
1

Logic Programming and Constraints

In the Lecture Series Logic Programming and Constraints

Terms and Unification

Presented by Stéphane Bressan

Logic Programming and Constraints

Prolog Terms

Prolog terms are formed of variables and
functors (function symbols).

f(g(X, Y), h(a))

• f is functor of arity 2 (noted f/2)
• h is a functor of arity 1 (noted h/1)
• a is a functor of arity 0 or atom (noted a/0)
• X is a variable

Logic Programming and Constraints

Prolog Terms

For convenience of the programmer and
efficiency of programming there are other
types of atomic terms than atom such as
numbers and strings

Logic Programming and Constraints

Type Testing

Several built-in type testing procedures are available in
ECLiPSe.

• atom(?Atom)
• Succeeds if Atom is a Prolog atom.

• string(?String)
• Succeeds if String is a string.

• number(?Number)
• Succeeds if Number is a number

• atomic(?Atomicterm)
• Succeeds if Atomicterm is an atom, a number, or a string.

• compound(?Term)
• Succeeds if Term is of type compound, i.e. a structure or a list.

Logic Programming and Constraints

Type Testing

• var(?Var)
• Succeeds if Var is a variable or an attributed

variable.
• ground(?Term)

• Succeeds if Term is ground, i.e. it does not
contain variables.

Logic Programming and Constraints

Type Testing

• integer(?Integer)
• Succeeds if Integer is an integer number.

• rational(?Rational)
• Succeeds if Rational is a rational number.

• real(?Real)
• Succeeds if Real is a real (float or breal)

number.
• float(?Real)

• Succeeds if Real is a floating point number.
• breal(?Breal)

• Succeeds if Breal is a bounded real number.

2

Logic Programming and Constraints

Integers

The magnitude of integers is only limited by the available
memory. However, integers that fit into the word size of
your computer are represented more efficiently (this
distinction is invisible to the user). Integers are written in
decimal notation or in base notation.

0
3
-5
1024
16'f3ae
0'a
15511210043330985984000000

Logic Programming and Constraints

Rational Numbers

Rational numbers are ratios of two integers
(numerator and denominator). ECLiPSe
represents rational numbers in a canonical form
where the greatest common divisor of numerator
and denominator is 1 and the denominator is
positive. Rational constants are written as
numerator and denominator separated by an
underscore

1_3
-30517578125_32768
0_1

Logic Programming and Constraints

Real or Floating Point Numbers

Floating point numbers conceptually correspond to
the mathematical domain of real numbers, but
are not precisely represented. Floats are written
with decimal point and/or an exponent. ECLiPSe
uses double precision floats

0.0
3.141592653589793
6.02e23
-35e-12
-1.0Inf

Logic Programming and Constraints

Bounded Real Numbers

A bounded real consists of a pair of floating point numbers which
constitute a safe lower and upper bound for the real number that is
being represented.

Bounded real numbers are written as two floating point numbers
separated by two underscores.

-0.001__0.001
3.141592653__3.141592654
1e308__1.0Inf

Bounded real numbers are usually not typed in by the user, they are
the result of a computation or type coercion. All computations with
bounded real numbers give safe results, taking rounding errors into
account. This is achieved by doing interval arithmetic on the bounds
and rounding the results outwards. The resulting bounded real is
then guaranteed to enclose the true real result.

Logic Programming and Constraints

A Note on the String Data Type

• The space consumption of a string is always less than that of the
corresponding list of characters.

• “abcd” versus [“a”, “b”, “c”, “d”]

• For long strings, it is asymptotically 16 times more compact. Items of both
types are allocated on the global stack, which means that the space is
reclaimed on failure and on garbage collection.

• For the complexity of operations it must be kept in mind that the string type
is essentially an array representation, ie. every character in the string can
be immediately accessed via its index. The list representation allows only
sequential access. The time complexity for extracting a substring when the
position is given is therefore only dependent on the size of the substring for
strings, while for lists it is also dependent on the position of the substring.

