
Cache-and-Quer y for Wide Area Sensor Databases

Amol Deshpande
��� �

Suman Nath
��� �

Phillip B. Gibbons
�

Srinivasan Seshan
��� �

�
Intel Research Pittsburgh

�
U.C. Berkeley

�
Carnegie Mellon University

ABSTRACT
Webcams,microphones,pressuregaugesand other sensorspro-
vide exciting new opportunitiesfor queryingand monitoring the
physicalworld. In this paperwe focuson queryingwideareasen-
sordatabases, containing(XML) dataderivedfrom sensorsspread
overtensto thousandsof miles.Wepresentthefirst scalablesystem
for executingXPATH queriesonsuchdatabases.Thesystemmain-
tainsthelogicalview of thedataasasingleXML document,while
physicallythedatais fragmentedacrossany numberof hostnodes.
For scalability, sensordatais storedcloseto the sensors,but can
becachedelsewhereasdictatedby thequeries(auto-tuning).Our
designenablesself-startingdistributedqueriesthat jump directly
to thelowestcommonancestorof thequeryresult,dramaticallyre-
ducingqueryresponsetimes. We presenta novel query-evaluate-
gather technique(using XSLT) for detecting(1) which datain a
local databasefragmentis partof thequeryresult,and(2) how to
gatherthemissingparts. We definepartitioningandcacheinvari-
antsthat ensurethat even partial matcheson cacheddataareex-
ploitedandthatcorrectanswersarereturned,despiteour dynamic
query-driven caching. Experimentalresultsdemonstratethat our
techniquesdramaticallyincreasequery throughputsanddecrease
queryresponsetimesin wideareasensordatabases.

1. INTRODUCTION
From webcamsto smartdust, pervasive sensorsare becoming

a reality, providing opportunitiesfor new sensor-basedservices.
Considerfor examplea ParkingSpaceFinderservicefor locating
availableparkingspacesneara user’s destination.The driver en-
ters into a PDA (or a car navigation system)her destinationand
hercriteria for desirableparkingspaces— e.g.,within two blocks
of herdestination,at leasta four hour meter, minimumprice,etc.
Shegetsbackdirectionsto an available parkingspacesatisfying
hercriteria. If thespaceis takenbeforeshearrives,thedirections
areautomaticallyupdatedto headto a new parkingspace.

What is requiredto createsucha Parking SpaceFinderservice
for a large metropolitanarea? First, sensorsareneededthat can
determinewhetheror not a parking spaceis available. We en-
vision a large collectionof webcamsoverlookingparkingspaces,
pressuresensorson thespotsthemselves,or somecombinationof

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
Submittedandacceptedto SIGMOD’03 SanDiego,CaliforniaUSA
Copyright 2003ACM ...$5.00.

both.Second,asensordatabaseis needed,whichstoresthecurrent
availability informationalongwith staticattributesof the parking
spacessuchasthepriceandhoursof their meters.Finally, a web-
accessiblequeryprocessingsystemis needed,to provide answers
to high-level userqueries.

Giventhelargenumberof sensorsspreadover a wide area,and
the desireto supporthigh queryvolumes,what is a good sensor
databasesystemarchitecture? Our group hasdevelopeda wide
areasensordatabasesystemaspartof theInternet-scaleResource-
Intensive SensorNetwork services(IrisNet) project,with the fol-
lowing architecturaldesign.

� For high updateandquerythroughputs,thesensordatabase
is partitionedacrossmultiple sitesoperatingin parallel,and
the queriesaredirectedto the sitescontainingthe answers.
We assumethatsitesareInternet-connected(powered)PCs.
A sitemanager runsoneachsite.

� Communicationwith the sensorsis via sensorproxies[26],
which collect nearbysensordata,process/filterit to extract
thedesireddata(e.g.,parkingspaceavailability information),
andsendupdatequeriesto the site that owns the data(and
possiblyothersites).As in [26], weassumethatsensorprox-
ies run on Internet-connected(powered)PCs.1 A largecol-
lectionof sensorproxiesoperatingin parallelensurethatthe
systemscalesto a larger numberof sensors.Moreover, a
potentiallyhigh volumeof data(webcamfeeds)is reduced
at the sensorproxy to a muchsmallervolumeof data(e.g.,
availability information)sentto sitemanagers.

� To make posingquerieseasyfor users,IrisNet supportsa
standarddata representation(XML), a standardhigh-level
querylanguage(XPATH), andalogicalview of itsdistributed
databaseasasinglecentralizeddatabase(datatransparency)2.
XML is usedto accommodatea heterogeneousandevolv-
ing setof datatypes,aggregatefields,etc.,bestcapturedby
self-describingtags. Moreover, eachsensortakes readings
from ageographiclocation,soit is naturalto organizesensor
datainto a geographic/political-boundaryhierarchy(asde-
pictedin Figure1) — again,agoodmatchfor XML. Weuse
anoff-the-shelfXML databasesystem,andinteractwith the
databaseusingstandardAPIs (XPATH or XSLT for query-
ing, andSixDML or XUpdatefor updates),in orderto take
advantageof futureimprovementsin XML databasetechnol-
ogy.

1For example,webcamsaretypically attachedto PCsthatcanhost
a sensorproxy. For battery-poweredmotes,thesensorproxy is the
poweredbasestationcommunicatingwith themotes[26].
2Thereis oneexceptionto our datatransparency: userqueriescan
specifya degreeof tolerancefor answersbasedon stale(cached)
data,asdiscussedin Section4.

1

� 	
 � �
� 	
 � � �
� 	
 � � �

� 	
 � �
� 	
 � � �
� 	
 � � �

city block

� � � �
 � �

� � � � � � �

usRegion

� �

state

� �

� �

neighborhood

�
 �

�
 � � � � �

Figure 1: Logical SiteHierar chy

AlthoughwehaveusedParkingSpaceFinderasamotivatingap-
plication,we envision IrisNet asa generalplatform for wide area
sensorservices.For example,wearecurrentlyworkingwith ateam
of oceanographersto deploy IrisNet along the Oregon coastline.
Moreover, we believe that future wide areasensordatabases(not
just IrisNet) will build upona similar design,in orderto meetthe
desiredperformancerequirements.3 Thusproviding techniquesfor
correctly and efficiently processingquerieson suchdatabasesis
crucial to the widespreaduseof wide areasensorsystems.How-
ever, asoutlinedbelow, thereareanumberof challengesto provid-
ing fastexecutionof XPATH querieson sucha system;this paper
is thefirst to addressthesechallenges.

In this paper, we presenttechniquesfor query processingand
cachingin wide areasensordatabases.The contributionsof this
paperare:

� We presentthe first scalablesystemfor executingXPATH
querieson wide areasensordatabases.The systemusesa
logical hierarchyof sitesdictatedby the XML document;
theselogicalsitesaremappedto asmallercollectionof phys-
ical sites,asdictatedby thesystemadministratoror thequeries
themselves.

� Wegiveatechniquefor self-startingdistributedqueries, which
jump directly to the lowestcommonancestor(LCA) of the
queryresult,by usingDNS-stylesite namesextractedfrom
the queryitself. A key featureis that althougha querycan
be posedanywherein the Internet,no global informationis
neededto producetheLCA sitenamefor thequery.

� We show how generalXPATH queriescanbe evaluatedon
a singleXML documentwhenthe documentitself is frag-
mentedacrossmachines,andthefragmentationis constantly
changing.Weproposeanovel query-evaluate-gather(QEG)
techniquefor detecting(1) which datain thedatabasefrag-
mentatasiteis partof thequeryresult,and(2) how to gather
themissingparts.To ourknowledge,noeffectivesolutionto
this problemwasknown prior to ourwork.

� OurQEGtechniqueusesXSLT programs,andweshow how
theseprogramscanbe generateddirectly from the XPATH

3Forexample,anobject-relationalwideareasensordatabasewould
facemany of the sameissuesandwould greatlybenefitfrom the
techniquespresentedin this paper(seeSection6).

/usRegion[@id=’NE’]/state[@id=’NY’]/city[@id=’New York’]

/neighborhood[@id=’Soho’ OR @id=’Tribeca’]

/block[@id=’1’]/parkingSpace[available=’yes’]

Figure 2: An XPATH query requestingall available parking
spacesin Soho block 1 or Tribeca block 1.

<usRegion @id=’NE’>

<state @id=’NY’>

<city @id=’New York’>

<neighborhood @id=’Soho’>

<block @id=’1’>

<parkingSpace @id=’1’>

<available>yes</available>

</parkingSpace>

<parkingSpace @id=’2’>

<available>no</available>

</parkingSpace>

</block>

</neighborhood>

</city>

</state>

</usRegion>

Figure3: An XML fragment at the New York site.

query, without accessingthe database.Moreover, we show
how to avoid the overheadsof query-timecompilation of
XSLT programsby generatingthem(almost)alreadycom-
piled.

