
1

NUS CS 5247 David Hsu 1

Last lecture
 Configuration space

Convert moving objects into points, and apply algorithms for point
robots.

workspace configuration space

NUS CS 5247 David Hsu 2

Two geometric primitives in
configuration space
 CLEAR(q)

Is configuration q collision free or not?

 LINK(q, q’)
Is the straight-line path between q and q’ collision-free?

NUS CS 5247 David Hsu 3

Collision detection & distance
computation

 Input: two objects A and B
 Output:

 Distance computation: compute the distance (in the
workspace) between A and B

 Collision detection: determine whether A and B collide
or not

OR

CLEAR(q)

NUS CS 5247 David Hsu 4

Collision detection vs. distance
computation
 The distance between

two objects (in the
workspace) is the
distance between the
two closest points on the
respective objects.

 Collision if and only if
distance = 0

NUS CS 5247 David Hsu 5

Collision detection may be easier than
distance computation

NUS CS 5247 David Hsu 6

Applications
 Robotics

 Collision avoidance
 Path planning

 Graphics & virtual environment simulation

 Haptics
 Collision detection
 Force proportional to distance

2

NUS CS 5247 David Hsu 7

How will you compute the distance?

What is the distance between two convex
polygons?

NUS CS 5247 David Hsu 8

How will you compute the distance?

What is the distance between two sets of points?

NUS CS 5247 David Hsu 9

Two approaches
 CLEAR(q)

 Hierarchical bounding
approximation of objects

 Spheres
 Boxes
 …

 Tracking closest pairs of
features

NUS CS 5247 David Hsu 10

Spherical bounding hierarchy
 Efficient Distance Computation Between Non-

Convex Objects, S. Quinlan, 1994

NUS CS 5247 David Hsu 11

Overview
 Create a hierarchy of bounding spheres (bounding

sphere tree) to approximate the object

 Recursive depth-first search of the tree to find the
minimum distance

 Only search down the tree to required granularity

NUS CS 5247 David Hsu 12

Simple example
 Set initial distance value to infinity

Start at the root node.
20 < infinity, so continue
searching.

3

NUS CS 5247 David Hsu 13

Simple example
 Set initial distance value to infinity

 Choose the nearest of the two child spheres to
search first.

Start at the root node.
20 < infinity, so continue
searching.

40 < infinity, so continue
searching recursively.

NUS CS 5247 David Hsu 14

Simple example
 Eventually reach a leaf node

40 < infinity; examine the
polygon to which the leaf
node is attached.

NUS CS 5247 David Hsu 15

Simple example
 Eventually reach a leaf node

Call algorithm to find exact
distance to the polygon.
Replace infinity with new
minimum distance (42 in this
case).

40 < infinity; examine the
polygon to which the leaf
node is attached.

NUS CS 5247 David Hsu 16

Simple example
 Continue depth-first search

45 > 42; don’t search this
branch any further

NUS CS 5247 David Hsu 17

Simple example
 Continue depth-first search

60 > 42; we can prune this
half of our tree from the
search

45 > 42; don’t search this
branch any further

NUS CS 5247 David Hsu 18

Computing distances
 Depth-first search on the binary tree

 Keep an updated minimum distance
 Depth-first  more pruning in search

 Prune search on branches that do not reduce
minimum distance

 Once leaf node is reached, examine underlying
convex polygon for exact distance

4

NUS CS 5247 David Hsu 19

Running time: search the tree
 Full search

 O(n) time to traverse the tree, where n = number of
leaf nodes

 Plus time to compute distance to each polygon in the
underlying model

 The algorithm allows a pruned search:
 Worst case as above; occurs when objects are close

together
 Best case: O(log n) + a single polygon calculation

 Average case ranges between the two.

NUS CS 5247 David Hsu 20

General case
 If second object is not a single point, then search

and compare 2 trees
 Start at root of both trees
 Compare spheres; split the larger sphere
 First continue the search comparing the unsplit node

from the first tree and the closest child node from the
other tree. Then compare the unsplit node and the
other child.

NUS CS 5247 David Hsu 21

Extension: relative error

 When updating the minimum distance d’ between
objects, set (d = actual distance).
 a is our relative error, why?

 Guarantee that objects are at least d’ apart

 (1-a)d = 0 iff d = 0; correctly detects collisions

 Improves performance by pruning search

dad)1(' !=

addddaddd !"#"$#$ /)()1(' minminmin

NUS CS 5247 David Hsu 22

Creating the sphere tree
1. Cover the object surface with tiny spheres (leaf nodes).

Radius is user-determined.

NUS CS 5247 David Hsu 23

Creating the sphere tree
2. Find a rectangular bounding box.
3. Divide the box’s major axis in half.
4. Recurse until each set contains only a single leaf node.

NUS CS 5247 David Hsu 24

Creating the sphere tree
5. Build the tree from bottom up, creating bounding

spheres for each node.
 Two methods:

 Find the minimal sphere that contains the two
spheres of the child nodes.

 Determine a sphere directly from the leaf nodes
descended from this node.