• Comparing two strings is of the same order as comparing two lists, but
faster by a constant factor. If a string is to be processed character by
character, this is easier to do using the list representation.

• The higher memory consumption of lists is sometimes compensated by the
property that when two lists are concatenated, only the first one needs to be
copied, while the list that makes up the tail of the concatenated list can be
shared. When two string are concatenated, both strings must be copied to
form the new one.

Logic Programming and Constraints

A Note on the String Data Type

• What is the difference between a string
and an atom?
abcd (or ‘abcd’) versus “abcd”

• a string is simply stored as a character
sequence

• an atom is mapped into an internal
constant (This mapping is done via a table
called the dictionary.)

3

Logic Programming and Constraints

A Note on the String Data Type

• copying and comparing atoms is a unit time
operation, while for strings both is proportional to
the string length.

• each time an atom is read into the system, it has
to be looked up and possibly entered into the
dictionary

• The dictionary is a much less dynamic memory
area than the global stack. That means that
once an atom has been entered there, this
space will only be reclaimed by a relatively
expensive dictionary garbage collection. It is
therefore in general not a good idea to have a
program creating new atoms dynamically at
runtime.

Logic Programming and Constraints

Strings vs. Atoms

/* father_SvA.pl

afather(mary, george).
afather(john, george).
afather(sue, harry).
afather(george, edward).
sfather("mary", "george").
sfather("john", "george").
sfather("sue", "harry").
sfather("george", "edward").

Logic Programming and Constraints

Strings vs. Atoms

Compare:

• [eclipse 2]: afather(sue,X).

• [eclipse 3]: sfather("sue",X).

The predicate with atoms is indexed, that means
that the matching clause is directly selected and
the determinacy of the call is recognized (the
system does not prompt for more solutions).

Question: is there indexing of clauses with other
terms (e.g compound terms)?

Logic Programming and Constraints

How to Know the Details

Examples of the types lexical and value spaces the
documentation of the type testing procedures from
ECLiPSe Reference Manual

• Success
• atom(atom).
• atom('Anything').
• atom(*).
• atom([]). % notice the empty list is an atom
• atom(#).
• atom($).
• atom(/).
• atom(\).

• Fail:
• atom(1).
• atom(this(is,a,structure)).
• atom(X).

Logic Programming and Constraints

How to Know the Details

Definitions of the type lexical space are
from the syntax section of the User
Manual

Discussions on the value space are in the
User Manual

Logic Programming and Constraints

Type Conversion

Several built-in type conversion procedures
are available in ECLiPSe.

• fix(+Number, ?Result)
• rational(+Number, ?Result)
• float(+Number, ?Result)

Notice that they can be used with is/2:

:- X is rational(25 – 22).

4

Logic Programming and Constraints

Type Conversion

Several built-in type conversion procedures
are available in ECLiPSe.

• term_string(?Term, ?String)
• number_string(?Number, ?String)
• atom_string(?Atom, ?String)
• Etc.

Logic Programming and Constraints

Documentation

• ECLiPSe User Manual
• ECLiPSe Reference Manual

Logic Programming and Constraints

Unification

/* uni.pl */
*Unification Example
p(f(g(Y), a, Z)).

:- p(f(X, Y, g(T))).

Logic Programming and Constraints

Unification

Unifies f(X, Y1, g(T))and f(g(Y2), a, Z)

Variables are local to a goal, a rule or a fact

Logic Programming and Constraints

Unification

:- f(X, Y, g(T)) = f(g(Y), a, Z)

Logic Programming and Constraints

Unification

• How to make the two terms identical?
• X and Y

• {X → a, Y → a}, or
• {X → b, Y = b}, or
• {X → f(Z, b), Y → f(Z, b)}, or
• {X → Y}