� Wepresentaschemefor cachingqueryresultsatsitesasdic-
tatedby the queries(auto-tuning).Owneddataandcached
dataarestoredin thesamesitedatabase,with differenttags,
unifying the queryprocessingat a site. Moreover, we sup-
portquery-basedconsistency, in whicheachuserquerymay
specifyits tolerancefor usingstale(cached)datato quickly
answerthequery.

� We definepartitioningandcacheinvariantssupportingpar-
tial match caching, which ensuresthatevenpartialmatches
oncacheddatacanbeexploitedandthatcorrectanswersare
returned,despiteourdynamicquery-drivencaching.Ourap-
proachis basedon leveragingthe dataresidingin the site
database,which differs from previous approachesbasedon
leveraginga collectionof views.

� Wepresentexperimentalresultsdemonstratingtheeffective-
nessof our techniquesin dramaticallyincreasingupdateand
query throughputsand decreasingquery responsetimes in
wideareasensordatabases.

The remainderof this paperis organizedasfollows. Section2
describesthequeryprocessingchallenges.Section3 presentsour
basicqueryprocessingandcachingtechniques.Thenin Section4,
wedescribeextensionsto moregeneralXPATH queries,cachecon-
sistency, andownershipmigration.Experimentalresultsarein Sec-
tion 5. Section6 describesrelatedwork, andconclusionsare in
Section7.

2. QUERY PROCESSINGCHALLENGES
In this section,we considera coreproblemin queryprocessing

in wide areasensordatabases,anddemonstratethe challengesin
solvingthisproblem.

We would like to evaluatean XPATH queryon a singleXML
documentthathasbeenfragmentedacrossmultiplesites.Consider

2

the examplequeryin Figure2 andthe documentfragment(at the
New York site)in Figure3. Thequeryasksfor all availableparking
spacesin two adjacentblocksof SohoandTribeca.If this queryis
posedto theNew York site,parkingspace1 in Sohoblock1 will be
returned.Thechallengeis in determiningwhetherthis is theentire
answer. In particular, arethereotherparkingspacesin block 1 of
Soho? Moreover, no parkingspaceswerereturnedfrom Tribeca:
wasthatbecausethey areall takenor thesitedatabasewasmissing
Tribeca? This informationcannotbe determinedsolely from the
queryanswer.

How might we try to solve this problem? First, we might try
splitting theXPATH queryinto two queries,onefor Sohoandone
for Tribeca,but we would not learnanything more. Second,we
might try augmentingthe databasewith placeholders(e.g., for
Tribeca)that tag missingdata. However, unlessthe site database
containsplaceholdersfor all datain New York, which is notascal-
able solution, the XPATH query would not return all the needed
placeholders.E.g.,adding

<neighborhood @id=’Tribeca’ @tag=’placeholder’>

to the New York site would not changethe answer, becausethe
querycalls for specificdatawithin theTribecaneighborhood.Fi-
nally, we might try maintainingmetainformationaboutwhatfrag-
mentof theXML documentis in thesitedatabase.Thereis atrade-
off betweenhow muchmetadatawe would needandhow flexible
thepartitioningis — this approachmayrequiresignificantrestric-
tionsonthefragmentation,otherwisethemetadatamaybeaslarge
asthedatabaseitself! Moreover, givenanXPATH query, it is not
clearhow to combinethismetadataoutsidethedatabasewith what
is inside the database.For example,supposethat neighborhoods
hadanumberOfFreeSpots attributeandparkingspaceshadaprice

attribute,andthequeryasksfor availableno costspotsin block 1
of SohoandTribeca:

/usRegion[@id=’NE’]/state[@id=’NY’]/city[@id=’New York’]

/neighborhood[@id=’Soho’ OR @id=’Tribeca’]

[@numberOfFreeSpots > 0]

/block[@id=’1’]/parkingSpace[available=’yes’][@price=’0’]

If thesitedatabasecontainedthisattributefor bothneighborhoods,
and the metadatareflectedthis, then whetheror not we needto
visit thesite(s)containingTribecablockdatadependson thevalue
of this attribute. In order to make this decision,we would need
to determinethata specificsubqueryrequestingjust this attribute
shouldbeposedto thesitedatabase,andthencombineits answer
with themetadata– clearlythis wouldnot beeasy. Giventhegen-
eralityof XPATH queries,thistypeof scenariomayarisefrequently
andin morecomplicatedcontexts.

A betterapproachis to includeinsidethedatabaseany metain-
formation on what fragmentof the XML documentis presentat
the site, as tag attributesassociatedwith the relevant portionsof
the database.Theseattributesmust indicatenot only what data
is presentor missing,but which sitesto visit to find the missing
data. As illustratedabove,XPATH is insufficiently powerful to ef-
fectively usethesetags. In thenext section,we presentour novel
solutionto thesechallenges,basedonthemorepowerful XSLT lan-
guage.Our techniquesolvesthesefragmentationchallenges,and
moreover, it enablesveryflexible queryresultcachingat thesites.

3. OUR SOLUTION
In this section,we describeour solutionto the challengesout-

lined in the previous section. We begin with an overview of the
systembeforedescribingthevariouscomponentsin detail.

3.1 Overview
Ourqueryprocessingsystemstartswith theXML documentde-

fined by the service. For simplicity, assumethat the documentis
fixed: only the valuesof attributesandfields arechanging.4 The
documentdefinesa logicalhierarchyon thedata(seeFigure1). At
any point in time, we have partitionedownership for fragmentsof
thedocumentto a collectionof sites(discussedin Section3.2). A
sitemayalsocachedataownedby othersites(Section3.3).

UsersposeXPATH querieson the view of the dataasa single
XML document.Thequeryselectsdatafrom a setof nodesin the
hierarchy. Thequeryis sentdirectly to thelowestcommonances-
tor of thesenodes,usingour techniquefor self-startingdistributed
queries(Section3.4). Thereit begins a potentiallyrecursive pro-
cess,which we denotequery-evalute-gather(Section3.5). Upon
receiving a query, the site managerqueriesits local databaseand
cache,andevaluatestheresult.If necessary, it gathersmissingdata
by sendingsubqueriesto othersites,whomayrecursively queryad-
ditional sites,andsoon. Finally thesubqueryanswersreturnfrom
theothersites,andthecombinedresultsaresentbackto theuser.

XPATH queries supported. Throughoutthis paper, we take the
commonapproachof viewing anXML documentasunordered, in
thatwe ignoreany orderingbasedsolelyon thelinearizationof the
hierarchyinto a sequentialdocument.For example,althoughsib-
lings mayappearin thedocumentin a particularorder, we assume
that siblingsareunordered,asthis matchesour datamodel. Thus
we focuson theunordered fragmentof XPATH, ignoring the few
operatorssuchas "!$#&%(')%*!,+.-*/ or axes like following-siblingsthat
areinappropriatefor unordereddata.We support(andhave imple-
mented)theentireunorderedfragmentof XPATH 1.0.

3.2 Data partitioning
Therearetwo distinctaspectsto datapartitioning: dataowner-

ship, which dictateswho ownswhatdata,anddatastorage, which
describesthe actualdatastoredat eachsite. Our partitioning
schemeis basedon a seriesof partitioningrules,tags(i.e., special
attributes),andinvariantsthatmustbemaintainedto ensurecorrect
answers.Ourschemeusesthefollowing definitions.

IDable nodes.Weassociatewith certain(element)nodesin a doc-
umentan “id” attribute (seeFigure3). This id attribute is in the
spirit of a DTD’s ID type.5 However, we requireonly that the id
beuniqueamongits siblingswith thesameelementname(e.g.,the
parkingSpace siblingswithin a block), whereasID typeattributes
musthave globally uniquevalues.This distinctionis quitehelpful
for us,becauseourdocumentis fragmentedacrossmany sites,soit
would bedifficult to ensureglobally uniquenames.Moreover, the
valuesfor our id attributesareshortnamesthatmake senseto the
userquery(e.g.,New York).

DEFINITION 3.1. A node in a documentis called an IDable
nodeonly if (1) it hasa uniqueid amongits siblingswith thesame
elementname, and(2) its parent is an IDable node. Theroot node
of a documentis alsoan IDablenode. TheID of an IDablenodeis
definedto beits 0214351&671&+8'9+;:<671>=?%*@BA pair.

4Themoregeneralscenariosareaddressedin Section4.
5A DTD definestheschemafor XML documents,includingrestric-
tionson attributevalues.

3

neighborhoodC
id = 'Soho'
D

zipcode = '10012'E

block
F
id =' 1'
D

available-spacesGblock
F
id =' 2'

pSpaceH
id = '1'
D

in-use
D

GPS
I

priceH

25 cents
J

noC

pSpaceH
id = '2'
D pSpaceH

id = '1'
D

8
K

Figure4: IDable Nodesin a Document

Figure4 shows anexampledocument,andits IDablenodes(de-
notedin bold). NotethateachIDablenodecanbeuniquelyidenti-
fied by thesequenceof IDs on thepathfrom theroot to thenode.
We will frequentlyexploit this featurein our system.For instance,
IDablenodescanbeplacedon differentsitesthantheir parentsor
siblings,withoutany ambiguity.

