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Syntax of Propositional Logic

Formulae in propositional logic are formed with 
propositions and connectives

• Given a set of propositions
• For the connectives {∧, ∨, ⇒, ¬}

• p is a formula if p is a proposition
• (F1) ∧ (F2) is a formula if F1 and F2 are formulae 
• (F1) ∨ (F2) is a formula if F1 and F2 are formulae
• (F1) ⇒ (F2) is a formula if F1 and F2 are formulae
• ¬ (F) is a formula is F is formulae
• And nothing else is a formula
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Model Semantic of Propositional Logic

Semantics of connectives is given by truth 
tables
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Model Semantic of Propositional Logic

• An interpretation of a formula is a mapping of 
each proposition in the formula to true (T) or 
false (F)

(p1 ∨ p2) ∧ ¬ (p1 ∧ p3)

I = {p1→ T , p2 → F, p3 → F}

If we give the truth values according to I, the 
formula is true. 

I is a model.
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Proof Semantics of Propositional Logic

Let us consider formulae composed of:

• propositions p, 
• negation of propositions ¬ p and 
• implications F1 ∨ F2

Let us consider the inference rule:

if F and F ⇒ Q then Q (modus ponens)

(all models of “F and F ⇒ Q” are models of “Q”)
(If “Q” has no model – is false – then “F and F ⇒ Q” has no model)
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Proof Semantics of Propositional Logic

Let us consider formulae composed of:

propositions p, 
negation of propositions ¬ p and 
implications F1 ⇒ F2

Let us consider the inference rule:

if ¬Q and F ⇒ Q then ¬F (modus tollens)
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Proof Semantics of Propositional Logic

Let us consider formulae composed of:

propositions p, (positive literal)
negation of propositions ¬ p (negative literal) and 
disjunctions l1 ∨ … ∨ ln
(l1 and l2 are either positive or negative literals)

Let us consider the inference rule:

if p ∨ F1 and ¬p ∨ F2 then F1 ∨ F2 (resolution)
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Clauses and Horn Clauses

Formulae of the form l1 ∨ … ∨ ln are called 
clauses

The empty clause (sometimes written , ⊥
or ∅) is false

Clauses that contain at most one positive 
literal are called Horn clauses or definite 
clauses
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First Order Logic 

In first order logic literals are formed with 
predicates and variables

Variables can be free, existentially quantified 
or universally quantified

∀X ∃Y (p(X) ⇒ (q(X, Y) ∨ ¬r(X, Y)))
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Prolog programs are made of Horn Clauses

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

∀X ∀Y ∀Z (grand_parent(X, Y) ⇐ (parent(X, Z) ∧ parent(Z, Y)))

∀X ∀Y ∀Z (grand_parent(X, Y) ∨ ¬ parent(X, Z) ∨ ¬ parent(Z, Y))
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Prolog programs are made of Horn Clauses

parent(X, Y):- father(X, Y).
parent(X, Y):- mother(X, Y).

grand_parent(X, Y):- parent(X, Z), 
parent(Z, Y).

father("Louis XVIII", "Dauphin Louis").
father("Maria LECZINSKA", "Stanislaw 

LECZINSKI"). 
father("Dauphin Louis", "Louis XV"). 
father("Louis XV", "Louis, Duke of 

Burgundy"). 

mother("Dauphin Louis", "Maria 
LECZINSKA"). 

mother("Louis XVIII", "Marie-Josephe").
mother("Louis XV", "Marie Adelaide"). 

:-grand_parent("Louis XVIII", Y).

∀X ∀Y (parent(X, Y) ∨ ¬ father(X, Y))
∀X ∀Y (parent(X, Y) ∨ ¬ mother(X, Y))

∀X ∀Y ∀Z (grand_parent(X, Y) ∨ ¬
parent(X, Z) ∨ ¬ parent(Z, Y))

father("Louis XVIII", "Dauphin Louis").
father("Maria LECZINSKA", "Stanislaw 

LECZINSKI")
father("Dauphin Louis", "Louis XV") 
father("Louis XV", "Louis, Duke of 

Burgundy")

mother("Dauphin Louis", "Maria 
LECZINSKA")

mother("Louis XVIII", "Marie-Josephe")
mother("Louis XV", "Marie Adelaide")

∀Y (¬ grand_parent("Louis XVIII", Y))
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Selected Linear Definite (SLD) Resolution

:- grand_parent("Louis XVIII", Y)

∀Y (¬ grand_parent("Louis XVIII", Y))

∀X ∀Y ∀Z (grand_parent(X, Y) ∨ ¬ parent(X, Z) ∨ ¬ parent(Z, Y))
_________________________________________________

∀Y ∀Z (¬ parent(("Louis XVIII", , Z) ∨ ¬ parent(Z, Y))

Which is the goal (involves unification – in this case only filtering)

:- parent(("Louis XVIII", Z), parent(Z, Y)).
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SLD Tree

:- G1, G2, G3.