• f(X, Y, g(T)) and f(g(Y), a, Z)
• {X → g(Y), Y → a, Z → g(a)}, or
• {X → g(Y), Y → a, Z → g(b)}, or
• {X → g(Y), Y → a, Z → g(T)}

• f(X, Y, g(b)) and f(g(Y), a, X)
• impossible

5

Logic Programming and Constraints

Substitution and Unifier

• A substitution is an object of the form X → t
where X is a variable and t a term

• Applied to a term, a substitution rewrites the
occurrences of the variable X into the term t

• A unifier of two terms is a set of substitutions
that makes the two terms identical (only
variables of the two terms appear in a
substitution and a variable appear sat most once
on the left hand side of a substitution)

• Two terms are unifiable if there exists a unifier
• The term resulting from the application of the

substitutions in the unifier is the unified term

Logic Programming and Constraints

Most General Unifier (mgu)

• A most general unifier mgu of two terms t1 and
t2 is the unifier such that the unified term t it
defines is unifiable with any unified term t’
obtained with a unifier of t1 and t2

• If two terms are unifiable there exist an mgu
• There can be several mgu, but they are syntactic

variants (the unified term is the same, except
possibly for the name of variables)
• f(X) = f(Y)

• mgu1: {X → Y}
• mgu2: {Y → X}

Logic Programming and Constraints

Unification Algorithm

Input t1, t2
Output θ or Fail
Algorithm:

θ := ∅; % θ a list of substitutions
σ := ∅; % σ is a stack
push t1 = t2 on σ;
while σ <> ∅
do

pop ‘s1 = s2’ from σ;
switch
case s1 is a variable

do
substitute s2 for s1 in σ and θ
θ := θ ∪ {s1 → s2};
enddo

case s2 is a variable
do
substitute S1 for S2 in σ and θ
θ := θ ∪ {s2 → s1};
enddo

case s1= f(u1, … un) and s2=f(v1, …, vn) % same functor and arity n
do
for i= n to 1 push ui = vi on σ;
enddo

otherwise goto FAIL;
enddo;
output θ; exit;

FAIL: output “Fail”; exit;

Logic Programming and Constraints

Unification Algorithm

f(X, g(a, Z)) = f(Z, g(Z, Y))

1. θ = ∅; σ = ∅;
2. θ = ∅; σ = {f(X, g(a, Z))= f(Z, g(Z, Y))};
3. θ = ∅; σ = {X = Z, g(a, Z) = g(Z, Y)};
4. θ = {X → Z}; σ = {g(a, Z) = g(Z, Y)};
5. θ = {X → Z}; σ = {a = Z, Z = Y};
6. θ = {X → a, Z → a}; σ = {a = Y};
7. θ = {X → a, Z → a, Y → a}; σ = ∅;

Solution: θ = {X → a, Z → a, Y → a}
is the most general unifier

Logic Programming and Constraints

Most General Unifier

f(X, g(a, Z)) = f(Z, g(Z, Y))
with θ = {X → a, Z → a, Y → a}

• f(X, g(a, Z))
• X → a: f(a, g(a, Z))
• Z → a: f(a, g(a, a))
• Y → a: f(a, g(a, a))

• f(Z, g(Z, Y))
• X → a: f(Z, g(Z, Y))
• Z → a: f(a, g(a, Y))
• Y → a: f(a, g(a, a))

Logic Programming and Constraints

Unification Algorithm

f(X, g(a, Z)) = f(Z, g(X, X))

1. θ = ∅; σ = ∅;
2. θ = ∅; σ = {f(X, g(a, Z))= f(Z, g(X, X))};
3. θ = ∅; σ = {X = Z, g(a, Z) = g(X, X)};
4. θ = {X → Z}; σ = {g(a, Z) = g(Z, Z)};
5. θ = {X → Z}; σ = {a = Z, Z = Z};
6. θ = {X → a, Z → a}; σ = {a = a};
7. θ = {X → a, Z → a}; σ = ∅;

