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Last lecture
 Configuration space

Convert moving objects into points, and apply algorithms for point
robots.

workspace configuration space
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Two geometric primitives in
configuration space
 CLEAR(q)

Is configuration q collision free or not?

 LINK(q, q’)
Is the straight-line path between q and q’ collision-free?
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Collision detection & distance
computation

 Input: two objects A and B
 Output:

 Distance computation: compute the distance (in the
workspace) between A and B

 Collision detection: determine whether A and B collide
or not

OR

CLEAR(q)
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Collision detection vs. distance
computation
 The distance between

two objects (in the
workspace) is the
distance between the
two closest points on the
respective objects.

 Collision if and only if
distance = 0

NUS CS 5247 David Hsu 5

Collision detection may be easier than
distance computation
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Applications
 Robotics

 Collision avoidance
 Path planning

 Graphics & virtual environment simulation

 Haptics
 Collision detection
 Force proportional to distance
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How will you compute the distance?

What is the distance between two convex
polygons?
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How will you compute the distance?

What is the distance between two sets of points?
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Two approaches
 CLEAR(q)

 Hierarchical bounding
approximation of objects

 Spheres
 Boxes
 …

 Tracking closest pairs of
features
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Spherical bounding hierarchy
 Efficient Distance Computation Between Non-

Convex Objects, S. Quinlan, 1994
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Overview
 Create a hierarchy of bounding spheres (bounding

sphere tree) to approximate the object

 Recursive depth-first search of the tree to find the
minimum distance

 Only search down the tree to required granularity
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Simple example
 Set initial distance value to infinity

Start at the root node.
20 < infinity, so continue
searching.
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Simple example
 Set initial distance value to infinity

 Choose the nearest of the two child spheres to
search first.

Start at the root node.
20 < infinity, so continue
searching.

  

40 < infinity, so continue
searching recursively.
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Simple example
 Eventually reach a leaf node

  

40 < infinity; examine the
polygon to which the leaf
node is attached.
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Simple example
 Eventually reach a leaf node

Call algorithm to find exact
distance to the polygon.
Replace infinity with new
minimum distance (42 in this
case).

  

40 < infinity; examine the
polygon to which the leaf
node is attached.
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Simple example
 Continue depth-first search

  

45 > 42; don’t search this
branch any further
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Simple example
 Continue depth-first search

60 > 42; we can prune this
half of our tree from the
search

  

45 > 42; don’t search this
branch any further
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Computing distances
 Depth-first search on the binary tree

 Keep an updated minimum distance
 Depth-first  more pruning in search

 Prune search on branches that do not reduce
minimum distance

 Once leaf node is reached, examine underlying
convex polygon for exact distance
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Running time: search the tree
 Full search

 O(n) time to traverse the tree, where n = number of
leaf nodes

 Plus time to compute distance to each polygon in the
underlying model

 The algorithm allows a pruned search:
 Worst case as above; occurs when objects are close

together
 Best case: O(log n) + a single polygon calculation

 Average case ranges between the two.
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General case
 If second object is not a single point, then search

and compare 2 trees
 Start at root of both trees
 Compare spheres; split the larger sphere
 First continue the search comparing the unsplit node

from the first tree and the closest child node from the
other tree.  Then compare the unsplit node and the
other child.
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Extension: relative error

 When updating the minimum distance d’ between
objects, set                        (d = actual distance).
 a is our relative error, why?

 Guarantee that objects are at least d’ apart

 (1-a)d = 0 iff d = 0; correctly detects collisions

 Improves performance by pruning search
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Creating the sphere tree
1. Cover the object surface with tiny spheres (leaf nodes).

Radius is user-determined.
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Creating the sphere tree
2. Find a rectangular bounding box.
3. Divide the box’s major axis in half.
4. Recurse until each set contains only a single leaf node.
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Creating the sphere tree
5. Build the tree from bottom up, creating bounding

spheres for each node.
      Two methods:

 Find the minimal sphere that contains the two
spheres of the child nodes.