G1 :- G4, G5.
G1 :- G4, G6.
G2.
G3.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, G5, G2, G3 :-G4, G6, G2, G3

:-G5, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success
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Backtracking

• Prolog computes the 
SLD tree in pre-order 
(depth-first)

• Prolog Backtracks 
when it fails

• Prolog backtrack after 
a success if the user 
requests the next 
solution

:- G1, G2, G3

:-G4, G5, G2, G3 :-G4, G6, G2, G3

:-G5, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success
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The Stack

Depth-first search is associated with the 
stack data structure. 

A stack is a structure where entries are 
pushed onto the top of the stack and are 
popped off (ie taken off) the top of the 
stack. The process is sometimes known 
as LIFO (Last In, First Out) or FILO (First 
In, Last Out). 
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The Cut!

The special procedure !/0, called the cut, 
always succeeds

The cut removes all choice points between the 
node of the SLD tree where it is evaluated 
and the parent node of the node where it was 
introduced
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The Cut!

:- G1, G2, G3.

G1 :- G4, !, G5.
G1 :- G4, G6.
G2.
G3.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, !, G5, 
G2, G3 :-G4, G6, G2, G3

:-!, G5, G2, G3

:-G5, G2, G3

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success

Fail
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The Cut!

:- G1, G2, G3.

G1 :- G4, G5, !.
G1 :- G4, G6.
G2.
G3.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, G5,!,G2,G3 :-G4, G6, G2, G3

:-G5, !, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

: Success
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The Cut!

:- G1, G2, G3.

G1 :- G4, G5.
G1 :- G4, G6.
G2.
G3:-!.
G3 :- G6.
G4.
G6.

:- G1, G2, G3

:-G4, G5, G2, G3 :-G4, G6, G2, G3

:-G5, G2, G3

Fail

:-G6, G2, G3

:-G2, G3

:-G3

:-G6

: Success

:-!

: Success
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The Cut!

:- G1, G2, G3.

G1 :- G4, !, G5.
G1 :- G4, G6.
G2.
G3.
G3:- G6.
G4.
G4:- G6.
G6.

:- G1, G2, G3

:-G4, !, G5, 
G2, G3 :-G4, G6, G2, G3

:-!, G5, G2, G3

:-G5, G2, G3

:-G6, G2, G3

…

:-G3

:-G6

: Success

: Success

Fail

:-G6, !, G5, 
G2, G3

…

Logic Programming and Constraints

Negation as ! Failure

Negation as failure uses !/0 and fail/0 
(and possibly call/1)

neg(Goal) :- Goal,!,fail.
neg(Goal). 

neg(Goal) :- call(Goal),!,fail.
neg(Goal). 
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Negation as ! Failure

:- neg(grand_parent("Louis XVIII", "Dauphin 
Louis")).

:- neg(grand_parent("Louis XVIII", "Louis 
XV")).

:- neg(grand_parent("Louis XVIII", X)).
(we will see a sound negation when we 

study delayed goals)
:- neg(neg(grand_parent("Louis XVIII", X))).
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Control 

• ! 
• Cut - succeeds and removes all choice points between cut and parent 

goal.
• fail 

• Does not succeed. A synonym of false/0. 
• not Goal

• Succeeds if Goal cannot be satisfied. Uses negation as failure. 
• +Goal1 ; +Goal2 

• Semicolon (OR) operator - Succeeds if the goal Goal1 succeeds or if 
the goal Goal2 succeeds. 

• +Condition -> +Then ; +Else 
• Conditional construct - succeeds if either Condition succeeds, and then 

goal Then succeeds; or else if Condition fails, and then Else succeeds. 
• call(+Goal) 

• Succeeds if Goal succeeds.
• repeat 

• Succeeds as often as tried.  
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