Solution: θ = {X → a, Z → a}
is the most general unifier

6

Logic Programming and Constraints

Most General Unifier

f(X, g(a, Z)) = f(Z, g(X, X))
with θ = {X → a, Z → a}

• f(X, g(a, Z))
• X → Z: f(a, g(a, Z))
• Z → a: f(a, g(a, a))

• f(Z, g(X, X))
• X → a: f(Z, g(a, a))
• Z → a: f(a, g(a, a))

Logic Programming and Constraints

Unification Algorithm

f(X, g(a, Z)) = f(Z, g(X, b))

1. θ = ∅; σ = ∅;
2. θ = ∅; σ = {f(X, g(a, Z))= f(Z, g(X, b))};
3. θ = ∅; σ = {X = Z, g(a, Z) = g(X, b)};
4. θ = {X → Z}; σ = {g(a, Z) = g(Z, b)};
5. θ = {X → Z}; σ = {a = Z, Z = b};
6. θ = {X → a, Z → a}; σ = {a = b};
7. Fail

Solution: Fail

Logic Programming and Constraints

Unification Algorithm

f(Z, X) = f(g(a, X), X)

1. θ = ∅; σ = ∅;
2. θ = ∅; σ = {f(Z, X) = f(g(a, X), X)};
3. θ = ∅; σ = {Z = g(a, X), X = X};
4. θ = {Z → g(a, X)} ; σ = {X = X};
5. θ = {Z → g(a, X), X → X}; σ = ∅;

Solution: θ = {Z → g(a, X), X → X};
f(g(a, X), X)

Logic Programming and Constraints

Unification Algorithm

f(Z, X, Y) = f(a, g(X), X)

1. θ = ∅; σ = ∅;
2. θ = ∅; σ = {f(Z, X, Y) = f(a, g(X), X)};
3. θ = ∅; σ = {Z = a, X = g(X), Y = X};
4. θ = {Z → a} ; σ = {X = g(X), Y = X};
5. θ = {Z → a, X → g(g(g(…g(…)…))}; σ = {Y = g(g(g(…g(…)…))};
6. θ = {Z → a, X → g(g(g(…g(…)…)), Y → g(g(g(…g(X)…))};

σ = ∅;

Solution: θ = {Z → a, X → g(g(g(…g(…)…)), Y = g(g(g(…g(X)…))};

f(a, g(g(g(…g(…)…)), g(g(g(…g(…)…)))

Logic Programming and Constraints

Unification Algorithm with Occur Check

Input t1, t2
Output θ or Fail
Algorithm:

θ := ∅; % θ a list of substitutions
σ := ∅; % σ is a stack
push t1 = t2 on σ;
while σ <> ∅
do

pop ‘s1 = s2’ from σ;
switch
case s1 is a variable

do
if s1 occurs in s2 then goto FAIL;
substitute s2 for s1 in σ and θ
θ := θ ∪ {s1 → s2};
enddo

case s2 is a variable
if s2 occurs in s1 then goto FAIL;
do
substitute S1 for S2 in σ and θ
θ := θ ∪ {s2 → s1};
enddo

case s1= f(u1, … un) and s2=f(v1, …, vn) % same functor and arity n
do
for i= n to 1 push ui = vi on σ;
enddo

otherwise goto FAIL;
enddo;
output θ; exit;

FAIL: output “Fail”; exit;

Logic Programming and Constraints

Unification as Rewriting

t1 = t2
create the set {t1 → t2}

1. f(s1, …, sn) → f(t1, …, tn):
delete the equation and replace with equations
s1 → t1, …, sn → tn

2. f(s1, …, sn) → g(t1, …, tn):
fail

3. X → X:
delete the equation

4. t → X where t is not a variable:
Delete the equation and replace with X → t

5. X → t and X does not occur in t:
substitute t for X in all other equations.

6. X → t and X occurs in t:
fail

7

Logic Programming and Constraints

Unification as Rewriting

f(Z, X) = f(g(a, X), X)

• ε= {f(Z, X) → f(g(a, X), X)}
• ε= {Z → g(a, X), X → X} by 1
• ε= {Z → g(a, X)} by 3

f(g(a, X), X)

Logic Programming and Constraints

Unification in Prolog

• Write a procedure unify/3 that succeeds if
the first and second arguments are
unifiable and the third argument is the
unified term and fails otherwise

unify(X, X, X).
• But how about (X, X, a)?

