

Syntax of Propositional Logic Formulae in propositional logic are formed with propositions and connectives Given a set of propositions For the connectives {∧, ∨, ⇒, ¬} p is a formula if p is a proposition (F1) ∧ (F2) is a formula if F1 and F2 are formulae (F1) ∨ (F2) is a formula if F1 and F2 are formulae

- (F1) \Rightarrow (F2) is a formula if F1 and F2 are formulae

Losic Prosrammins and l

- \neg (F) is a formula is F is formulae
- And nothing else is a formula

Model Semantic of Propositional Logic Semantics of connectives is given by truth tables Α В (A v B) $(\mathbf{A} \wedge \mathbf{B})$ $(\mathbf{A} \Rightarrow \mathbf{B})$ ¬ (A) Т Т Т Т Т F F Т Т Т Т F Т Т F F F F F F F F Т Т $(\neg A \lor B)$

Proof Semantics of Propositional Logic Let us consider formulae composed of: • propositions p, • negation of propositions \neg p and • implications F1 \lor F2 Let us consider the inference rule: if F and F \Rightarrow Q then Q (modus ponens) (all models of "F and F \Rightarrow Q" are models of "Q") (If "Q" has no model – is false – then "F and F \Rightarrow Q" has no model)

Proof Semantics of Propositional Logic

Let us consider formulae composed of:

propositions p, negation of propositions \neg p and implications F1 \Rightarrow F2

Let us consider the inference rule:

if $\neg Q$ and $F \Rightarrow Q$ then $\neg F$ (modus tollens)

gic Programming and Constraints

Proof Semantics of Propositional Logic

Let us consider formulae composed of:

propositions p, (positive literal) negation of propositions \neg p (negative literal) and disjunctions I1 \lor ... \lor In (I1 and I2 are either positive or negative literals)

Let us consider the inference rule:

if $p \lor F1$ and $\neg p \lor F2$ then F1 \lor F2 (resolution)

Clauses and Horn Clauses

Formulae of the form I1 $\lor ... \lor$ In are called *clauses*

- The <u>empty clause</u> (sometimes written \Box , \bot or \varnothing) is false
- Clauses that contain at most one positive literal are called <u>Horn clauses</u> or <u>definite</u> <u>clauses</u>

Losic Programming and C

First Order Logic

In first order logic literals are formed with predicates and variables

Variables can be free, existentially quantified or universally quantified

 $\forall X \exists Y (p(X) \Rightarrow (q(X, Y) \lor \neg r(X, Y)))$

grand_parent(X, Y):- parent(X, Z), parent(Z, Y).

 $\forall X \ \forall Y \ \forall Z \ (grand_parent(X, \ Y) \Leftarrow (parent(X, \ Z) \land parent(Z, \ Y)))$

 $\forall X \ \forall Y \ \forall Z \ (grand_parent(X, \ Y) \lor \neg \ parent(X, \ Z) \lor \neg \ parent(Z, \ Y))$

Prolog programs are mad	le of Horn Clauses
parent(X, Y):- father(X, Y). parent(X, Y):- mother(X, Y). grand_parent(X, Y):- parent(X, Z), parent(Z, Y).	$ \begin{array}{l} \forall X \ \forall Y \ (parent(X, \ Y) \ \lor \ \neg \ father(X, \ Y)) \\ \forall X \ \forall Y \ (parent(X, \ Y) \ \lor \ \neg \ mother(X, \ Y)) \\ \forall X \ \forall Y \ (Z \ (grand _ parent(X, \ Y) \ \lor \ \neg \ y \ \land \ y \ y$
father("Louis XVIII", "Dauphin Louis"), father("Maria LECZINSKA", "Stanislaw LECZINSKI"), father("Dauphin Louis", "Louis XV"), father("Louis XV", "Louis, Duke of Burgundy").	father("Louis XVIII", "Dauphin Louis"). father("Maria LECZINSKA", "Stanislaw LECZINSKI") father("Dauphin Louis", "Louis XV") father("Louis XV", "Louis, Duke of Burgundy")
mother("Dauphin Louis", "Maria LECZINSKA"). mother("Louis XVIII", "Marie-Josephe"). mother("Louis XV., "Marie Adelaide"). :-grand_parent("Louis XVIII", Y).	mother("Dauphin Louis", "Maria LECZINSKA") mother("Louis XVIII", "Marie-Josephe") mother("Louis XV", "Marie Adelaide") ∀Y (¬ grand_parent("Louis XVIII", Y))
	Logic Programming and Constraints

Selected Linear Definite (SLD) Resolution :- grand_parent("Louis XVIII", Y) ∀Y (¬ grand_parent("Louis XVIII", Y))	
:- grand_parent("Louis XVIII", Y) ∀Y (¬ grand_parent("Louis XVIII", Y))	
∀Y (¬ grand parent("Louis XVIII", Y))	
(3	
$\forall X \; \forall Y \; \forall Z \; (grand_parent(X, Y) \lor \neg \; parent(X, Z) \lor \neg \; parent(Z, Z) \lor \neg \; par$	Z, Y))
$\forall Y \; \forall Z \; (\neg \; parent(("Louis \; XVIII", , Z) \lor \neg \; parent(Z, \; Y))$	
Which is the goal (involves unification - in this case only <i>filtering</i>	g)
:- parent(("Louis XVIII", Z), parent(Z, Y)).	

The Stack

- Depth-first search is associated with the stack data structure.
- A stack is a structure where entries are pushed onto the top of the stack and are popped off (ie taken off) the top of the stack. The process is sometimes known as LIFO (*L*ast *I*n, *F*irst *O*ut) or FILO (*F*irst *I*n, *L*ast *O*ut).

Negation as ! Failure Negation as ! Failure Negation as failure uses 1/0 and fail/0 :- neg(grand_parent("Louis XVIII", "Dauphin Louis")). (and possibly call/1) :- neg(grand_parent("Louis XVIII", "Louis XV")). neg(Goal) :- Goal,!,fail. neg(Goal). :- neg(grand_parent("Louis XVIII", X)). (we will see a sound negation when we neg(Goal) :- call(Goal),!,fail. study delayed goals) neg(Goal). :- neg(neg(grand_parent("Louis XVIII", X))).

Control

- Cut succeeds and removes all choice points between cut and parent goal.
- fail
- Does not succeed. A synonym of false/0.
- not Goal
- Succeeds if Goal cannot be satisfied. Uses negation as failure.
- +Goal1;+Goal2 Semicolon (OR) operator - Succeeds if the goal Goal1 succeeds or if the goal Goal2 succeeds. +Condition -> +Then ; +Else
- Condition a construct succeeds if either Condition succeeds, and then goal Then succeeds; or else if Condition fails, and then Else succeeds. call(+Goal)
- Succeeds if Goal succeeds.
- repeat
- Succeeds as often as tried.

