



# Outline Difference generations of packet switch design Architecture/Components of a packet switch Flow Identification Routing Lookup Scheduling/Buffer Management

Switching

Sep 28, 2005

# Three generations of packet switches

- Different trade-offs between cost and performance
- Represent evolution in switching capacity, rather than in technology
  - With same technology, a later generation switch achieves greater capacity, but at greater cost
- All three generations are represented in products

Sep 28, 2005

3

Switching

4

1



# First generation switch

- Packets are transmitted twice over the shared bus
- Performance heavily depends on the throughput of the
  - Shared Bus

Sep 28, 2005

- Forwarding speed of CPU (including operating system overhead)
- Some Ethernet switches and "cheap" packet routers

Switching

6









- Bottleneck in second generation switch is the bus (or ring)
- Third generation switch provides parallel paths (fabric)











### At the input queue

- 1. A packet arrived at the input interface
- 2. Perform line termination and protocol conversion
- 3. Perform packet classification
- 4. Perform route lookup
- 5. Buffer packet
- 6. Packet schedule for transmission to switching fabric

### At the output queue

- 1. Perform packet classification
- 2. Buffer packet
- 3. Schedule packet for transmission to output link

### Sep 28, 2005

15

Switching



| <ul> <li>Many operati</li> </ul>                  | ons are per-packet                                                            |   |
|---------------------------------------------------|-------------------------------------------------------------------------------|---|
| <ul> <li>Packet classi</li> </ul>                 | fication                                                                      |   |
| <ul> <li>Route looku</li> </ul>                   | р                                                                             |   |
| <ul> <li>Scheduling</li> </ul>                    |                                                                               |   |
| <ul> <li>Buffering an</li> </ul>                  | d switching                                                                   |   |
| <ul> <li>Some functio</li> </ul>                  | n costs are also bit sensitive                                                |   |
| <ul> <li>Buffering an</li> </ul>                  | d switching                                                                   |   |
| <ul> <li>Performance<br/>with both bit</li> </ul> | of a packet switch therefore has to scale<br>per-second and packet-per-second |   |
| <ul> <li>A 1Gbps link</li> </ul>                  | can operate at                                                                |   |
| ■ 83.3K pkt/s                                     | ec (for 1.5K bytes packets)                                                   |   |
| ■ 3.1M pkt/se                                     | c (for 40 bytes packets)                                                      |   |
| ■ 3.1M pkt/se                                     | c (for 40 bytes packets)                                                      |   |
| Sep 28, 2005                                      | Switching                                                                     | 1 |



# Packet Filtering/Classification

- Possible objectives:
  - Allow/Reject: some packets may not be allowed to pass through
    - Access control, firewall
  - Rate control: if there are too many packets of certain types, drop them
    - leaky bucket
  - Accounting
    - Billing, network measurements
  - Differentiation: classify packet and tag them so that they can be treated differently later
    - by the same switch or some other switches downstream)

Switching

19







- IP route table lookup was considered one of the most challenging operations during the forwarding process
- Longest Prefix Match
  - Forwarding entries are stored in the form <network address/mask, port>
  - A packet is routed to the port that matches the longest prefix in the forwarding entry
  - Take the entries <128.32.1.5/16,1>,<128.32.225.0/18,3>,<128.0.0.0/8,5>
  - A packet with destination 128.32.195.1 matches all three entries and can be routed to port 1,3 or 5
  - However, the match with the longest match is 128.32.225.0 and the packet will be routed to port 3

Switching

21

23

# Why is IP Lookup Hard?

- Routing tables may contain many thousands of entries
  - 10K 100K or more
- The number of lookups per second is large
  - There are many small (40 bytes) packets, > 1M per second (up to 3.1M packets/sec) for a 1Gbps link
- A packet can match multiple entries and the entry with the longest prefix match should be found
  - Worst case scenario: # of matches per second is product of number of entries and number of packets arrived per sec
  - Designing an efficient data structure is non-trivial
  - Current trend is towards hardware-implementation using TCAM

Switching

|  | Sep | 28, | 2005 |  |
|--|-----|-----|------|--|
|--|-----|-----|------|--|

22

## ATM vs. IP Lookup

- ATM is designed to enable cheap switching
  - Small and fixed packet header (16-bit address) for lookup
  - Fix packet length minimizes fragmentation by switch and reduces complexity of scheduling algorithm
- IP
  - Large packet header and address space (32-bit) and requires longest prefix match
  - Variable size packet length
- But ...
  - Advances in route lookup technology makes IP lookup much cheaper
  - Inside a switch, IP packets are often fragmented into fixed size packets to ease buffering and switching complexity (implemented like an ATM switch)
  - IP routers are much more widely deployment, making it cheaper to build even if the complexity is higher

Switching