
1

Logic Programming and Constraints

In the Lecture Series Logic Programming and Constraints

Non Logical

Presented by Stéphane Bressan

Logic Programming and Constraints

References

• Chapters 9, 10, 11 and 21 of the user
manual

• Self–study chapter 20

Logic Programming and Constraints

Global Data Structures

Normal Logic Programming does not allow
to share information across parallel
branches of the SLD tree and to get
information from failing branches

To do so, we need global data structures.

Logic Programming and Constraints

Global Data Structures

dynamic/1,assert/1by nameordered listdynamic predicates
record/1,2by nameordered listrecords
array/1,2by namearraynon-logical arrays
variable/1by namesingle cellnon-logical variables
store/1by namehash tablenamed stores
shelf/2by namearraynamed shelves
store_create/1by handlehash tablestores
bag_create/1by handleunordered bagbags
shelf_create/2,3by handlearrayshelves
SeeAccessTypeFacility

Logic Programming and Constraints

Non-logical Variables

Non-logical variables are global (to a
module) named variables (an atom) with
destructive assignment

• It is good style to declare variables
• :- local variable(count).

• A value, a term, is assigned to the variable
• setval(+ElemSpec, ?Value)

• The value is retrieved
• getval(+ElemSpec, ?Value)

Logic Programming and Constraints

Non-logical Variables

If the value is a non ground term, the
retrieved value is a variant (i.e. different
variables)

:- V = f(X, Y, X),
setval(test, V),
getval(test, V1),
getval(test, V2),
writeq([V, V1, V2]).

2

Logic Programming and Constraints

Non-logical Variables

count_solutions(Goal, _) :-
setval(count, 0),
call(Goal),
incval(count),
fail.

count_solutions(_, N) :-
getval(count, N).

Logic Programming and Constraints

Bags

• A bag is an object which can be used to store
terms across failures.

• A bag is created and a hnadle stored in a variable
• bag_create(-BagHandle)

• Terms are entered in the bag and remain there upon
failure

• bag_enter(+BagHandle, +Term)

• The content of the bag can be retrieved
• bag_retrieve(+BagHandle, ?List)

• The content of the bag can be retrieved and the bag
destroyed

• bag_dissolve(+BagHandle, ?List)

Logic Programming and Constraints

Bags

simple_findall(Goal, Solutions) :-
bag_create(Bag),

(call(Goal),
bag_enter(Bag, Goal),
fail ;
true),

bag_dissolve(Bag, Solutions).

Logic Programming and Constraints

Dynamic Predicates

Dynamic predicates definitions (part of the
program) can be modified at run time
• The dynamic predicate must be declared

• dynamic(+PredSpec)
• A new clause can be addedd

• assert(+Clause)
• Existing clauses can be removed

• retract(+Clause) (Unification!)
• Exiting clauses can be printed

• listing +SpecList
• See also asserta/1, compile_term/1

Logic Programming and Constraints

Dynamic Predicates

:- dynamic a/2.
:- assert(a(c, Y)).
:- listing a/2.
:- assert(a(c, d)).
:- assert(a(X, Y) :- writeln(“hello”)).
:- a(X, Y).
:- listing a/2.
:- retract(a(X, Y)).
:- listing a/2.
:- retract(H:-B).
:- retract(a(X, Y):-B).
:- listing a/2.

Logic Programming and Constraints

Input and Output

Input and output in ECLiPSe is done via
communication channels called streams.
They are usually associated with either a
file, a terminal, a socket, a pipe, or in-
memory queues and buffers. The streams
may be opened for input only (read mode),
output only (write mode), or for both input
and output (update mode).

3

Logic Programming and Constraints

Input and Output

• Input: 0 (stdin)
• Output: 1 (stdout)
• warning_output: 1 (stdout)
• log_output: 1 (stdout)
• error: 2 (stderr)
• null 3 (null)
• User: 0 or 1 (stdin or stdout)

Logic Programming and Constraints

Input and Output

• open(++Source, +Mode, ?Stream)
• Opens the I/O source or sink Source in mode Mode

and associates it with the stream identifier Stream.
• SourceSink can be

• a file (path and name),
• a string (string(String)), or
• a queue (queue(String))

• Mode can be one of
• read,
• write,
• update,
• Append

• close(+Stream)
• Closes the stream specified by Stream.

Logic Programming and Constraints

Input and Output

See also: tyi/1, tyi/2, tyo/1, tyo/2, read_string/3,
read_string/4, readvar/3, read_term/2,
read_term/3, display / 1, display / 2, writeq/1,
writeq/2, write_canonical/1, write_canonical/2,
nl/0, nl/1, writeln/1, writeln/2, print/1, print/2,
printf/2, printf/3, at_eof/1 and
set_stream_property/3.

Logic Programming and Constraints

Input and Output

• get(+Stream, -Ascii), get(-Ascii)
• Reads the next character from the input stream Stream and unifies its ASCII code with Ascii.

• put(+Stream, +Ascii) put(+Stream, +Ascii)
• The character represented by the ascii integer code Ascii is put onto the buffered output stream Stream.

• read_token(+Stream, -Token, -Class), read_token(-Token, -Class)
• Succeeds if the next token from the input stream Stream is successfully read and unified with Token and its

token class with Class.
• read(+Stream, -Term), read(-Term)

• Succeeds if the next term from the input stream Stream is successfully read and unified with Term. read(-
Term)

• write(+Stream, ?Term), write(?Term)
• The term Term is written on the output stream Stream according to the current operator declarations.

• seek(+Stream, +Offset)
• The pointer in stream Stream is offset Offset from the start of the file .

• at(+Stream, -Pointer)
• Succeeds if Position is the position of the stream Stream.

• pipe(?StreamIn, ?StreamOut)
• Creates a pipe and two streams StreamIn and StreamOut to its read and write ends

• See also: tyi/1, tyi/2, tyo/1, tyo/2, read_string/3, read_string/4, readvar/3, read_term/2,
read_term/3, display / 1, display / 2, writeq/1, writeq/2, write_canonical/2, nl/0, nl/1, writeln/1,
writeln/2, printf/2, printf/3, at_eof/1 and set_stream_property/3.

Logic Programming and Constraints

Internet and Inter-process Communication

• Socket Domains
• Stream Connection (internet domain)
• Datagram Connection (internet domain)
• Stream Connection (unix domain)
• Datagram Connection (unix domain)

Logic Programming and Constraints

Internet and Inter-process Communication

• socket(+Domain, +Type, ?Stream)
• Creates a socket of a given type and domain

and associates a stream with it.
• Domain is unix or internet.
• Type is stream or datagram.

• accept(+Stream, -From, ?NewStream)
• Accepts a connection for a stream socket and

creates a new socket which can be used for
I/O.

• See also bind / 2, listen / 2, connect / 2

4

Logic Programming and Constraints

Internet Communication

server:
[eclipse 10]: socket(internet, stream, s), bind(s, X). <HostName/Port >

X = m1 / 3789
yes.
[eclipse 11]: listen(s, 1), accept(s, From, news). <blocks waiting for a connection>

client:
[eclipse 26]: socket(internet, stream, s), connect(s, m1/3789).

yes.
[eclipse 27]: printf(s, "%w. %b", message(client)), read(s, Msg).

server:
From = m2 / 1627
yes.
[eclipse 12]:
read(news, Msg), printf(news, "%w. %b", message(server)).

Msg = message(client)
yes.

client:
Msg = message(server)
yes.

Logic Programming and Constraints

Credits

Clipart and media are licensed from
Microsoft Office Online Clipart

and Media

Copyright © 2008 by Stéphane Bressan