DEFINITION 3.2. The local information of an IDable node +
is definedto be the documentfragmentcontaining: (1) all the at-
tributesof + , (2) all its non-IDablechildrenandtheir descendants,
and (3) the IDs of its IDable children. The local ID information
of an IDable node + is definedto be the documentfragmentthat
contains(1) the ID of the node, and (2) the IDs of all its IDable
children.

Thusthelocal ID informationof anIDablenodeis a subsetof the
local informationof thatnode.For example,the local information
of theSohonodein Figure4 is:
<neighborhood @id=’Soho’ @zipcode=’10012’>

<block @id=’1’></block>

<block @id=’2’></block>

<available-spaces>8</available-spaces>

</neighborhood>

Its local ID informationis:
<neighborhood @id=’Soho’>

<block @id=’1’></block>

<block @id=’2’></block>

</neighborhood>

Notethatthedocumentfragmentscorrespondingto thelocal in-
formationsof the IDablenodesform a nearly-disjointpartitioning
of the original document,with the only overlapbeing the IDs of
the IDable nodes. Also, the notion of an IDable nodecould be
extendedto includeany nodewith a uniquelynamedroot-to-node
path(suchasavailable-spaces in Figure4); however, this would
complicateour techniquebelow for self-startingqueries.

Data ownership. We permit eachsite to own an arbitrarysetof
nodesfrom thedocument,underthefollowing constraints:

� Eachnodein the documentmustbe ownedby exactly one
site.

� A nodemayhave a differentowner thanits parentonly if it
is anIDablenode.

This enablesconsiderableflexibility for partitioning.For example,
a sitemayown a node,a few of its grandchildrenandcousins,but
not the interveningnodesin the hierarchy. Our queryprocessing
algorithmsmustensurecorrectanswersin thepresenceof any such
partitionings.

Theownerof anodeis ultimatelyresponsiblefor any querieson
thatnode.By requiringthatonly anIDablenodemaybeon a dif-
ferentsitethanits parent,we ensurethatany suchnodeis globally
addressable.(We describein Section3.4 how the systemlocates
thesitecorrespondingto thenode.)

Data stored at eachnode. The datathat is storedat eachsite is
essentiallytheunionof the local informationsandthelocal ID in-
formationsof a setof nodes.Therearetwo invariantswe maintain
on the storeddata: (I1) eachsite muststorethe local information
for thenodesit owns,and(I2) if (at least)theID of anodeis stored,
thenthelocal ID informationof its parentmustalsobestored.Note
that this implies that the local ID informationof all ancestorsof
sucha nodeis alsostored.

A specialattributecalledstatus(meaningfulonly for IDablenodes)
is usedto summarizethestoreddatafor a node,in orderto ensure
correctandefficientqueryprocessing.It hasfour possiblevalues:

� owned:Thesiteownsthis node.By invariants(I1) and(I2),
it hasthelocal informationof thenodeandat leastthelocal
ID informationof all its ancestors.

� complete:Thesitehasthesameinformationstoredasowned,
exceptthatit doesnotown thenode.

� ID-complete:The site hasthe local ID informationfor this
nodeandthe local ID informationof all its ancestors,but it
doesnothave all thelocal informationfor thenode.

� incomplete:For this node,thesitehasonly its ID.

Our systemmaintainsthe invariant that eachnodeat a site falls
into oneof thesefour categories(a non-IDablenodeis implicitly
assumedto have thesamestatusasits lowestIDableancestor).

Intuition behind this structur e. Whathave we accomplishedby
thesepartitioningrules,specialattributes,andinvariants?If a site
hasinformationabouta node(beyondjust its ID), it knowsat least
theIDs of all its IDable children,andalsotheIDs of all its ances-
tors and their siblings. Thuswhena query is routedto this site,
it can either answerit using the documentfragmentit has,or it
knows which partsaremissing(the missingpartswill alwaysbe
IDable nodesandthe informationin the subtreesbelow them). It
can then contactthe appropriatesitesthat own the missingparts
(becauseit hastheir uniquenames)andget the informationfrom
them.

As such,any given site hasin its documentfragmentthe infor-
mationneededto gatheran answerto a query, even if it doesnot
have all thedataitself.

3.3 Caching
Our goalsare(1) to have considerableflexibility for replicating

dataat multiple siteson thefly, and(2) to enableefficient andcor-
rectqueryprocessingdespitethisdynamiccaching.Thekey obser-
vation is that the schemeoutlinedin Section3.2 is well-suitedto
accomplishingthesegoals.

Storing additional data. A site canaddto its currentdocument
any documentfragmentthatsatisfies:(C1) thedocumentfragment
is a unionof local informationsor local ID informationsfor a cer-
tain setof nodes,and(C2) if thedocumentfragmentcontainslocal
informationor local ID informationfor a node,it alsocontainsthe

4

local ID informationfor its parent(henceall its ancestors).Then
by merL ging this new documentfragmentwith the existing docu-
ment,weareguaranteedto maintaininvariants(I1) and(I2) above.
Moreover, updatingthestatusattributesis straightforward.

Caching query results. An importantspecialcaseof the above
is the cachingof query results. Recall that we route a query to
its LCA andthenrecursively progressdown the hierarchyto pull
togethertheanswer. In our currentprototype,whenever a (partial)
answeris returnedto a site,we cachetheanswerat thesite. Thus
a site manageraggressively cachesany datathat it sees.This has
two benefits. First, subsequentquerieson the samedatacan be
answeredby thesite,therebyavoiding theexpenseof gatheringup
the answeragain.6 Second,it automaticallytunesthe creationof
additionalcopiesto thequeryworkload;suchcopiescandistribute
the workloadover multiple sites. To make this cachingpossible,
we generalizethe subqueriessentto sites,makingthemfetch the
smallestsupersetof theanswerthatsatisfies(C1) and(C2) above.
(This doesnot alter theanswerreturnedto theuser. Detailsarein
Section3.5.)

Onecouldchooseto useourgeneralizedsubqueriesandcaching
techniquesonly whentheworkloadseemsto dictateit. However,
we found that thecostof initially transferringadditionaldatawas
minimalcomparedto thesignificantgainsachievedby caching(see
Section5).

Partial match caching. A key featureof ourcachingschemeis its
ability to supportpartial match caching, which ensuresthat even
partial matcheson cacheddatacan be exploited and that correct
answersare returned. Becauseour invariantsensurethat we can
alwaysusewhatever datawe have in a sitedatabase,andfetchany
missingpartsof the answer, we can provide very flexible partial
matchcaching. For example,the queryin Figure2 may usedata
for Sohocachedat theNew York site,eventhoughthis datais only
a partial matchfor the new query. Similarly, if distinct Sohoand
Tribeca queriesresult in the databeingcachedat New York, the
querymay usethe mergedcacheddatato immediatelyreturnan
answer. Even if the earlierquerieshave differentpredicates,our
generalizationof subqueriesmayenablethelaterqueriesto usethe
cacheddata.Notealsothata sitecandeterminewhena collection
of querieshasresultedin all theIDablesiblingsbeingcached,and
hencerespondto queriesover all suchsiblings(subsumption). For
example,supposethereare threeneighborhoodsdowntown, mid-
town, anduptown in a city Brooktown, all on differentsitesthan
thecity node.Thenindependentqueriesthatcausethethreeneigh-
borhoodsto be cachedat the Brooktown node,would leadto the
query

... /city[@id=’Brooktown’]/neighborhood/block

/parkingSpace[@available = ’yes’]

beingcorrectlyansweredfrom just theBrooktown site. (Thisquery
requestsall available parkingspacesin Brooktown.) This is be-
causeinvariant (I1) above ensuresthat Brooktown always main-
tainsthe IDs of all its neighborhoods,so it candetectwhenit has
all of its neighborhoodscached.

Evicting data. Any datacanbe removed as long as it is always
removed in unitsof local informationsor local ID informationsof
IDablenodesandtheconditionsoutlinedabove arestill valid after
theremoval.

In summary, ourschememakesit easytoprovideflexiblecaching.
Themainchallengeis to do theabove operationsefficiently, with-
out having to fetch theentiredocumentinto memoryandwithout
touchingany moreof thedocumentthannecessary. As it turnsout,

6Issuesof stalenessof cacheddataarediscussedin Section4.

thistaskis accomplishedusingthemechanismfor queryprocessing
in general,whichwe discussin Section3.5.

3.4 Finding sites
In this subsection,we discusshow thesystemcandeterminethe

IP addressfor any siteneededduringqueryprocessing.Recallthat
themappingof IDablenodesto sitesis arbitraryanddynamically
changing.However, thereareonly two situationsin which IP ad-
dressesare neededduring queryprocessing:(1) when the query
initially is posedby ausersomewherein theInternet,and(2) when
asitemanagerdeterminesthatit needsto poseasubqueryto aspe-
cific IDablenode.Weconsidereachsituationin turn.