Logic Programming and Constraints

Unification in Prolog

• Write a procedure unify/2 that unifies the
first and second argument

unify(X,X).
• This procedure is =/2

Logic Programming and Constraints

Occur Check in ECLiPSe

• Try

:-X = f(X).

• ECLiPSe can handle infinite terms

• But the occur check can be set
:- get_flag(occur_check, X).
:- set_flag(occur_check, on).

Logic Programming and Constraints

Term Manipulation

• ?Term =.. ?List
• Univ --- Succeeds if List is the list which has Term's functor as its first

element and Term's arguments, if any, as its successive elements.
• functor(?Term, ?Functor, ?Arity)

• Succeeds if the compound term Term has functor Functor and arity Arity
or if Term and Functor are atomic and equal, and Arity is 0.

• arg(+N, +Term, ?Arg)
• Succeeds if Arg is the Nth argument of the compound term Term.

• term_variables(?Term, ?VarList)
• Succeeds if VarList is the list of all variables in Term.

• copy_term(+OldTerm, ?NewTerm)
• A copy of OldTerm with new variables is created and unified with

NewTerm.
• ?Term1 == ?Term2

• Succeeds if Term1 and Term2 are identical terms.

Logic Programming and Constraints

Syntax Settings

• current_op(?Precedence, ?Associativity, ?Name)
• Succeeds if Name is a visible operator with precedence

Precedence and associativity Associativity.

:- current_op(P, A, ‘+’).
P = 500
A = xfy

• Infix:
• xfx non-associative
• xfy right to left
• yfx left to right

• Prefix
• fx non-associative
• fy left to right

• Postfix:
• xf non-associative
• yf right to left

8

Logic Programming and Constraints

Syntax Settings

• op(+Precedence, +Associativity, +Name)
• Declare operator syntax.

:-op(500, xfy, father).

:- X = "Dauphin Louis“ father "Louis XV" father
"Louis, Duke of Burgundy".

:- X = "Dauphin Louis“ father "Louis XV" father
"Louis, Duke of Burgundy“, display(X).

Logic Programming and Constraints

Lists

We can represent lists
as binary trees where
list elements are left
children

‘.’(1, ‘.’(2, ()))

Is the list [1,2]

1

2 Empty list

Logic Programming and Constraints

Lists

We can represent lists
as binary trees where
sub-lists are right
children

‘.’(1, ‘.’(2, L))

Is the list [1,2| L]

1

2 L

Logic Programming and Constraints

Lists

The empty list is the
atom []

‘.’(1, ‘.’(2, []))

Is the list [1,2| []] which
is the list [1,2]

:- [1,2|[]] = [1,2].

1

2 []

Logic Programming and Constraints

Write the following procedures

• car(?List, ?Head)
• Succeeds if Head is the first element of List

(the head)
• cdr(?List, ?Tail)

• Succeeds if Tail is the sub-list of List without
its first element (the tail)

• cons(?List, ?Head, ?Tail)
• Succeeds if Head is the first element of List

(the head) and Tail is the sub-list of List
without its first element (the tail)

Logic Programming and Constraints

Implement a Stack

• push(?Element, +OldSctack, -NewStack)

• pop(+OldStack, -NewStack, -Element)

• top(+Stack, -Element)

• empty(+Stack)

9

Logic Programming and Constraints

Credits

Clipart and media are licensed from
Microsoft Office Online Clipart

and Media

Copyright © 2008 by Stéphane Bressan