 Determine a sphere directly from the leaf nodes
descended from this node.
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Example
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Example
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Example
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Example
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Sphere tree
 Binary tree

 Root node is the object’s bounding sphere.
 Leaf nodes are tiny spheres; their union approximates

the object’s surface.
 Every node’s sphere contains the spheres of its

descendant nodes.
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Running time: build the tree
 Roughly balanced binary tree
 Expected time O(n log n)

 Time to generate node v is proportional to the number
of leaf nodes descended from v.

 Worst case time O(n2)
 If tree is extremely unbalanced

 Tree is built only once and can often be pre-
computed.
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Empirical results
 Tested on a set of six 3D chess pieces

 Non-convex
 Each piece has roughly 2,000 triangles
 Each piece has roughly 5750 leaf nodes

 Relative error of 20%  more pruning in search
 speedup of 2 orders of magnitude

 Objects close together  less pruning in search
 less efficient
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Implementation tricks
 Store polygon comparisons in a hash table to

avoid repeat calculations
 For path planning, make the robot one object

and the union of all obstacles a single, second
object   
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Key features
 It works for both convex and non-convex objects

in 2-D or 3-D environments.
 It computes the exact or approximate distance.
 It uses hierarchical approximation to achieve

efficiency.
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Simplifying assumptions
 Surface analysis only
 Decomposition of objects into sets of convex

surfaces
 Easy in graphics; all surfaces are composed of

triangles
 Existence of efficient algorithm to determine

distance between 2 convex polygons
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Summary
 Simple and intuitive way to speed up distance calculations

using hierarchical bounding approximation of objects
 Spheres
 Boxes

 Other related work
 OBB-Tree: A hierarchical structure for rapid interference detection. S.

Gottschalk, M. Lin, and D. Manocha. In SIGGRAPH 96 Conference
Proceedings, pp. 171-180, 1996.

 Software libraries
(http://www.cs.unc.edu/~geom/collide/packages.shtml)
 PQP
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Two approaches
 CLEAR(q)

 Hierarchical bounding
approximation of objects

 Spheres
 Boxes
 …

 Tracking closest pairs of
features
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Tracking the closest pair
 V-Clip: Fast and Robust Polyhedral Collision

Detection, B. Mirtich, 1997
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Features and their Voronoi regions
 Features

 Vertices
 Edges

 For a feature X in a convex polygon, the
Voronoi region vor(X) is the set of points
outside of the polygon that are as close to X as
to any other feature on the polygon.
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Voronoi regions of points and edges
 Voronoi region of a point

 Voronoi region of an edge
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Critical condition
 Theorem: Let X and Y be a pair of features from

disjoint convex polygons and let  x∈ X and y∈ Y
be the closest pair of points between X and Y. If
x∈ vor(Y) and y∈ vor(X) , then x and y are a
globally closest pair of points between the
polygons.

NUS CS 5247 David Hsu 41

Sketch of the algorithm
1: Start with a candidate feature pair

(X,Y).

2: if (X,Y) satisfies the critical
condition

3: then
     return (X,Y) as the closest pair.
4: else
     Update either X or Y to its

neighboring

     feature. Go to (2).
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Motion coherence
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 For convex objects, an iterative step always
results in a decrease in the candidate “feature”
pair.

Iterative improvement
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Key features
 It works for convex objects in 2-D or 3-D

environments.
 It computes the exact distance.
 It uses motion coherence to achieve efficiency.

NUS CS 5247 David Hsu 45

Articulated robot
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Sketch of the algorithm
1: Set dmin to ∞.

2: for every pair (A,B) of robot link A and
workspace obstacle B

3:   Compute the distance d between A and B

4:   If d = 0 then return collision
5:   If d < dmin then set dmin to d
6: return dmin
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Collision detection does not allow us to
test for free path rigorously

F
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Collision detection does not allow us to
check for free paths rigorously

F
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Use distance to check for free path
rigorously

F
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Use distance to check for free path
rigorously
Link(q0, q1)

1: if q0∈N(q1) or q1∈N(q0)
2: then
3:   return TRUE.
4: else
5:   q’ = (q0+q1)/2.

6:   if q’ is in collision
7:   then
8:     return FALSE
9:   else
10:    return Link(q0, q’) && Link(q1,q’).