Self-starting distrib uted queries.Usersanywhereon theInternet
canposequeries.For scalability, weclearlydonotwantto sendall
queriesto thesite(s)hostingtherootnodeof thehierarchy. Instead,
ourgoalis to sendthequerydirectlyto thelowestcommonancestor
(LCA) of thequeryresult.But how dowefind thesitethatownsthe
LCA node,giventhelargenumberof nodesandthedynamicmap-
pingof nodesto sites?Oursolutionis (1) to haveDNS-stylenames
for nodesthatcanbeconstructedfrom thequeriesthemselves,(2)
to createa DNS server hierarchyidenticalto theIDablenodehier-
archy, and(3) to useDNSlookupsto determinetheIP addressesof
thedesiredsites. RecallthateachIDablenodeis uniquelyidenti-
fied by thesequenceof IDs on thepathfrom theroot to thenode.
Thusour DNS-stylenamesaresimply the concatenationof these
IDs. For example,for thequeryin Figure2, its LCA nodeis New
York. We constructtheDNS-stylename

city-new york.state-ny.usregion-ne.parking.ourdomain.net

performa DNS lookupto get theIP addressof theNew York site,
androutethequerythere.

A key featureis thatno globalinformationis neededto produce
this DNS-stylename: it is extracteddirectly from the query! We
have a simpleparserthatprocessesthequerystringfrom its begin-
ning, andaslong astheparserfindsa repeatedsequenceof /ele-
mentname[@id=x], it prependsto theDNS name.TheDNS lookup
mayneedseveralhopsto find theappropriateDNS entry, but then
this entry is cachedin a DNS server nearto the query, so subse-
quentlookupswill find the IP addressin the nearbyDNS server.
Notethatno informationabouttheXML document(or its schema)
is neededby theparser.

Sendinga subquery. Whenasitemanagerdeterminesthataquery
requiresdatanot in its sitedatabase,thenby our invariants,it has
the root-to-nodeID pathfor the IDable nodeit needsto contact.
To seethis, observe thateachpieceof missingdatais in the local
informationof someIDablenode.ConsideronesuchIDablenode
+ . By invariant (I1), this nodeis owned by a different site. By
invariant(I2), regardlessof + ’sstatusvalue,wehaveits ID, andthe
IDs of all its ancestors.Thuswe canproducetheDNS-stylename
for any neededIDablenodesolelyfrom theinformationin thesite
database,and then perform the lookup to get the IP address.A
key featureof this designis that the mappingof IDable nodesto
IP addressesis encapsulatedentirely in the DNS entries,andnot
in any site databases.This makesit relatively easyto changethe
mappingasdesiredfor loadbalancingandotherpurposes.

3.5 Query-Evaluate-Gather
We now describeour query-evaluate-gathertechniquefor de-

tecting(1) which datain a local databasefragmentis part of the
query result, and (2) how to gatherthe missingparts. As noted
above,our invariantsguaranteethatthesitehasall theinformation
requiredto answeraquery(includingwhetherit is requiredto con-
tactothersites).HandlingarbitraryXPATH queriesturnsout to be

5

quitechallengingthough,becauseof therichnessof thelanguage.
AsM an example,considerthe following (only moderatelycom-

plex) query:

/usRegion[@id=’NE’]/state[@id=’NY’]/city[@id=’New

York’]

/neighborhood[@id=’Soho’]/block[@id=’1’]

/parkingSpace[not(price > ../parkingSpace/price)]

This query requeststhe leastpricey parking spot in a particular
blockin Soho(XPATH 1.0doesnothaveamin operator).Consider
ascenariowheretheindividualparkingSpacesareownedby differ-
ent sitesandmoreover, eachsiteonly storesthe local information
for theparkingSpaceit owns (this is a permissibleconfiguration).
Suchaconfigurationis problematicfor thisquery, becausenoneof
thesiteshave sufficient informationto evaluatethepredicate.This
motivatesthefollowing definition.

DEFINITION 3.3. Thenestingdepthof an XPATH queryis de-
finedto be the maximumdepthat which a location path that tra-
versesover IDablenodesoccurs in thequery.

Wewill illustratethisdefinitionthrougha few examples:

/a[@id=x]/b[@id=y]/c N nestingdepth= 0
/a[@id=x]//c N nestingdepth= 0
/a[./b/c]/b N nestingdepth= 1 (if O is IDable)or 0
(otherwise)
/a[count(./b/c) = 5]/b N nestingdepth= 1 (if O is
IDable)or 0 (otherwise)
/a[count(./b[./c[@id=1]])] N nestingdepth= 2 (ifP is IDable)or 1 (if P is not IDable,but O is) or 0 (oth-
erwise)

Thecomplexity of evaluatinga queryincreaseswith thenesting
depthof the query. Querieswith nestingdepth0 are the easiest
to solve, becausethepredicatescanalwaysbeevaluatedusingthe
local information (which is always presentat the site that owns
the node). However, as the examplesin Section2 showed, even
this caseis challenging,andtherewereno goodpreviously known
solutions.

The basicQEG scheme.In theremainderof this section,we de-
scribeourapproach,assumingnestingdepth0 (Extensionsto larger
nestingdepthsarediscussedin Section4.) BecauseXPATH is in-
sufficiently powerful, weuseXSLT to querythedatabase,evaluate
what is there,andsendsubqueriesto gather the missingpartsof
theanswer. Weshow how theXSLT programsusedby ourscheme
canbegenerateddirectly from theXPATH query.

Given an XPATH query Q , let LOCAL -INFO-REQUIRED be the
setof elementnames(tags)suchthat the final answershouldin-
cludetheentirelocal informationfor any IDablenodewith oneof
thesetags,if thenodesatisfiesQ . As anexample,for thefollowing
queryon thedatabaseshown in Figure4,
... /neighborhood[@id=’Soho’]/block

LOCAL -INFO-REQUIRED = R block, parkingSpace S Thequery

... /neighborhood[@id=’Soho’]/block/parkingSpace

on the other hand, only requireslocal information about park-
ingSpace. Notethat,thisisconsistentwith thesemanticsof XPATH,
becauseXPATH returnsentiresubtreesin thedocumentrootedat
thenodesselectedby thequery.

Whena sitemanagerreceivesa query Q , it generatesanXSLT
programfrom thatquerythatexecutesthefollowing algorithm:

1. Let PUT"V bethenodein thedocumentunderconsiderationat
any time, '):XW$Y)Z\[betheelementname(tag)of P�T"V , andlet]
bethesetof predicateson '9:XW Y)Z\[in thequery.

2. Set PUT"V to betherootof thedocumentat thesite.

3. Dependingon the statusof PUT^V in the document,thereare
four possibilities:

(a) status= incomplete: In this case,seeif] canbe di-
videdinto two predicates]`_ba and]c[�d)e9f , suchthat]`_ba
containsonly predicateson the id attribute, and]hg
]`_ba$ijij]`[kd9e)f . If this is possible,evaluate]`_ba against
the currentnode. If it evaluatesto true, then form a
subqueryfor evaluatingthe restof the queryandnote
this by addinganasksubquerytagto theanswerbeing
formed.A post-processingstepwill thensendthissub-
queryto its LCA, in orderto gathermissingpartsof the
answer. If]c_la evaluatesto false,it is alsonotedin the
answerbeingformed,sothatthepost-processorknows
thata subquerydoesnotneedto beasked.
If the division of] into two such predicatesis not
straightforward, we assumethat the nodemay be part
of the answerand form a subqueryfor evaluatingthe
restof thequeryasabove(i.e.,wewereunableto avoid
this subquery).

(b) status= id-complete: The actionsperformedin this
casearesimilar to theabove case,exceptthatif '):XW Y)Z\[
is not in LOCAL -INFO-REQUIRED and]mgn]`_ba , then
we can recurseon the childrennodeswithout having
to form any subquery. On the otherhand,if '9:XW Y9Z,[is
in LOCAL -INFO-REQUIRED, thenthelocal information
for this nodeis requiredin theanswer, andassuch,we
mustaskasubqueryto gatherthatinformation.

(c) status= owned: In this case,we have completein-
formation to evaluatethe predicate] . If] is satis-
fied, then recurseon the IDable childrenof P�T"V , and
alsocopy the local information into the answerbeing
formeddependingonwhether'9:XW Y9Z,[is in LOCAL -INFO-
REQUIRED. Only localID informationneedstobecopied
if '9:XW Y9Z,[is not in LOCAL -INFO-REQUIRED.

(d) status= complete:Theactionsperformedin this case
are similar to that for the above case,except for any
predicatesthat specify consistency requirements.We
will discussthiscasein thenext section.

This XSLT programis compiledandthenexecutedon the site
document,with the resultbeingan annotateddocumentthat con-
tainsasubsetof theanswerplusplaceholdersfor wheresubqueries
needto beasked(if any). Whenthesubqueriesreturn,thereturned
answersaresplicedin, replacingthe placeholders.Whenall the
subquerieshave returned,the resultingansweris returnedto the
sitethatsentQ .

4. EXTENSIONS
In this section,we discussextensionsto our scheme,including

cacheconsistency issues,handlinglargernestingdepths,ownership
changes,schemachanges,andspeedingupXSLT processing.