5

NUS CS 5247 David Hsu 25

Example

NUS CS 5247 David Hsu 26

Example

NUS CS 5247 David Hsu 27

Example

NUS CS 5247 David Hsu 28

Example

NUS CS 5247 David Hsu 29

Sphere tree
 Binary tree

 Root node is the object’s bounding sphere.
 Leaf nodes are tiny spheres; their union approximates

the object’s surface.
 Every node’s sphere contains the spheres of its

descendant nodes.

NUS CS 5247 David Hsu 30

Running time: build the tree
 Roughly balanced binary tree
 Expected time O(n log n)

 Time to generate node v is proportional to the number
of leaf nodes descended from v.

 Worst case time O(n2)
 If tree is extremely unbalanced

 Tree is built only once and can often be pre-
computed.

6

NUS CS 5247 David Hsu 31

Empirical results
 Tested on a set of six 3D chess pieces

 Non-convex
 Each piece has roughly 2,000 triangles
 Each piece has roughly 5750 leaf nodes

 Relative error of 20%  more pruning in search
 speedup of 2 orders of magnitude

 Objects close together  less pruning in search
 less efficient

NUS CS 5247 David Hsu 32

Implementation tricks
 Store polygon comparisons in a hash table to

avoid repeat calculations
 For path planning, make the robot one object

and the union of all obstacles a single, second
object

NUS CS 5247 David Hsu 33

Key features
 It works for both convex and non-convex objects

in 2-D or 3-D environments.
 It computes the exact or approximate distance.
 It uses hierarchical approximation to achieve

efficiency.

NUS CS 5247 David Hsu 34

Simplifying assumptions
 Surface analysis only
 Decomposition of objects into sets of convex

surfaces
 Easy in graphics; all surfaces are composed of

triangles
 Existence of efficient algorithm to determine

distance between 2 convex polygons

NUS CS 5247 David Hsu 35

Summary
 Simple and intuitive way to speed up distance calculations

using hierarchical bounding approximation of objects
 Spheres
 Boxes

 Other related work
 OBB-Tree: A hierarchical structure for rapid interference detection. S.

Gottschalk, M. Lin, and D. Manocha. In SIGGRAPH 96 Conference
Proceedings, pp. 171-180, 1996.

 Software libraries
(http://www.cs.unc.edu/~geom/collide/packages.shtml)
 PQP

NUS CS 5247 David Hsu 36

Two approaches
 CLEAR(q)

 Hierarchical bounding
approximation of objects

 Spheres
 Boxes
 …

 Tracking closest pairs of
features

7

NUS CS 5247 David Hsu 37

Tracking the closest pair
 V-Clip: Fast and Robust Polyhedral Collision

Detection, B. Mirtich, 1997

NUS CS 5247 David Hsu 38

Features and their Voronoi regions
 Features

 Vertices
 Edges

 For a feature X in a convex polygon, the
Voronoi region vor(X) is the set of points
outside of the polygon that are as close to X as
to any other feature on the polygon.

NUS CS 5247 David Hsu 39

Voronoi regions of points and edges
 Voronoi region of a point

 Voronoi region of an edge

NUS CS 5247 David Hsu 40

Critical condition
 Theorem: Let X and Y be a pair of features from

disjoint convex polygons and let x∈ X and y∈ Y
be the closest pair of points between X and Y. If
x∈ vor(Y) and y∈ vor(X) , then x and y are a
globally closest pair of points between the
polygons.

NUS CS 5247 David Hsu 41

Sketch of the algorithm
1: Start with a candidate feature pair

(X,Y).

2: if (X,Y) satisfies the critical
condition

3: then
 return (X,Y) as the closest pair.
4: else
 Update either X or Y to its

neighboring

 feature. Go to (2).

NUS CS 5247 David Hsu 42

Motion coherence

8

NUS CS 5247 David Hsu 43

 For convex objects, an iterative step always
results in a decrease in the candidate “feature”
pair.

Iterative improvement

NUS CS 5247 David Hsu 44

Key features
 It works for convex objects in 2-D or 3-D

environments.
 It computes the exact distance.
 It uses motion coherence to achieve efficiency.

NUS CS 5247 David Hsu 45

Articulated robot

NUS CS 5247 David Hsu 46

Sketch of the algorithm
1: Set dmin to ∞.

2: for every pair (A,B) of robot link A and
workspace obstacle B

3: Compute the distance d between A and B

4: If d = 0 then return collision
5: If d < dmin then set dmin to d
6: return dmin

NUS CS 5247 David Hsu 47

Collision detection does not allow us to
test for free path rigorously

F

NUS CS 5247 David Hsu 48

Collision detection does not allow us to
check for free paths rigorously

F

9

NUS CS 5247 David Hsu 49

Use distance to check for free path
rigorously

F

NUS CS 5247 David Hsu 50

Use distance to check for free path
rigorously
Link(q0, q1)

1: if q0∈N(q1) or q1∈N(q0)
2: then
3: return TRUE.
4: else
5: q’ = (q0+q1)/2.

6: if q’ is in collision
7: then
8: return FALSE
9: else
10: return Link(q0, q’) && Link(q1,q’).

