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Logic Programming and Constraints

In the Lecture Series Logic Programming and Constraints

Terms and Unification

Presented by Stéphane Bressan

Logic Programming and Constraints

Prolog Terms

Prolog terms are formed of variables and 
functors (function symbols). 

f(g(X, Y), h(a))

• f is functor of arity 2 (noted f/2)
• h is a functor of arity 1 (noted h/1)
• a is a functor of arity 0 or atom (noted a/0)
• X is a variable
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Prolog Terms

For convenience of the programmer and 
efficiency of programming there are other 
types of atomic terms than atom such as 
numbers and strings
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Type Testing

Several built-in type testing procedures are available in 
ECLiPSe.

• atom(?Atom) 
• Succeeds if Atom is a Prolog atom. 

• string(?String) 
• Succeeds if String is a string.

• number(?Number) 
• Succeeds if Number is a number

• atomic(?Atomicterm) 
• Succeeds if Atomicterm is an atom, a number, or a string. 

• compound(?Term) 
• Succeeds if Term is of type compound, i.e. a structure or a list. 
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Type Testing

• var(?Var) 
• Succeeds if Var is a variable or an attributed 

variable.
• ground(?Term) 

• Succeeds if Term is ground, i.e. it does not 
contain variables.
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Type Testing

• integer(?Integer) 
• Succeeds if Integer is an integer number. 

• rational(?Rational) 
• Succeeds if Rational is a rational number. 

• real(?Real) 
• Succeeds if Real is a real (float or breal) 

number. 
• float(?Real) 

• Succeeds if Real is a floating point number. 
• breal(?Breal) 

• Succeeds if Breal is a bounded real number. 
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Integers

The magnitude of integers is only limited by the available 
memory. However, integers that fit into the word size of 
your computer are represented more efficiently (this 
distinction is invisible to the user). Integers are written in 
decimal notation or in base notation.

0
3 
-5 
1024 
16'f3ae 
0'a 
15511210043330985984000000 
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Rational Numbers 

Rational numbers are ratios of two integers 
(numerator and denominator). ECLiPSe
represents rational numbers in a canonical form 
where the greatest common divisor of numerator 
and denominator is 1 and the denominator is 
positive. Rational constants are written as 
numerator and denominator separated by an 
underscore

1_3 
-30517578125_32768 
0_1 

Logic Programming and Constraints

Real or Floating Point Numbers 

Floating point numbers conceptually correspond to 
the mathematical domain of real numbers, but 
are not precisely represented. Floats are written 
with decimal point and/or an exponent. ECLiPSe
uses double precision floats

0.0 
3.141592653589793 
6.02e23 
-35e-12 
-1.0Inf
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Bounded Real Numbers 

A bounded real consists of a pair of floating point numbers which 
constitute a safe lower and upper bound for the real number that is 
being represented. 

Bounded real numbers are written as two floating point numbers 
separated by two underscores.

-0.001__0.001 
3.141592653__3.141592654 
1e308__1.0Inf 

Bounded real numbers are usually not typed in by the user, they are 
the result of a computation or type coercion. All computations with 
bounded real numbers give safe results, taking rounding errors into 
account. This is achieved by doing interval arithmetic on the bounds 
and rounding the results outwards. The resulting bounded real is
then guaranteed to enclose the true real result. 
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A Note on the String Data Type

• The space consumption of a string is always less than that of the 
corresponding list of characters. 

• “abcd” versus [“a”, “b”, “c”, “d”]

• For long strings, it is asymptotically 16 times more compact. Items of both 
types are allocated on the global stack, which means that the space is 
reclaimed on failure and on garbage collection. 

• For the complexity of operations it must be kept in mind that the string type 
is essentially an array representation, ie. every character in the string can 
be immediately accessed via its index. The list representation allows only 
sequential access. The time complexity for extracting a substring when the 
position is given is therefore only dependent on the size of the substring for 
strings, while for lists it is also dependent on the position of the substring. 

• Comparing two strings is of the same order as comparing two lists, but 
faster by a constant factor. If a string is to be processed character by 
character, this is easier to do using the list representation. 

• The higher memory consumption of lists is sometimes compensated by the 
property that when two lists are concatenated, only the first one needs to be 
copied, while the list that makes up the tail of the concatenated list can be 
shared. When two string are concatenated, both strings must be copied to 
form the new one. 
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A Note on the String Data Type

• What is the difference between a string 
and an atom?
abcd (or ‘abcd’) versus “abcd”

• a string is simply stored as a character 
sequence

• an atom is mapped into an internal 
constant (This mapping is done via a table 
called the dictionary.)
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A Note on the String Data Type

• copying and comparing atoms is a unit time 
operation, while for strings both is proportional to 
the string length.