Query-basedconsistency. Due to delaysin the network andthe
useof cacheddata,answersreturnedto userswill not reflect the
absolutelymost recentdata. Instead,we provide a very flexible
mechanismin which each querymayspecifyits tolerancefor stale
data. We storetimestampsalongwith the data,indicating when
the datawascreated.An XPATH queryspecifyinga toleranceis
automaticallyroutedto thedataof appropriatefreshness.In partic-
ular, eachquerywill take advantageof cacheddataonly if thedata

6

is sufficiently fresh. For example,a consistency predicatesuchas
[timestampo > now - 30] in a query Q meansthat Q can be an-
sweredusingany datawhosetimestampis within 30 secondsof
thetime Q wasposed.

Althoughallowing usersto specifyadegreeof stalenessviolates
strictdatatransparency, webelieveit providesaneasilyunderstand-
ablemeansfor queriesthat tradeoff freshnessfor possiblylarge
performanceimprovements.For example,whena useris several
miles from her destination,theParkingSpaceFinderservicemay
fire off queriesthat tolerateminutes-oldavailability information.
As theuserapproachesherdestination,theservicefiresoff queries
thatinsistuponthemostrecentdata.

Thefollowing changesto theXSLT programareneededto han-
dle consistency predicatesin queries.If status= owned, thenwe
ignoreconsistency predicates,becausethe owner of the datahas
the freshestcopy. Thus the semanticsof the above consistency
predicateallows for returning the freshestdataeven if that data
is more than 30 secondsold. This ensuresthat usersget an an-
swer. Alternatively, the systemcould returnan error message.If
status= complete, andwe canseparateout theconsistency predi-
cates]cY)p�q$e _ e9frd9q\Y)s from] , thenwe first check]c[�d)e9f — therestof
thepredicatesin P. If thatevaluatesto false,thenthereis no need
to checkfor theconsistency predicates.If thatevaluatesto trueand
]tY)p�q$e _ e9f5d)q\Y9s evaluatesto false,thenwe adda asksubquerytag at
thispoint to signalthepost-processor. As before,if] Y?p�q\e _ e9f5d9q,Y9s is
not readilydividedout, we fall backto addinga asksubquerytag,
in orderto querytheowner.

Lar ger nestingdepths. Themainchallengewith XPATH queries
with nestingdepthsgreaterthat 0 is that the query may specify
predicatesthat can not be evaluatedlocally (recall the example
queryin Section3.5). Many suchqueriesarequite naturalin the
kindsof applicationsweareinterestedin.

Therearetwo approachesto solvingsuchqueries.Thefirst ap-
proachis to collectall thedataneededto evaluatethepredicateat
onesite.Themainquestionhereis: whatdataneedsto fetchedand
at which siteshouldthedatabecollected?Referringto our exam-
plequeryfrom Section3.5,

.../block[@id=’1’]

/parkingSpace[not(price > ../parkingSpace/price)]

even thoughthe predicatewith nestingdepth1 is associatedwith
theparkingSpacetag,becauseof theupward referencein thepred-
icate(“..”), thedataneededto checkthispredicateis theentiresub-
treeundertheblock tag.

Currently, we solve sucha queryby analyzingthequeryto find
out the earliesttag that is referredto in sucha nestedpredicate
in the query. In this examplequery, this tag would be the block
tag. During queryexecution,whentheXSLT programencounters
a nodewith this tag, it stopsthe executionat that point, issuesa
subqueryto fetchall thedataunderthatblock (in this case,using
thequery.../block[@id=’1’]/), andproceedswith theexecution
whentheanswerto thesubqueryreturns.Thisapproachguarantees
thatwhenever thepredicateis evaluated,all thedatathatit requires
is alwayspresentlocally.

Thisapproachmaynotbeoptimalfor certainqueries.For exam-
ple, considera (frivolous)queryrequestingall availablespacesin
all citiesthathave Sohoasa neighborhood:

... /city[./neighborhood[@id=’Soho’]]/ ...

Fetchingall thedatabelow thecity nodesatthecorrespondingsites
(aswill bedoneby theabove approach)maybeanoverkill for this
query. It wouldbepreferableto justevaluatethepredicatesdirectly,
which canbedoneby firing off subqueriesof theform

boolean(... /city/neighborhood[@id=’Soho’])

We areplanningto implementandexperimentwith this approach
in thefuture.

Ownership changes. For the purposesof load balancingor ac-
commodatingarriving or departingsites,it is usefulto be ableto
dynamicallychangethe ownershipof a setof IDable nodes.The
transitionmustappearsimultaneousto therestof thesystem.The
stepsto be doneto transferan IDablenodeare(1) the site taking
ownershipof an IDablenodefetchesa copy of the local informa-
tion from theowner, (2) any sensorproxy reportingto theprevious
owner is asked to reportto thenew owner, and(3) thenew owner
setsthestatusfor thatnodeto ownedwhile theold ownersetsthe
statusto complete. In addition,theDNSentryneedsto beupdated
to the IP addressof the new owner. Variousrelaxationsin simul-
taneity are possible,due to the fact that fresh dataobsoletesthe
old data.TheDNS updatecanbedonelazily becausetheold site
canreject(or possiblyforward)messagestargettingthetransferred
IDablenode.

Schemachanges. Schemachangesthat do not affect the hierar-
chy of IDable nodescanbe donelocally by the site managerthat
owns the relevant fragmentof thedata. Suchschemachangesin-
cludeaddingattributesto, or deletingattributesfrom thedata,and
addingor removing non-IDablenodes.Thismight leadto transient
inconsistenciesas the site managerhasno way of knowing who
elsemight have cachedthatpart of thedata. But in a continously
changingenvironmentsuchasours,we expect this inconsistency
to becorrectedquickly.

Someof theschemachangesthataffect thehierarchyof theID-
ablenodescanbehandledsimilarly. For example,additionor dele-
tion of IDablenodesis performedby thesitemanagerthatownsthe
parentof theaffectedIDablenode.More drasticschemachanges,
suchasa restructuringof thehierarchy, mayhave to beperformed
by collectingtheentiredocumentat onesite,makingthechanges,
and redistributing the documentback amongstthe nodes. Once
again,sucha changemight leadto transientinconsistenciesin the
data that, althoughundesirable,are permissiblefor the kinds of
applicationswearelookingat. Morestringentconsistency guaran-
teescanalsobeimplementedby maintainingauxiliary information
aboutthecopiesof thedataaswe will discussin Section6.

Speedingup XSLT processing. Recall that the QEG process-
ing at a site involvescreatinganXSLT programfrom theXPATH
query, compilingtheXSLT program,andthenexecutingthecom-
piledprogramagainstthedocument.As demonstratedin Section5,
thereis significantoverheadin the compilationstep. We now de-
scribeour techniquefor eliminatingmostof this overheadby di-
rectly generatingmostlycompiledXSLT programs.

Whena site managerstartsup, oneof the first thingsit doesis
to createandcompilean XSLT programusinga dummyXPATH
query. Oncethis is done,it identifiesthe partsof this compiled
XSLT querythatdependontheXPATH query. Subsequently, when
the site managerneedsto createthe XSLT programfor an actual
XPATH query, it simply modifiesthis XSLT programdirectly to
setthequery-dependentinformation.Somecompilationis still re-
quired,becausethequery-dependentstructuresarein XPATH and
needto berecompiled.But thecostis muchlower thanthecostof
compilingtheentireXSLT program.

5. PERFORMANCE STUDY
In thissection,wepresentapreliminaryperformancestudydemon-

stratingthefeaturesof oursystem,andtheflexibility andeffective-
nessof our architecture. The salientpoints of our experimental
studycanbesummarizedasfollows :

� Ourflexiblearchitectureallowingarbitrarylogical-to-physical

7

Queries
u

SA Updates
v

Parking Space

Block

Neighborhood

City

Queries
u

SA Updates
v

Neigh-
borhood

City

(i) (ii)

Parking Space

Block

Queries
w

SA Updates
x

Neigh-
borhood

City

DNS
Server

Queries
w

SA Updates
x

DNS
Server

City

County

(iii) (iv)

Block

Neighborhood

Parking Space

Block

Figure6: SensorDatabaseAr chitectures

Figure5: Webcamsmonitoring toy parking lots

mappingscan harvest the processingpower in the system
moreeffectively thanany traditionalsolution.

� Cachingcanbe very effective in both reducinglatenciesof
queries,andin offloadingwork to increaseoverall through-
put.

� Compiling XSLT queriesdirectly leadsto hugesavings in
queryprocessingtime.

