
IrisNet: An Architecture for Internet-Scale Sensing

Phillip B. Gibbons∗ Brad Karp∗ Yan Ke†,∗ Suman Nath†,∗ Srinivasan Seshan†,∗

∗Intel Research Pittsburgh †Carnegie Mellon University

1 Introduction

The time has come to consider wide-area architectures for
pervasive sensing. Today’s low-cost PCs are deployed glob-
ally, connected to the Internet, and routinely have diverse
powerful sensors attached to them, such as video cameras
(webcams) and microphones. Even a PC’s high-speed net-
work interface is a rich sensor, but one that senses the virtual
environment of a LAN or the Internet, rather than the physi-
cal environment. Taken in the aggregate, the aforementioned
hardware can be seen as an emerging global-scale sensor net-
work. However, this sensor network lacks the architecture,
algorithms, and software system needed to make it respond
to users’ queries.

We envision a global sensing system comprised of
such rich, high-bit-rate sensor feeds—in which voluminous
sensed data streams from vast collections of widely dis-
tributed sensors are available to users for querying as a sin-
gle unit. To illustrate the type of wide-area sensing service
we envision, imagine driving towards a destination in a busy
metropolitan area. While stopped at a traffic light, you query
a Parking Space Finder service using your PDA, by specify-
ing your destination and criteria for desirable parking spaces
(e.g., within two blocks of your destination, at least a four-
hour meter). You get back directions to an available parking
space satisfying your criteria. A half hour later, you return to
your car and discover that it has been dented! By querying
an Accident Witness service using your PDA, you retrieve
images showing how your car was dented and by whom.

These two example applications, a Parking Space Finder
service and an Accident Witness service, support user
queries over large collections of widely distributed video
streams. In the IrisNet (Internet-scale Resource-Intensive
Sensor Network Services) project at Intel Research Pitts-
burgh, we are designing and building an architecture and sys-
tem that enable easy deployment of such wide-area sensing
services over rich data feeds.

To date, sensor network research has largely been defined
by the design of algorithms and systems to cope with the
severe resource constraints of battery-powered, tiny sensors
which use wireless communication—slow CPUs, low-bit-
rate radios, and scarce energy. Such sensor networks are
deployed over a single, contiguous communication domain.
They use simple sensors that provide time series of single nu-
merical measurements, such as temperature, pressure, light

level, etc. Specialized hardware, operating systems, pro-
gramming languages and database systems have been de-
veloped to accommodate this severely constrained environ-
ment [13, 16, 18].

In IrisNet, we seek to broaden the definition of “sen-
sor network” to include the important, complementary class
of wide-area sensor networks—Internet-connected, widely-
dispersed, PC-class nodes with powerful CPUs that can pro-
cess rich sensor data sources. Indeed, such a wide-area sens-
ing architecture is composable with existing low-power sen-
sor networks: IrisNet is equally adept at integrating video
streams from webcam-equipped PCs as at integrating sensed
data from distinct, widely dispersed clouds of low-power
wireless sensors.

In this article, we offer a vision for wide-area sensing ser-
vices; enumerate the technical challenges in achieving this
vision; describe the IrisNet architecture, and how it meets
these challenges; and report on present-day uses of the Iris-
Net system in several real wide-area sensing applications.

2 A Vision for Internet-Scale Sensing

As a broadly applicable architecture for Internet-scale sens-
ing, IrisNet must meet many key demands of sensing appli-
cations:

• Planet-wide local data collection and storage: First
and foremost, Internet-scale sensing entails multitudes
of sensing devices spread across the planet collecting
observations of the physical world. Because the total
volume of data collected is vast, and because it is desir-
able to retain not only the most recent observations, but
also a record of the past, observations must be stored
near their source.

• Real-time adaptation of collection and processing:
Data collection and filtering processes must be recon-
figurable in reaction to the sensed data themselves—
sampling rates may be changed; new, special-purpose
processing routines may be invoked; actuators may
even be controlled to modify data collection. Note that
the decision of whether and how to adapt collection and
processing may be based on sophisticated analysis of
data derived from multiple sensors.

