and makes sure that these values are consistent with
those of other domain variables.

• If one of the arguments is a non-linear polynomial,
this predicate delays until it becomes linear.

Logic Programming and Constraints

Global Constraints

• alldifferent(?List)
• The elements of the list List are pairwise

different.

Logic Programming and Constraints

Finite Domains

/* */
/* domain */
d(0). d(1). d(2). d(3). d(4). d(5). d(6). d(7). d(8). d(9).
d(X, Y, Z):- d(X), X >= Y, X =< Z.
different([X|L]):- different(X, L), different(L).
different([]).
different(X, L):- member(X, L), !, fail.
different(_, _).

/* send */
send(L):-

/* Variables */
L=[S,E,N,D,M,O,R,Y],

/* Generate */
d(E, 0, 9) , d(N, 0, 9) , d(D, 0, 9) , d(O, 0, 9) , d(R, 0, 9) , d(Y, 0, 9),
d(S, 1, 9), d(M, 1, 9),

/* Test */
different(L),
1000*S + 100*E + 10*N + D +

1000*M + 100*O + 10*R + E =:=
10000*M + 1000*O + 100*N + 10*E + Y.

Logic Programming and Constraints

Finite Domains

/* */
:- lib(fd). % finite domains library
/* domain */
d(X, Y, Z):- D :: X..Y.

/* send */
send(L):-

/* Variables */
L=[S,E,N,D,M,O,R,Y],

/* Constraint */
d(E, 0, 9) , d(N, 0, 9) , d(D, 0, 9) , d(O, 0, 9) , d(R, 0, 9) , d(Y, 0, 9),
d(S, 1, 9), d(M, 1, 9),
alldifferent(L),
1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=
10000*M + 1000*O + 100*N + 10*E + Y.

/* Enumerate */
labeling(L).

Logic Programming and Constraints

Finite Domains

/* */
:- lib(fd). % finite domains library
/* domain */
d(X, Y, Z):- D :: X..Y.

/* send */
send(L):-

/* Variables */
L=[S,E,N,D,M,O,R,Y],

/* Constraints */
d(E, 0, 9) , d(N, 0, 9) , d(D, 0, 9) , d(O, 0, 9) , d(R, 0, 9) , d(Y, 0, 9),
d(S, 1, 9), d(M, 1, 9),
alldifferent(L),
d(R1, 0, 1), d(R2, 0, 1), d(R3, 0, 1),
D+E #= Y + 10*R1,
R1+N+R #= E + 10*R2,
R2+E+O #= N + 10*R3,
R3+S+M #= O +10*M,

/* Enumerate */
labeling(L).

Logic Programming and Constraints

Credits

Clipart and media are licensed from
Microsoft Office Online Clipart

and Media

Copyright © 2008 by Stéphane Bressan