5.1 Experimental setup
For mostof our experiments,we usea homogenousclusterof 9

2GHz PentiumIV machinesrunningRedhatLinux 7.3 connected
by alocalareanetwork. In ourcurrentprototype,wehave10sensor
proxiesthateachhaveanassociatedsensor(webcam)thatmonitors
a toy parking lot (Figure 5). For theselarger-scaleexperiments,
we simulateas many sensorproxiesas requiredby running fake
sensorproxiesthatproducerandomdataupdates.As our backend,
we usetheApacheXindice 1.0 [1] native XML database.Xindice
currentlydoesnotsupportXSLT processing(thoughit is aplanned
feature).Hence,in our currentprototype,we usetheXalanXSLT
processor[2] for that purpose(Xalan is alsousedby Xindice for
processingXPath).

We useanartificially generateddatabasefor our parking space

finderapplicationconsistingof a total of 2400parkingspacesus-
ing ahierarchysimilar to theoneshown in Figure1. Thisdatabase
modelsa smallpartof a nationwidedatabaseandcontains2 cities,
3 neighborhoodspercity, 20blocksperneighborhood,and20park-
ingspacesperblock. Weenvisionthatthequeriesin suchadatabase
will typically askfor availableparkingspacesgeographicallyclose
to a particularlocation. As describedin Section3.4, the queries
areinitially routedto the site managerthatowns the lowestcom-
monancestorof thedata,andassuch,we distinguishbetweenthe
queriesin ourworkloadbasedonthelevel in thishierarchytowhich
they arefirst routed.

� Type 1: Thesequeriesaskfor datafrom oneblock,specify-
ing theexactpathto theblock from theroot.

� Type 2: Thesequeriesaskfor datafrom two blocksfrom a
singleneighborhood.

� Type 3: Thesequeriesask for datafrom two blocks from
two differentneighborhoods.(Sucha querymay be asked
by a userif her destinationis nearthe boundaryof the two
neighborhoods.)

� Type 4: Thesequeriesask for datafrom two blocks from
two different cities. (The destinationis nearthe boundary
betweentwo cities.)

We expectthattype3 andtype4 querieswill berelatively uncom-
mon,andmostof thequerieswill beof type1 or 2. Hence,wewill
alsoshow resultsfor mixedworkloadsthatincludemorequeriesof
thefirst two types.

5.2 Handling sensorupdates
An updatefrom a sensingagentis typically routeddirectly to

thesite managerthatowns the relevant nodein thehierarchy. On
thesitemanagerside,processingasensorupdateinvolvesupdating
the documentat the site with the new availability information,as
well astimestampingthe data. A singlesite manageris typically
ableto handle200updatesa secondin our currentprototype.The
total numberof updatesthat canbe handledby the systemscales
linearlywith thenumberof sitemanagersamongwhich thedatais
distributed.

5.3 Ar chitectural comparison
With our first setof experiments,we demonstratetheflexibility

of our arhcitecturein harvestingtheprocessingpower availablein
thesystem.We considerfour differentarchitectureseachof which

8

QW-1y QW-2y QW-3y QW-4y QW-Mix

Query Workloadz
0

20

40

60

80

100
A

ve
ra

ge
 T

hr
ou

gh
pu

t (
qu

er
ie

s/
se

c)
Architecture 1
{
Architecture 2
{
Architecture 3
{
Architecture 4
{

Figure7: Query Thr oughputsfor Various Ar chitectures

is a viablealternative for our application.We show resultsfor five
queryworkloads,QW-1, QW-2, QW-3, QW-4, consistingof ran-
domlygeneratedqueriesof types1 to 4 respectively, andQW-Mix,
amixedqueryworkloadthatasks40%queriesof type1 and2 each,
15%queriesof type3 and5% queriesof type4.

� Centralized – Figure6(i): In thisarchitecture,all thedatais
locatedatacentralserver, anddataupdatesaswell asqueries
aresentto a centralserver. Suchan architecturecannot be
expectedto scalevery well asit canhandlevery few sensor
updates(200updatespersecond).

� Centralized querying, distrib utedupdate– Figure6(ii): In
thisscenario,weoffloadthesensorupdatestoothermachines
by distributing the blocks amongthe rest of the machines.
The queriesarestill sentto the centralizedserver, because
theserver is thesolerepositoryfor themappingfrom blocks
to physicalmachines. This scenariois intendedto simu-
lateasimpledistributedobject-relationaldatabase,wherethe
blocksform anobject-relationaltablethat is distributedand
the hierarchyis maintainedasanothersetof tablesthat are
all storedat thecentralserver. Of course,this is not theonly
possibledesignusinganobject-relationaldatabase,but most
suchdesignswill suffer from similar flaws as this design.
(Object-relationalsensordatabasesarediscussedfurther in
Section6.)

� Distrib uted querying, distrib uted update, fixed two-level
organization – Figure6(iii): This scenariois similar to the
above scenario,exceptthat we usethe DNS server to store
themappingfrom blocksto physicalmachines.Thishelpsin
solvingthequeriesof type1 significantly, but doesnot help
muchwith otherkindsof queries.

� Distrib utedquerying, distrib utedupdate,hierarchicalor-
ganization– Figure6(iv): A morelogicalorganizationof the
data,consideringthe natureof the queryworkloads,would
be to arrangeit hierarchicallyin a geographicfashion. We
do this by assigningthe6 neighborhoodsto 6 differentsite,
assigningthe2 citiesto two differentsites,andassigningthe
restof thehierarchyto onesite.This correspondsto thesce-
narioof choicein IrisNet.

Note thatall architecturesusethesamenumberof sensorproxies,
andthelatterthreearchitecturesusethesamenumberof sites.

Figure 7 shows the query throughputsfor thesefour architec-
turesfor thefive queryworkloads.As we cansee,thecentralized
solutiondoesnot scalevery well for queryingeither, andcanhan-
dle very few queriesefficiently. Althoughdistributingonly theup-
dates(Architecture2) increasesthenumberof sensordataupdates
thesystemis ableto handle,it only improvesquerythroughputby
a factorof 2 over the centralizedsolution,becauseall queriesgo
throughthe centralizedserver. Using DNS for self-startingdis-
tributed queries(Architecture3) shows the effectivenessof this
technique,asthethroughputfor type1 queriesincreasesby nearly
anorderof magnitude.However, all otherqueriesstill go through
the centralserver, which is the bottleneckfor the other typesof
queries,andalsofor themixedworkload. Thehierarchicaldistri-
butionof data(Architecture4) turnsout to performthebestoverall
as it can handleall kinds of queriesquite well. It doesperform
25% worsethan Architecture3 for type 1 queries,becauseit is
using25%fewer machinesin processingthesequeries.However,
it performsat least66% betterthanthe otherarchitectureson the
mixedworkload.

Becausethe mappingof logical nodesin the hierarchyto the
physicalsitesis not fixed in our architecture,our systemis able
to handlethe skewed queryworkloadsarising in our application
muchmoreeffectively thanotherarchitectures.For example,dur-
ing businesshours,a largepercentageof thequeriesmaybeasking
for informationfor blocksin theDowntownneighborhood.Sucha
skewedqueryworkloadcanbemuchbetterhandledby redistribut-
ing thoseblocksacrossall availablemachines,asopposedto them
beingonasinglenodeasin theabovemapping.Figure8 showsthe
resultsof a simpleexperimentwherewe skewed the querywork-
loadto consistof 90%queriestargettinga singleneighborhoodfor
type1 andtype2 queries.As we cansee,theoriginal distribution
of thedata(Architecture4) doesnot performvery well, whereasa
morebalancedarchitecturethatdistributestheblocksin thatneigh-
borhoodacrossall siteshasa factorof 4 higherthroughputfor this
workload.

5.4 Dynamic load balancing
As discussedin the earlier section,our systemis capableof

changingthemappingof logicalnodesin thehierarchyto thephys-
ical sitesdynamicallywhile still beingableto answerqueries.

Weshow theeffectivenessof dynamicloadbalancingthroughan
experimentthat tracedthe averagethroughputof the systemover
time. For this experiment,we startedmultiple queryingclients
all askingqueriesof type 1 with 90% of the queriesdirectedto
afixedneighborhood| , and10%of thequeriesaskingfor ablock
in a randomlychosenneighborhood.Figure9 shows the average
throughputof thesystemover time. As we cansee,initially when
all the blocksin neighborhood| arelocatedon a singlesite, the
averagethroughputof the systemwasquite low. At 206 seconds
into theexperiment(thefirst dashedline), we startedredistributing
thedataon thatsiteto othersitesby explicitly askingthesiteman-
agerto delegateits blocksto othernodesoneby one.In ourcurrent
prototype,this hasto bedoneby sendinga requestfor delegating
ownershipof eachblockoneat a time. Theserequestsweresentat
even intervals until 373seconds(theseconddashedline). At that
time, theblocksunderneighborhood| weredistributedacrossall
the machinesevenly. As we can see,the averagethroughputof
the systemincreasedby nearlya factorof 3 even with this crude
load-balancingscheme,while the systemwasstill ableto answer
queries.

