
1

Logic Programming and Constraints

In the Lecture Series Logic Programming and Constraints

Selected Linear Definite Resolution

Presented by Stéphane Bressan

Logic Programming and Constraints

Syntax of Propositional Logic

Formulae in propositional logic are formed with
propositions and connectives

• Given a set of propositions
• For the connectives {∧, ∨, ⇒, ¬}

• p is a formula if p is a proposition
• (F1) ∧ (F2) is a formula if F1 and F2 are formulae
• (F1) ∨ (F2) is a formula if F1 and F2 are formulae
• (F1) ⇒ (F2) is a formula if F1 and F2 are formulae
• ¬ (F) is a formula is F is formulae
• And nothing else is a formula

Logic Programming and Constraints

Model Semantic of Propositional Logic

Semantics of connectives is given by truth
tables

A B

(¬ A ∨ B)

(A ∧ B) (A ⇒ B) ¬ (A)

T
F
T
F

T
T
F
F

T
T
T
F

T
F
F
F

T
T
F
T

F
T
F
T

(A ∨ B)

Logic Programming and Constraints

Model Semantic of Propositional Logic

• An interpretation of a formula is a mapping of
each proposition in the formula to true (T) or
false (F)

(p1 ∨ p2) ∧ ¬ (p1 ∧ p3)

I = {p1→ T , p2 → F, p3 → F}

If we give the truth values according to I, the
formula is true.

I is a model.

Logic Programming and Constraints

Proof Semantics of Propositional Logic

Let us consider formulae composed of:

• propositions p,
• negation of propositions ¬ p and
• implications F1 ∨ F2

Let us consider the inference rule:

if F and F ⇒ Q then Q (modus ponens)

(all models of “F and F ⇒ Q” are models of “Q”)
(If “Q” has no model – is false – then “F and F ⇒ Q” has no model)

Logic Programming and Constraints

Proof Semantics of Propositional Logic

Let us consider formulae composed of:

propositions p,
negation of propositions ¬ p and
implications F1 ⇒ F2

Let us consider the inference rule:

if ¬Q and F ⇒ Q then ¬F (modus tollens)

2

Logic Programming and Constraints

Proof Semantics of Propositional Logic

Let us consider formulae composed of:

propositions p, (positive literal)
negation of propositions ¬ p (negative literal) and
disjunctions l1 ∨ … ∨ ln
(l1 and l2 are either positive or negative literals)

Let us consider the inference rule:

if p ∨ F1 and ¬p ∨ F2 then F1 ∨ F2 (resolution)

Logic Programming and Constraints

Clauses and Horn Clauses

Formulae of the form l1 ∨ … ∨ ln are called
clauses

The empty clause (sometimes written , ⊥
or ∅) is false

Clauses that contain at most one positive
literal are called Horn clauses or definite
clauses

Logic Programming and Constraints

First Order Logic

In first order logic literals are formed with
predicates and variables

Variables can be free, existentially quantified
or universally quantified

∀X ∃Y (p(X) ⇒ (q(X, Y) ∨ ¬r(X, Y)))

Logic Programming and Constraints

Prolog programs are made of Horn Clauses

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

∀X ∀Y ∀Z (grand_parent(X, Y) ⇐ (parent(X, Z) ∧ parent(Z, Y)))

∀X ∀Y ∀Z (grand_parent(X, Y) ∨ ¬ parent(X, Z) ∨ ¬ parent(Z, Y))

Logic Programming and Constraints

Prolog programs are made of Horn Clauses

parent(X, Y):- father(X, Y).
parent(X, Y):- mother(X, Y).

grand_parent(X, Y):- parent(X, Z),
parent(Z, Y).

father("Louis XVIII", "Dauphin Louis").
father("Maria LECZINSKA", "Stanislaw

LECZINSKI").
father("Dauphin Louis", "Louis XV").
father("Louis XV", "Louis, Duke of

Burgundy").

mother("Dauphin Louis", "Maria
LECZINSKA").

mother("Louis XVIII", "Marie-Josephe").
mother("Louis XV", "Marie Adelaide").

:-grand_parent("Louis XVIII", Y).