1



• Data as a single queriable unit: The network of sens-
ing devices must appear to the user as a single unit, and
must support a high-level query language. Each query
may operate over data collected from across the global
sensor network, just as a single Google search query en-
compasses millions of web pages. Beyond the keyword
searches offered by Google, the wide-area sensing ar-
chitecture must support rich queries, which may include
arithmetic, aggregation, and other database operators.1

• Queries posed anywhere on the Internet: We are ac-
customed to retrieving information stored anywhere on
the Internet from anywhere on the Internet. Internet-
scale sensing should preserve this ubiquitous informa-
tion access. At the same time, the architecture should
actively seek to exploit any locality between the querier
and the data being queried. Because of the inherent cou-
pling of sensed data to a physical location, most queries
will be posed within tens of miles of the data. For exam-
ple, requests for available parking spaces will be made
by drivers within a few miles of the desired spaces.

• Robustness: In a system that makes use of so many
sensing devices and so many computing devices, fail-
ures will occur often, and the system must operate
smoothly despite these failures, missed observations,
etc.

Internet-scale sensing supports a variety of useful sensor-
enriched services. We have developed a prototype of the pre-
viously mentioned Parking Space Finder service (see side-
bar). Other consumer-oriented services include alert ser-
vices, such as a Bus Alert service, for notifying users when
to head to the bus stop; waiting time monitors for report-
ing on queueing delays at post offices and food courts; lost
and found services for locating lost objects or lost pets; and
watch-my-child (or watch-my-parent) services for monitor-
ing one’s children playing in the neighborhood (or one’s el-
derly parents about town). Other services in a wide vari-
ety of domains hold promise, e.g., epidemic early warning
services (public health), homeland defense services (secu-
rity), computer network monitoring services—see sidebar
(technology), and Internet-scale sensing observatories (natu-
ral sciences) are but a few possibilities. As an example of the
latter, we are collaborating with a team of oceanographers at
Oregon State University to develop a coastal imaging service
on IrisNet (see sidebar).

3 Challenges for Service Authors
For a programmer who wants to deploy a wide-area,
Internet-scale sensing service, several challenges arise on the

1Google is not intended for Internet-scale sensing, and hence offers few
of these features.

way to realizing the vision described in the previous section.
In this section, we describe how IrisNet eases the authoring
of an Internet-scale sensing service.

There are compelling reasons why a sensor must be shared
by multiple sensing services. A particular sensor may be lo-
cated such that it measures a physical area of interest to a
particular service author. But one such sensor may in fact
provide data useful to multiple services. In a naive sensor de-
ployment, each service author would be required to deploy a
separate sensor to monitor the same physical area. The asso-
ciated cost and configuration effort for separate sensors for
each service would likely limit the extent of sensor deploy-
ment, and thus hinder service deployment.

To reduce cost and configuration effort, IrisNet shares sen-
sors among multiple applications. This sharing poses several
challenges to the service author. How does she allocate re-
sources among competing services that use the same sensor?
How does she protect services running on the same sensor
from one another? How does she avoid wasting computa-
tion if two sensing services overlap in the processing they
perform on their input?

Perhaps the two most fundamental challenges in wide-
area sensing are the collection of widely distributed data and
answering of queries over the collected data. IrisNet pro-
vides software tools that automate these two processes in a
service-neutral fashion, so that a wide variety of services can
be deployed on a single IrisNet software infrastructure.

First, let us consider the collection of data. While differ-
ent services may seek different measurements from sensors,
there remains a subset of data collection tasks common to
all services. As a first step, each service must first select
a set of sensor feeds that are relevant to that service. For
example, a Person Locator service may desire a set of video
sensor feeds from cameras that cover a campus or metropoli-
tan area, whereas a Parking Space Finder service may only
need feeds from cameras with views of parking lots.