• each time an atom is read into the system, it has 
to be looked up and possibly entered into the 
dictionary

• The dictionary is a much less dynamic memory 
area than the global stack. That means that 
once an atom has been entered there, this 
space will only be reclaimed by a relatively 
expensive dictionary garbage collection. It is 
therefore in general not a good idea to have a 
program creating new atoms dynamically at 
runtime. 
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Strings vs. Atoms 

/* father_SvA.pl

afather(mary, george). 
afather(john, george). 
afather(sue, harry). 
afather(george, edward). 
sfather("mary", "george"). 
sfather("john", "george"). 
sfather("sue", "harry"). 
sfather("george", "edward"). 
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Strings vs. Atoms 

Compare:

• [eclipse 2]: afather(sue,X). 

• [eclipse 3]: sfather("sue",X). 

The predicate with atoms is indexed, that means 
that the matching clause is directly selected and 
the determinacy of the call is recognized (the 
system does not prompt for more solutions). 

Question: is there indexing of clauses with other 
terms (e.g compound terms)?
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How to Know  the Details

Examples of the types lexical and value spaces the 
documentation of the type testing procedures from 
ECLiPSe Reference Manual 

• Success
• atom(atom). 
• atom('Anything'). 
• atom(*). 
• atom([]). % notice the empty list is an atom
• atom(#). 
• atom($). 
• atom(/). 
• atom(\). 

• Fail: 
• atom(1). 
• atom(this(is,a,structure)). 
• atom(X). 
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How to Know the Details

Definitions of the type lexical space are  
from the syntax section of the User 
Manual

Discussions on the value space are in the 
User Manual 
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Type Conversion

Several built-in type conversion procedures 
are available in ECLiPSe.

• fix(+Number, ?Result) 
• rational(+Number, ?Result) 
• float(+Number, ?Result) 

Notice that they can be used with is/2:

:- X is rational(25 – 22).
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Type Conversion

Several built-in type conversion procedures 
are available in ECLiPSe.

• term_string(?Term, ?String) 
• number_string(?Number, ?String) 
• atom_string(?Atom, ?String) 
• Etc.
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Documentation

• ECLiPSe User Manual
• ECLiPSe Reference Manual
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Unification

/* uni.pl */
*Unification Example
p(f(g(Y), a, Z)).

:- p(f(X, Y, g(T))). 
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Unification

Unifies f(X, Y1, g(T))and f(g(Y2), a, Z)

Variables are local to a goal, a rule or a fact
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Unification

:- f(X, Y, g(T)) = f(g(Y), a, Z)
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Unification

• How to make the two terms identical?
• X and Y

• {X → a, Y → a}, or
• {X → b, Y = b}, or
• {X → f(Z, b), Y → f(Z, b)}, or
• {X → Y} 

• f(X, Y, g(T)) and f(g(Y), a, Z)
• {X → g(Y), Y → a, Z → g(a)}, or 
• {X → g(Y), Y → a, Z → g(b)}, or 
• {X → g(Y), Y → a, Z → g(T)}

• f(X, Y, g(b)) and f(g(Y), a, X)
• impossible
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Substitution and Unifier

• A substitution is an object of the form X → t  
where X is a variable and t a term

• Applied to a term, a substitution rewrites the 
occurrences of the variable X into the term t

• A unifier of two terms is a set of substitutions 
that makes the two terms identical (only 
variables of the two terms appear in a 
substitution and a variable appear sat most once 
on the left hand side of a substitution)

• Two terms are unifiable if there exists a unifier
• The term resulting from the application of the 

substitutions in the unifier is the unified term
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Most General Unifier (mgu)

• A most general unifier mgu of two terms t1 and 
t2 is the unifier such that the unified term t it 
defines is unifiable with any unified term t’
obtained with a unifier of t1 and t2 

• If two terms are unifiable there exist an mgu
• There can be several mgu, but they are syntactic 

variants (the unified term is the same, except 
possibly for the name of variables)
• f(X) = f(Y)

• mgu1: {X → Y}
• mgu2: {Y → X}
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Unification Algorithm

Input t1, t2
Output θ or Fail
Algorithm:

θ := ∅; % θ a list of substitutions
σ := ∅; % σ is a stack
push t1 = t2 on σ;
while σ <> ∅
do

pop ‘s1 = s2’ from σ;
switch
case s1 is a variable 

do 
substitute s2 for s1 in σ and θ
θ := θ ∪ {s1 → s2};
enddo

case s2 is a variable 
do 
substitute S1 for S2 in σ and θ
θ := θ ∪ {s2 → s1};
enddo

case s1= f(u1, … un) and s2=f(v1, …, vn) % same functor and arity n
do 
for i= n to 1 push ui = vi on σ;
enddo

otherwise goto FAIL; 
enddo;
output θ; exit;