∀X ∀Y (parent(X, Y) ∨ ¬ father(X, Y))
∀X ∀Y (parent(X, Y) ∨ ¬ mother(X, Y))

∀X ∀Y ∀Z (grand_parent(X, Y) ∨ ¬
parent(X, Z) ∨ ¬ parent(Z, Y))

father("Louis XVIII", "Dauphin Louis").
father("Maria LECZINSKA", "Stanislaw

LECZINSKI")
father("Dauphin Louis", "Louis XV")
father("Louis XV", "Louis, Duke of

Burgundy")

mother("Dauphin Louis", "Maria
LECZINSKA")

mother("Louis XVIII", "Marie-Josephe")
mother("Louis XV", "Marie Adelaide")

∀Y (¬ grand_parent("Louis XVIII", Y))

Logic Programming and Constraints

Selected Linear Definite (SLD) Resolution

:- grand_parent("Louis XVIII", Y)

∀Y (¬ grand_parent("Louis XVIII", Y))

∀X ∀Y ∀Z (grand_parent(X, Y) ∨ ¬ parent(X, Z) ∨ ¬ parent(Z, Y))

∀Y ∀Z (¬ parent(("Louis XVIII", , Z) ∨ ¬ parent(Z, Y))

Which is the goal (involves unification – in this case only filtering)

:- parent(("Louis XVIII", Z), parent(Z, Y)).

3

Logic Programming and Constraints

SLD Tree

:- G1, G2, G3.

G1 :- G4, G5.
G1 :- G4, G6.
G2.
G3.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, G5, G2, G3 :-G4, G6, G2, G3

:-G5, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success

Logic Programming and Constraints

Backtracking

• Prolog computes the
SLD tree in pre-order
(depth-first)

• Prolog Backtracks
when it fails

• Prolog backtrack after
a success if the user
requests the next
solution

:- G1, G2, G3

:-G4, G5, G2, G3 :-G4, G6, G2, G3

:-G5, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success

Logic Programming and Constraints

The Stack

Depth-first search is associated with the
stack data structure.

A stack is a structure where entries are
pushed onto the top of the stack and are
popped off (ie taken off) the top of the
stack. The process is sometimes known
as LIFO (Last In, First Out) or FILO (First
In, Last Out).

Logic Programming and Constraints

The Cut!

The special procedure !/0, called the cut,
always succeeds

The cut removes all choice points between the
node of the SLD tree where it is evaluated
and the parent node of the node where it was
introduced

Logic Programming and Constraints

The Cut!

:- G1, G2, G3.

G1 :- G4, !, G5.
G1 :- G4, G6.
G2.
G3.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, !, G5,
G2, G3 :-G4, G6, G2, G3

:-!, G5, G2, G3

:-G5, G2, G3

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success

Fail

Logic Programming and Constraints

The Cut!

:- G1, G2, G3.

G1 :- G4, G5, !.
G1 :- G4, G6.
G2.
G3.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, G5,!,G2,G3 :-G4, G6, G2, G3

:-G5, !, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success

4

Logic Programming and Constraints

The Cut!

:- G1, G2, G3.

G1 :- G4, G5.
G1 :- G4, G6.
G2.
G3:-!.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, G5, G2, G3 :-G4, G6, G2, G3

:-G5, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

:-!

: Success

Logic Programming and Constraints

The Cut!

:- G1, G2, G3.

G1 :- G4, !, G5.
G1 :- G4, G6.
G2.
G3.
G3:- G6.
G4.
G4:- G6.
G6.

:- G1, G2, G3

:-G4, !, G5,
G2, G3 :-G4, G6, G2, G3

:-!, G5, G2, G3

:-G5, G2, G3

:-G6, G2, G3

…

:-G3

:-G6

: Success

: Success

Fail

:-G6, !, G5,
G2, G3

…

Logic Programming and Constraints

Negation as ! Failure

Negation as failure uses !/0 and fail/0
(and possibly call/1)

neg(Goal) :- Goal,!,fail.
neg(Goal).

neg(Goal) :- call(Goal),!,fail.
neg(Goal).

Logic Programming and Constraints

Negation as ! Failure

:- neg(grand_parent("Louis XVIII", "Dauphin
Louis")).

:- neg(grand_parent("Louis XVIII", "Louis
XV")).

:- neg(grand_parent("Louis XVIII", X)).
(we will see a sound negation when we

study delayed goals)
:- neg(neg(grand_parent("Louis XVIII", X))).

Logic Programming and Constraints

Control

• !
• Cut - succeeds and removes all choice points between cut and parent

goal.
• fail

• Does not succeed. A synonym of false/0.
• not Goal

• Succeeds if Goal cannot be satisfied. Uses negation as failure.
• +Goal1 ; +Goal2

• Semicolon (OR) operator - Succeeds if the goal Goal1 succeeds or if
the goal Goal2 succeeds.

• +Condition -> +Then ; +Else
• Conditional construct - succeeds if either Condition succeeds, and then

goal Then succeeds; or else if Condition fails, and then Else succeeds.
• call(+Goal)

• Succeeds if Goal succeeds.
• repeat

• Succeeds as often as tried.

Logic Programming and Constraints

Credits

Clipart and media are licensed from
Microsoft Office Online Clipart

and Media

Copyright © 2008 by Stéphane Bressan

