

Other graph search algorithms

Depth-first

Best-first, A*

Summary

- Discretize the space by constructing visibility graph
- Search the visibility graph with breadth-first search
- How to perform the intersection test?

Computational efficiency Running time O(n³) Compute the visibility graph Search the graph An optimal O(n²) time algorithm exists. Space O(n²) Can we do better?

Classic path planning approaches

Roadmap

Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Classic path planning approaches Roadmap Represent the connectivity of the free space by a network of 1-D curves Cell decomposition Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells Potential field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Roadmap

 Visibility graph
 Shakey Project, SRI [Nilsson, 1969]

 Voronoi diagram
 Introduced by computational geometry researchers. Generate paths that maximizes clearance.

Voronoi diagram method

- Space O(n)
- **Running time** $O(n \log n)$
- Applicable mostly to 2-D configuration spaces

Other roadmap methods

Silhouette

- First complete general method that applies to spaces of any dimensions and is singly **exponential** in the number of dimensions [Canny, 87]
- Probabilistic roadmaps

Classic path planning approaches

Roadmap

Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Computational efficiency

- **\square** Running time $O(n \log n)$ by planar sweep
- □ Space O(n)
- Mostly for 2-D configuration spaces

- Cells usually have simple, regular shapes, *e.g.*, rectangles, squares.
- Facilitate hierarchical space decomposition

Sketch of the algorithm

- 1. Decompose the free space F into cells.
- Search for a sequence of mixed or free cells that connect the initial and goal positions.
- 3. Further decompose the mixed.
- 4. Repeat (2) and (3) until a sequence of free cells is found.

Classic path planning approaches

Roadmap

Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

Decompose the free space into **simple** cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Sketch of the algorithm

- □ Place a regular grid *G* over the configuration space
- \square Compute the potential field over G
- Search G using a best-first algorithm with potential field as the heuristic function

Potential field

- □ Initially proposed for real-time collision avoidance [Khatib, 1986]. Hundreds of papers published on this topic.
- A potential field is a scalar function over the free space.
 To navigate, the robot applies a force proportional to the
- negated gradient of the potential field.
- A navigation function is an ideal potential field that
 has global minimum at the goal
 - has no local minima
 - grows to infinity near obstacles
 - is smooth

Question

Can such an ideal potential field be constructed efficiently in general?

Completeness

A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise.

- Is the visibility graph algorithm complete? Yes.
- How about the exact cell decomposition algorithm and the potential field algorithm?