FAIL: output “Fail”; exit; 
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Unification Algorithm

f(X, g(a, Z)) = f(Z, g(Z, Y))

1. θ = ∅; σ = ∅; 
2. θ = ∅; σ = {f(X, g(a, Z))= f(Z, g(Z, Y))};
3. θ = ∅; σ = {X = Z, g(a, Z) = g(Z, Y)};
4. θ = {X → Z}; σ = {g(a, Z) = g(Z, Y)};
5. θ = {X → Z}; σ = {a = Z, Z = Y};
6. θ = {X → a, Z → a}; σ = {a = Y};
7. θ = {X → a, Z → a, Y → a}; σ = ∅;

Solution: θ = {X → a, Z → a, Y → a} 
is the most general unifier
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Most General Unifier

f(X, g(a, Z)) = f(Z, g(Z, Y)) 
with θ = {X → a, Z → a, Y → a}

• f(X, g(a, Z)) 
• X → a: f(a, g(a, Z))
• Z → a: f(a, g(a, a))
• Y → a: f(a, g(a, a))

• f(Z, g(Z, Y))
• X → a: f(Z, g(Z, Y))
• Z → a: f(a, g(a, Y))
• Y → a: f(a, g(a, a))
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Unification Algorithm

f(X, g(a, Z)) = f(Z, g(X, X))

1. θ = ∅; σ = ∅; 
2. θ = ∅; σ = {f(X, g(a, Z))= f(Z, g(X, X))};
3. θ = ∅; σ = {X = Z, g(a, Z) = g(X, X)};
4. θ = {X → Z}; σ = {g(a, Z) = g(Z, Z)}; 
5. θ = {X → Z}; σ = {a = Z, Z = Z};
6. θ = {X → a, Z → a}; σ = {a = a};
7. θ = {X → a, Z → a}; σ = ∅;

Solution: θ = {X → a, Z → a}
is the most general unifier
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Most General Unifier

f(X, g(a, Z)) = f(Z, g(X, X))
with θ = {X → a, Z → a}

• f(X, g(a, Z)) 
• X → Z: f(a, g(a, Z))
• Z → a: f(a, g(a, a))

• f(Z, g(X, X))
• X → a: f(Z, g(a, a))
• Z → a: f(a, g(a, a))
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Unification Algorithm

f(X, g(a, Z)) = f(Z, g(X, b))

1. θ = ∅; σ = ∅; 
2. θ = ∅; σ = {f(X, g(a, Z))= f(Z, g(X, b))};
3. θ = ∅; σ = {X = Z, g(a, Z) = g(X, b)};
4. θ = {X → Z}; σ = {g(a, Z) = g(Z, b)}; 
5. θ = {X → Z}; σ = {a = Z, Z = b};
6. θ = {X → a, Z → a}; σ = {a = b};
7. Fail

Solution: Fail
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Unification Algorithm

f(Z, X) = f(g(a, X), X)

1. θ = ∅; σ = ∅; 
2. θ = ∅; σ = {f(Z, X) = f(g(a, X), X)};
3. θ = ∅; σ = {Z = g(a, X), X = X};
4. θ = {Z → g(a, X)} ; σ = {X = X};
5. θ = {Z → g(a, X), X → X}; σ = ∅;

Solution: θ = {Z → g(a, X), X → X};  
f(g(a, X), X)
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Unification Algorithm

f(Z, X, Y) = f(a, g(X), X)

1. θ = ∅; σ = ∅; 
2. θ = ∅; σ = {f(Z, X, Y) = f(a, g(X), X)};
3. θ = ∅; σ = {Z = a, X = g(X), Y = X};
4. θ = {Z → a} ; σ = {X = g(X), Y = X};
5. θ = {Z → a, X → g(g(g(…g(…)…))}; σ = {Y = g(g(g(…g(…)…))};
6. θ = {Z → a, X → g(g(g(…g(…)…)), Y → g(g(g(…g(X)…))};

σ = ∅;

Solution: θ = {Z → a, X → g(g(g(…g(…)…)), Y = g(g(g(…g(X)…))};

f(a, g(g(g(…g(…)…)), g(g(g(…g(…)…)))
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Unification Algorithm with Occur Check

Input t1, t2
Output θ or Fail
Algorithm:

