
1

Logic Programming and Constraints

In the Lecture Series Logic Programming and Constraints

Software Development

Presented by Stéphane Bressan

Logic Programming and Constraints

Mode Declarations

• predicate1(+Arg1, ++Arg2, -Arg3, ?Arg4)
• Arg1 is an input argument. It must be instantiated
• Arg2 is an input argument and must be ground.
• Arg3 is an output argument. It must be a variable
• Arg4 is an input/output argument

:- mode predicate(+, ++, -, ?)

• Find examples in the documentation

Logic Programming and Constraints

Documentation

atom_length(+Atom, ?Length)

Succeeds if Length is the length of Atom.

+Atom Atom.
?Length Integer or variable.

Description
The length of an atom Atom is unified with Length. The length of an atom is the number of characters in the atom's name.

Fail Conditions
Fails if Length does not unify with the length of the atom Atom.

Resatisfiable
No.

Exceptions
(4) instantiation fault

Atom is not instantiated (non-coroutine mode only).
(5) type error

Atom is instantiated, but not to an atom.
(5) type error

Length is neither an integer nor a variable.

Examples
Success: atom_length(test, 4).
atom_length(test,L). (gives L = 4).
atom_length(as, X). (gives X = 2).
atom_length('4', 1).
Fail: atom_length(test, 5).
Error: atom_length(Atom, 2). (Error 4).
atom_length(Atom, 2.0). (Error 5).
atom_length(4, 1). (Error 5).
atom_length(as, 2.0). (Error 5).

Logic Programming and Constraints

Modules

:- module(example)
/* the module interface follows */
:- export p/5.
:- export q/2, op(q, xfx, 300).
/* the code of the module follows */

Logic Programming and Constraints

Export

• Name/Arity
• procedure specification

• domain(Spec)
• domain declaration

• struct(Prototype)
• structure declaration

• op(Prec,Assoc,Name)
• operator declaration

• chtab(Char,Class)
• character class declaration

• syntax_option(Option)
• syntax option setting

• macro(Functor,Transformation,Options)
• macro (input transformation) declaration

• portray(Functor,Transformation,Options)
• portray (output transformation) declaration

• initialization(Goal)
• initialization goal specification

Logic Programming and Constraints

Modules

:- import(example).
test :- p(X, Y, Z, T, U).

Or

test :- example:p(X, Y, Z, T, U),
example:(X q Y)

2

Logic Programming and Constraints

Modules

If the module is in a file and has to be
compiled first, then use_module/1

:- use_module("/home/example").

Logic Programming and Constraints

DOS AND ECLiPSe

Logic Programming and Constraints

Compiling a File

• compile(++File)
• Compile specified file or list of files File.

• Also [++File1, …, ++Filen]

• See also how to compile modules, import
modules and use libraries

Logic Programming and Constraints

ECLiPSe Command Line Options

• −b bootfile
• Compile the file bootfile before starting the session.

Multiple -b options are allowed. The file name is
expected to be in the operating system's syntax. The
file is processed by ensure_loaded/1, i.e. it can be a
precompiled file or a source file, and file extensions
are added as specified there.

• −e goal
• Instead of starting an interactive toplevel, the system

will execute the goal goal. goal is given in normal
Prolog syntax, and has to be quoted if it contains any
characters that would normally be interpreted by the
shell. The -e option can be used together with the -b
option and is executed afterwards. Only one -e option
is allowed.

Logic Programming and Constraints

Debugging: CALL, EXIT, REDO, FAIL and NEXT

Clause 1

…

Clause n-1

Clause n

CALL

REDO

*EXIT

FAIL

NEXT

EXIT

Logic Programming and Constraints

CALL

• When a procedure is invoked, the flow of the execution
enters the procedure box by its CALL port and enters the
first clause box which could (since not all clauses are
tried, some of them being sure to fail, i.e. indexing is
shown) unify with the goal. It may happen that a
procedure is called with arguments that make it sure to
fail (because of indexing). In such cases, the flow does
not enter any clause box. For each CALL a new
procedure box is created and is given:
• an invocation number that is one higher than that given for the

most recent CALL port. This allows to uniquely identify a
procedure invocation and all its corresponding ports.

• a level that is one higher than that of its parent goal.
• The displayed variable instantiations are the ones at call time,

i.e. before the head unification of any clause.

3

Logic Programming and Constraints

EXIT

• When a clause of a predicate succeeds, the flow gets
out of the box by the EXIT port. When a procedure
exits non-deterministically (and there are still other
clauses to try on that procedure or one of its children
goals has alternatives which could be resatisfied), the
EXIT port is traced with an asterisk (*EXIT). When the
last possibly matching clause of a procedure is exited,
the exit is traced without asterisk. This means that this
procedure box will never be retried as there is no
other untried alternative.

• The instantiations shown in the EXIT port are the ones at exit
time, they result from the (successful) execution of the
procedure.

Logic Programming and Constraints

REDO

• When a procedure box is exited trough an *EXIT port, the box
can be retried later to get a new solution. This will happen when
a later goal fails. The backtracking will cause failing of all
procedures that do not have any alternative, then the execution
flow will enter a procedure box that an contains alternative
through a REDO port. Two situations may occur:

• either the last tried clause has called a procedure that has left a
choice point (it has exited through an *EXIT port). In that case the
nested procedure box is re-entered though another REDO-port.

• Otherwise, if the last clause tried does not contain any non
deterministically exited boxes, but there are other untried clauses in
the procedure box, the next possibly matching clause will be tried.

• The last REDO port in such a sequence is the one which
contains the actual alternative that is tried. The variable
instantiations for all REDO ports in such a sequence are the
ones corresponding to the call time of the last one.

Logic Programming and Constraints

FAIL, NEXT

• When a clause of a procedure fails the flow of
the execution exits the clause box and leaves
the procedure box via the FAIL port.

• Note that the debugger cannot display any
argument information at FAIL ports.

• If a clause fails and there is another possibly
matching clause to try, then that one is tried
for unification. The flow of the execution from
the failure of one clause to the head
unification of a following clause is traced as a
NEXT port.

• The displayed variable instantiations are the same
as those of the corresponding CALL or REDO port.

Logic Programming and Constraints

Debugging with Tracer

Logic Programming and Constraints

Credits

Clipart and media are licensed from
Microsoft Office Online Clipart

and Media

Copyright © 2008 by Stéphane Bressan