5.5 Caching
Cachingof queryresultshastwo benefits:it canbe usedto re-

9

QW-1} QW-2} QW-Mix2~
Query Workloads�

0

20

40

60

80

100

A
ve

ra
ge

 T
hr

ou
gh

pu
t

Original Distribution
�
Balanced Distribution

Figure 8: Load Balancing (QW-Mix2
consistsof 50% type 1 and 50% type
2 queries)

0
�

200
�

400
�

600
�

Time (secs)

0

50

100

150

200

N
um

be
r

of
 q

ue
rie

s
fin

is
he

d
in

 p
re

ce
di

ng
 5

 s
ec

�

��� �(� � �2�(�

Figure9: Dynamic Load Balancing

QW-1� QW-2� QW-3� QW-4� QW-Mix

Query Workload�
0

20

40

60

80

100

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
c)

No Caching
�
Caching with no hits
�
Caching with 50% hits
�
Caching with 100% hits
�

Figure10: CachingThr oughputs(Ar chitecture4)

duceresponsetimesby bringing thedatacloseto thequeries,and
it canbeusedto off-loadwork from thesitesthatown populardata
to lessloadedsites(auto-tuning). Figure10 shows how caching
canhelpin increasingoverall throughputof thesystemby offload-
ing work. We usethefourth architectureandshow resultswithout
caching,with cachingbut no hits (this demonstratestheoverheads
of caching),with cachingand50% hits, andfinally, with caching
and100%hits. As we cansee,cachinginducesminimal overhead
in the system. Cachingdoesnot affect the throughputsfor type
1 andtype 2 in this scenariobecausethesequeriesarealwaysdi-
rectedto themachinethathasthefull data.On theotherhand,for
type3 andtype4 queries,we seethatastheprobabilityof hits in-
creases,theoverall throughputof thesystemreducessignificantly.
This happensbecauseafter the initial few queries,all the queries
are completelyansweredby the top-level sites(sitesthat are as-
signedto thecity andcountynodes),andthesenodesbecomethe
bottleneck.As wewill seein Section5.6,thetimetakento forward
a query to anothernodeis much lessthanthe time taken to pro-
cessthequerywhentheansweris presentat a node.This suggests
theneedfor bypassingthecacheunderheavy loadimbalance.On
theotherhand,cachingimprovesthroughputby up to 33%for the
morerealisticmixedworkload,becausetheotherwiseidle top-level

QW-1� QW-2� QW-3� QW-4� QW-Mix

Query Workload�
0

100

200

300

400

500

A
ve

ra
ge

 L
at

en
cy

 (
m

s)
�

No Caching
�
Caching with no hits
�
Caching with 50% hits
�
Caching with 100% hits
�

Figure11: Caching Latencies(Ar chitecture4)

sitescanabsorbsomeof theloadfrom thelower-level sites.
Theeffectsof cachingaremorepronouncedin termsof latency.

Unfortunately, becausewe are not using a wide areanetwork in
our experiments,it is hardto seetheseeffectsin our experiments.
Figure11shows theaveragelatenciesfor thefive workloadsunder
differentcachingscenariosasdiscussedabove. Even in the case
of near-zeronetwork latencies,we canseethatquerylatenciesare
reducedby 10–33%for type3 andtype4 queries,andfor themixed
workload.

5.6 Micr o-benchmarks
To understandhow the time to answera query is distributed

amongstvarioustasks,weransomemicro-benchmarksagainstour
system.Figure12 shows thebreakdown of queryprocessingtime
dependingon at which level in thehierarchythequerywasasked.
Thequeryusedin thisexperimentwasaqueryof type1 askingfor
oneparticularblock. Eventhoughthis querywill alwaysberouted
to the site that owns the neighborhood,we artificially routedthis
queryto thesiteshigherup in thehierarchyto seetheeffect of the
numberof hopstaken by the query. Threesettingswerestudied:
smalldatabasewith naive XSLT creation,smalldatabasewith fast
XSLT creation,andlargedatabasewith fastXSLT creation.

As we cansee,for all of thescenarios,thetotal processingtime

10

Small Database, Naive� Small Database, Fast� Large Database, Fast�0

100

200

300

400

500
A

ve
ra

ge
 ti

m
e

(m
se

c)
Rest
Communication
Executing the XSLT Query
Creating the XSLT query

� � �

� � � � � �
� � � �

� � � � � � � �� � � � �
� � � � � � � � � �

XSLT Creation XSLT Creation XSLT Creation

Figure 12: Micr obenchmarks: when the query is routed
to the site managerthat owns (i) the county node,(ii) the
city node,(iii) the neighborhoodnode

consumedby the query is reducedsignificantly (by over 50%) if
thequeryis routeddirectly to thesitethathasthedata,onceagain
demonstratingtheeffectivenessof self-startingdistributedqueries.
This experimentalsoshows why we choseto optimizethe XSLT
querycreationtime. As we cansee,if the XSLT query is gener-
atedandcompiledusingtraditionalinterfaces,thenthe time taken
for this completelydominatesthe overall queryprocessingtime.
Usingdirectcompilationto XSLT from theoriginal XPATH query
reducestheoverall queryprocessingtime by over 50%!

To seehow ourqueryprocessingmechanismscaleswith respect
to thedatabasesize,weincreasedthetotalsizeof thedatabaseby a
factorof 8 by doublingthenumberof neighborhoods,thenumber
of blocksin a neighborhood,andthenumberof parkingspacesin
a block. As we cansee,theprocessingtime increasedby lessthan
20%at eachof thenodes!

Thesemicro-benchmarksalsoshow wherethebottlenecksin our
currentprototypeare. As we cansee,mostof the time is spentin
executingtheXSLT queryandduringCPUprocessingfor commu-
nication. The communicationpart also includesthe costof con-
structinganddeconstructingthe messages.We believe that much
of this is becausewe are using Java 1.3; using JIT (just-in-time
compilation)andnewer XSLT processingpackagesshouldsignifi-
cantlyreducethis time.

6. RELATED WORK
Previouswork in sensordatabaseshasfocusedprimarily on net-

works of closelyco-locatedsensorswith limited resources[5, 26,
27]. Thesensorqueryprocessingsystemoperatesdirectly on con-
tinuous,never-endingstreamsof sensordatathat arepushedinto
thequeryplansfor continuousqueries.Thestreamof dataisviewed
asastreamingrelation(e.g.,in Fjords[26]) or atimeseries(e.g.,in
Cougar[5]). Theseefforts have developedtechniquesfor answer-
ing continuousqueriesoverstreamingdataandfor performingcer-
tain queryprocessingtasksin thesensornetwork itself in orderto
eliminatecommunicationandextendsensorbatterylifetimes.

This papercomplementsthis previous work by addressingfun-
damentalchallengesin distributedqueryprocessingoverwidearea
sensordatabases.Basedon theapplicationswe wereconsidering,
wesoughtto provideamorefamiliarabstractionof thedatabaseas
the collectionof valuescorrespondingto the mostrecentupdates
(e.g.,thecurrentlyavailableparkingspaces).Evenin thismoretra-
ditional setting,therewereplentyof challengesto overcome.The
distributeddatabaseinfrastructurein IrisNet sharesmuchin com-
monwith a varietyof large-scaledistributeddatabases.For exam-
ple,DNS [28] reliesona distributeddatabasethatusesa hierarchy
basedon the structureof host names,in order to supportname-

to-addressmapping.LDAP [35] addressessomeof DNS’s limita-
tionsby enablingricherstandardizednamingusinghierarchically-
organizedvaluesandattributes. However, a key differenceis that
theseefforts targeta very narrow setof lookupqueries(with very
limitedpredicates),nottherichnessof aquerylanguagelikeXPATH.

Abiteboul et al. [19] presenttechniquesfor materializingand
maintainingviews over semistructureddata. Answeringqueries
from views is a hardproblemin general.Our cachinginfrastruc-
turediffers significantlyfrom this work in thatwe do not storeor
usethe queriesthat resultedin the cachingof the data,only the
dataitself. Our approachis moredata-drivenin nature.We gener-
alizesubqueries,tagthedata,andmaintaincertaininvariants,all to
makeourpartial-matchcachingschemetractable.Therehasbeena
lot of work oncachingin distributeddatabases,andobject-oriented
databases.Franklin andCarey [22] presenttechniquesfor client-
server cachingin object-orienteddatabases.Variouswork [13, 12,
30, 3, 25, 4, 6, 29] discussesissuesof datareplicationandrepli-
catemanagementin distributeddatabases.Much of this work has
focusedon maintainingreplicasconsistentwith the original data,
with variouslevelsof consistency guarantees.In ourwork, wetake
theapproachof not providing any strict guaranteesof consistency.
We believe that for the kinds of applicationsfor which wide area
sensordatabaseswill be used,suchstrict guaranteesare not re-
quired. Dependinguponthe requirementsof an application,it is
certainlypossibleto provide suchguaranteesby maintainingaux-
iliary informationaboutthereplicasof thedatain thesystem.Our
approachis more akin to DNS, in that it is basedon specifying
consistency requirementswith thequeries,andusinga time-to-live
(ttl) field associatedwith the cachedcopiesin orderto determine
staleness.