θ := ∅; % θ a list of substitutions
σ := ∅; % σ is a stack
push t1 = t2 on σ;
while σ <> ∅
do

pop ‘s1 = s2’ from σ;
switch
case s1 is a variable 

do 
if s1 occurs in s2 then goto FAIL;
substitute s2 for s1 in σ and θ
θ := θ ∪ {s1 → s2};
enddo

case s2 is a variable 
if s2 occurs in s1 then goto FAIL;
do 
substitute S1 for S2 in σ and θ
θ := θ ∪ {s2 → s1};
enddo

case s1= f(u1, … un) and s2=f(v1, …, vn) % same functor and arity n
do 
for i= n to 1 push ui = vi on σ;
enddo

otherwise goto FAIL; 
enddo;
output θ; exit;

FAIL: output “Fail”; exit; 
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Unification as Rewriting

t1 = t2 
create the set {t1 → t2}

1. f(s1, …, sn) → f(t1, …, tn): 
delete the equation and replace with equations 
s1 → t1, …, sn → tn

2. f(s1, …, sn) → g(t1, …, tn): 
fail

3. X → X:
delete the equation

4. t → X where t is not a variable: 
Delete the equation and replace with X → t

5. X → t and X does not occur in t: 
substitute t for X in all other equations.

6. X → t and X  occurs in t: 
fail
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Unification as Rewriting

f(Z, X) = f(g(a, X), X)

• ε= {f(Z, X) → f(g(a, X), X)} 
• ε= {Z → g(a, X), X → X} by 1
• ε= {Z → g(a, X)} by 3

f(g(a, X), X)
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Unification in Prolog

• Write a procedure unify/3 that succeeds if 
the first and second arguments are 
unifiable and the third argument is the 
unified term and fails otherwise

unify(X, X, X).
• But how about (X, X, a)?
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Unification in Prolog

• Write a procedure unify/2 that unifies the 
first and second argument

unify(X,X).
• This procedure is =/2
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Occur Check in ECLiPSe

• Try

:-X = f(X).

• ECLiPSe can handle infinite terms

• But the occur check can be set
:- get_flag(occur_check, X).
:- set_flag(occur_check, on).
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Term Manipulation

• ?Term =.. ?List 
• Univ --- Succeeds if List is the list which has Term's functor as its first 

element and Term's arguments, if any, as its successive elements. 
• functor(?Term, ?Functor, ?Arity) 

• Succeeds if the compound term Term has functor Functor and arity Arity
or if Term and Functor are atomic and equal, and Arity is 0. 

• arg(+N, +Term, ?Arg) 
• Succeeds if Arg is the Nth argument of the compound term Term. 

• term_variables(?Term, ?VarList) 
• Succeeds if VarList is the list of all variables in Term.

• copy_term(+OldTerm, ?NewTerm) 
• A copy of OldTerm with new variables is created and unified with 

NewTerm. 
• ?Term1 == ?Term2 

• Succeeds if Term1 and Term2 are identical terms. 
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Syntax Settings

• current_op(?Precedence, ?Associativity, ?Name) 
• Succeeds if Name is a visible operator with precedence 

Precedence and associativity Associativity. 

:- current_op(P, A, ‘+’).
P = 500
A = xfy

• Infix: 
• xfx non-associative 
• xfy right to left 
• yfx left to right 

• Prefix 
• fx non-associative 
• fy left to right 

• Postfix: 
• xf non-associative 
• yf right to left 
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Syntax Settings

• op(+Precedence, +Associativity, +Name)
• Declare operator syntax. 

:-op(500, xfy, father).

:- X = "Dauphin Louis“ father "Louis XV" father 
"Louis, Duke of Burgundy". 

:- X = "Dauphin Louis“ father "Louis XV" father 
"Louis, Duke of Burgundy“, display(X).
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Lists

We can represent lists 
as binary trees where 
list elements are left 
children 

‘.’(1, ‘.’(2, ()))

Is the list [1,2]

1

2 Empty list
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Lists

We can represent lists 
as binary trees where 
sub-lists are right 
children 

‘.’(1, ‘.’(2, L))

Is the list [1,2| L]

1

2 L
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Lists

The empty list is the 
atom []

‘.’(1, ‘.’(2, []))

Is the list [1,2| []] which 
is the list [1,2]

:- [1,2|[]] = [1,2].

1

2 []

Logic Programming and Constraints

Write the following procedures

• car(?List, ?Head)
• Succeeds if Head is the first element of List 

(the head)
• cdr(?List, ?Tail)

• Succeeds if Tail is the sub-list of List without 
its first element (the tail)

• cons(?List, ?Head, ?Tail)
• Succeeds if Head is the first element of List 

(the head) and Tail is the sub-list of List 
without its first element (the tail)
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Implement a Stack

• push(?Element, +OldSctack, -NewStack)

• pop(+OldStack, -NewStack, -Element)

• top(+Stack, -Element)

• empty(+Stack)
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