Recently, therehasbeenalot of interestin streamingdatasources
andcontinuousqueryprocessing[9, 20, 18]. This work is related
to oursin that the sensorproxiescanbe thoughtof asproducing
datastreams,andcontinuousqueriesover suchstreamsarequite
naturalin sucha system.To our knowledge,mostof this work fo-
cusesonacentralizedsystem,whereasdistributeddatastorageand
queryprocessingis oneof our maindesigngoals.As a result,the
queryprocessingchallengeswe facein oursystemarequitediffer-
ent.Also, thesesystemsassumethatthestreamingdatasourcesare
relationalin nature,whereaswe useXML asourdatamodel.

Although we proposea hierarchical,native XML storageap-
proachto wide areasensordatabases,an alternative would be to
usea distributedobject-relationaldatabase[32] to storethe leaves
of the XML document(asdiscussedin Section5). In our park-
ing spacefinder application,thesewould correspondto eitherthe
blocks or the parking spaces.The hierarchyinformation can be
maintainedeitherat a centralserver or alongwith theleavesthem-
selves. This approachhasseveralcritical disadvantages.First, the
hierarchyinformationbecomesa bottleneckresource,asdemon-
stratedin our performancestudy. Approachesto avoid this bottle-
neckwould likely entail mimicking muchof our hierarchicalap-
proach,and hencewould benefit from the techniquespresented
in this paper. Second,the richnessof XML allows transparent
schemachanges,andthe useof highly expressive languagessuch
asXPATH, XSLT or XQuery. Many queriesthat canbenaturally
describedusingtheselanguagesarenot easilyexpressiblein SQL.
Third, useof sucha databaseseriouslyrestrictshow datacanbe
partitionedamongavailablesites,limiting opportunitiesfor load-
balancing.Our architecturealsoenablespowerful cachingseman-
tics naturally;we arenot awareof any work on cachingin object-
relationaldatabasesthat is equally aspowerful. Much work has
alsobeendoneon storingXML usingobject-relationaldatabases,
andpublishingobject-relationaldataasXML [15,24,33,31]. This

11

work is orthogonalto theissueswe discusshere,asthechallenges
in our� query processingcomemainly from the single document
view of thedata,andthedistributednatureof oursystem.

Recentwork on peer-to-peerdatabases[14, 7, 21, 16] is quite
closelyrelatedto our work. Althoughour datais organizedhierar-
chically, andfor performancereasons,we expecttheparticipating
sitesto alsohave a hierarchicalorganization,this is not required
by our architecture.As such,theparticipatingsitescanbethought
of as peerscooperatingwith eachother to storeand query data.
In [14], distributedhashtables(DHTs) performtheanalogousrole
of theDNS server in our architecturein thatbothof themareused
to find relevant datasatisfyinga query. DNS is moreattractive in
our scenariobecauseof the hierarchicalnatureof our data. Our
work differsconsiderablyin theactualqueryprocessingpart itself
becauseof our useof XML andtheXPATH querylanguage. [21,
16] discussissuesof dataplacement,andcachingin peer-to-peer
networks. TheOLAP cachingframework presentedin [16] relates
quitecloselyto ourcachingframework, but handlesdifferentkinds
of dataandqueries.

Thereis a largebodyof literatureon loadbalancingtechniques
for parallelanddistributedsystems(e.g., [17, 8, 23, 11, 34, 10]).
Our currentsystemprovidesa naturalmechanismfor performing
loadbalancing,but we have not yet determinedeffective loadbal-
ancingpoliciesfor oursetting.

7. CONCLUSIONS
In thispaper, wemotivatedtheview of awideareasensordatabase

asadistributedhierarchicaldatabasewith timestampedupdatesar-
riving at the leaves. We showed theadvantagesof usingXML as
a datarepresentation,constructinga logical site hierarchymatch-
ing the XML documenthierarchy, mappingthis logical hierarchy
onto a smallerhierarchyof physicalsites,andproviding for flex-
ible partitioningandcachingthat adaptsto queryworkloads. We
describedthe many challengesin providing efficient and correct
XPATH query processingin suchan environment,and proposed
novel solutionsto addressthesechallengesin an effective, flexi-
ble, unified,andscalablemanner. New techniqueswerepresented
for self-startingdistributedqueries,query-evaluate-gather, partial-
matchcaching,andquery-basedconsistency. Experimentalresults
on our IrisNet prototypedemonstratedthesignificantperformance
advantagesof ourapproachevenfor asmallcollectionof sites.We
anticipatethat theseadvantageswill only increasewhenIrisNet is
deployedover hundredsof sitesandthousandsof miles.

8. REFERENCES
[1] ApacheXindiceDatabase.http://www.dbxml.org.
[2] Xalan-Java.http://xml.apache.org/xalan-j.
[3] D. Agrawal andS.Sengupta.Modularsynchronizationin

distributed,multi-versiondatabases:Versioncontroland
concurrency control.IEEE TKDE, 1993.

[4] R. Alonso,D. Barbara,andH. Garcia-Molina.Datacaching
issuesin aninformationretrieval system.ACM TODS, 1990.

[5] P. Bonnet,J.E. Gehrke,andP. Seshadri.Towardssensor
databasesystems.In MDM, 2001.

[6] S.W. ChenandC. Pu.A structuralclassificationof
integratedreplicacontrolmechanisms.ACM TODS, 1992.

[7] A. CrespoandH. Garcia-Molina.Routingindicesfor
peer-to-peersystems.In ICDCS, 2002.

[8] A. Fox et al. Cluster-basedscalablenetwork services.In
SOSP, 1997.

[9] D. Carney etal. Monitoringstreams- A new classof data
managementapplications.In VLDB, 2002.

[10] D. Fergusonetal. An economyfor managingreplicateddata
in autonomousdecentralizedsystems.In ISADS, 1993.

[11] D. R. Kargeret al. Consistenthashingandrandomtrees:
Distributedcachingprotocolsfor relieving hot spotson the
world wideweb. In ACM STOC, 1997.

[12] J.Grayet al. Thedangersof replicationanda solution.In
SIGMOD, 1996.

[13] J.Sidell et al. Datareplicationin mariposa.In ICDE, 1996.
[14] M. Harrenetal. Complex queriesin dht-basedpeer-to-peer

networks.In IPTPS, 2001.
[15] M. J.Carey et al. XPERANTO: Publishingobject-relational

dataasXML. In WebDB, 2000.
[16] P. Kalniset al. An adaptive peer-to-peernetwork for

distributedcachingof olapresults.In SIGMOD, 2002.
[17] R. Blumofeet al. Cilk: An efficient multithreadedruntime

system.In PPoPP, 1995.
[18] R. Motwani et al. Queryprocessing,approximation,and

resourcemanagementin a datastreammanagementsystem.
In CIDR, 2003.

[19] S.Abiteboulet al. Incrementalmaintenancefor materialized
views over semistructureddata.In VLDB, 1998.

[20] S.Chandrasekaranetal. Telegraphcq:Continuousdataflow
processingfor anuncertainworld. In CIDR, 2003.

[21] S.Gribbleetal. Whatcandatabasesdo for peer-to-peer. In
WebDB, 2001.

[22] M. FranklinandM. Carey. Client-servercachingrevisited.In
IWDOM, 1992.

[23] G. Graefe.Queryevaluationtechniquesfor largedatabases.
ACM ComputingSurveys, 1993.

[24] M. Klettke andH. Meyer. XML andobject-relational
databasesystems— enhancingstructuralmappingsbasedon
statistics.LNCS, 1997:151,2001.

[25] N. KrishnakumarandA. Bernstein.Boundedignorancein
replicatedsystems.In PODS, 1991.

[26] S.MaddenandM. J.Franklin.Fjordingthestream:An
architecturefor queriesover streamingsensordata.In ICDE,
2002.

[27] S.Madden,M. J.Franklin,J.M. Hellerstein,andW. Hong.
Tag:A tiny aggregationservicefor adhocsensornetworks.
In OSDI, 2002.

[28] P. V. MockapetrisandK. J.Dunlap.Developmentof the
DomainNameSystem.In SIGCOMM, 1988.

[29] C. OlstonandJ.Widom.Best-effort cachesynchronization
with sourcecooperation.In SIGMOD, 2002.

[30] C. PuandA. Leff. Replicacontrolin distributedsystem:An
asynchronousapproach.In SIGMOD, 1991.

[31] T. Shimura,M. Yoshikawa,andS.Uemura.Storageand
retrieval of XML documentsusingobject-relational
databases.In DatabaseandExpertSystemsApplications,
pages206–217,1999.

[32] M. Stonebraker andG. Kemnitz.Postgresnext generation
databasemanagementsystem.CACM, 1991.

[33] B. Surjanto,N. Ritter, andH. Loeser. XML content
managementbasedon object-relationaldatabasetechnology.
In WebInfo. Sys.Eng., pages70–79,2000.

[34] B. W. Wah.File placementon distributedcomputersystems.
IEEEComputer, 1984.

[35] M. Wahl,T. Howes,andS.Kille. LightweightDirectory
AccessProtocol(v3). Technicalreport,IETF, 1997.RFC
2251.

12