For scalability when dealing with rich data sources, raw
observed data must be reduced to derived information im-
mediately. Performing this processing near the source of the
data avoids overloading the network, and spreads the com-
putational burden among many machines operating indepen-
dently in parallel. The largest data reduction arises from us-
ing service-specific filtering. For example, filtering code for
a Parking Space Finder service can reduce a compressed 300
Kbps video feed of a parking lot to a few bits per second
of parking space availability information, by processing the
video feed to recognize empty and full parking spaces in the
lot. The IrisNet architecture makes it easy for services to
upload filtering code to sensing devices.

Next, let us consider querying the collected data. Sens-
ing services typically collect filtered sensor readings into a
database which users can query. For example, a Parking
Space Finder service may use a database of parking spot
properties and availability, while a person locator service

2



Parking Space Finder
The Parking Space Finder uses cameras throughout a metropolitan area to keep track of the availability of parking spaces.
Users fill out a Web form to specify a destination, and any constraints on a desired parking space (e.g., does not require a
permit, must be covered, etc.). Based on the input criteria, the Parking Space Finder service identifies the nearest available
parking space that satisfies the user constraints, and then uses the Yahoo! Maps Service to find driving directions to that
parking space from the user’s current location. The figure below shows an example of the driving directions that are then
displayed to the user. These driving directions are continually updated as the user drives towards the destination, if the
availability of the parking spot changes, or if a closer parking spot satisfying the constraints is available. We envision that a
car navigation system will periodically repeat the query as the user nears the destination.

Driving directions to the parking spot are displayed.

Network and Host Monitoring
The IrisLog (www.intel-iris.net/irislog.html) service collects data from host and network monitoring tools
(which act as sensing devices) running on a widely dispersed set of hosts, and allows users to query those data efficiently.
IrisLog is deployed on PlanetLab [22], a research platform composed of hundreds of networked nodes on three continents.
Using a web-based form, users can query sets of PlanetLab nodes (e.g., all the nodes at CMU) by particular metrics (e.g.,
CPU load) and time periods over which the data have been collected (e.g., last one hour). The web user interface also allows
the user to issue arbitrary XPATH queries over the global XML database. In addition to the web-based front end, there are
also programmatic mechanisms to query the database, so that other PlanetLab services can use IrisLog.

Deployed PlanetLab nodes.

3



Coastal Imaging
In collaboration with oceanographers of the Argus [14] project at Oregon State University, we have deployed a coastal
imaging service on IrisNet. The service uses cameras installed at sites along the Oregon coast line and processes the live
feed from the cameras to identify the visible signatures of nearshore phenomena like riptides, sand-bar formations, etc. For
example, the figure below shows how time-averaged exposures of camera images, generated by merging the raw frames
on the left, can be used to identify sand-bar formation. The front-end of this service allows users to query this historical
information distributed across multiple sites. Users can change collection and filtering parameters remotely, and install
triggers to change the data acquisition rate on certain events (e.g., darkness).

(a) Raw video frames (b) 10 minute time exposure

may use a database of individual identifying information
(name, SSN, etc.) and location. Supporting the high update
rates that such services may generate is quite challenging.
For example, consider a person locator service that updates
user positions once every ten minutes. For a moderately
sized metropolitan area of 1.5 million people, the database of
user locations would need to handle approximately 25,000
updates per second. For the entire United States (approx-
imately 300 million people) there would be approximately
500,000 updates per second. One strategy for supporting
these update rates is to partition the database across multiple
nodes. However, such partitioning of a database often limits
the types of queries supported or the efficiency of perform-
ing queries. Fortunately, while all sensing applications allow
users to query the collected sensor readings, their design of-
ten targets particular types of queries. For example, a Park-
ing Space Finder service may require availability queries to
include a target location. Similarly, a person locator service
query may require queries to specify a person’s name and
SSN. Based on these requirements, IrisNet helps developers
by providing tools to implement a hierarchically organized
distributed database. The IrisNet system handles the task of
mapping database fragments onto different nodes and rout-
ing queries to them.

The overriding goal in providing the above support for
data collection and database processing is to reduce drasti-
cally the difficulty of authoring a wide-area sensing service.
In IrisNet, a developer has to do little more than write the
code that performs the filtering of sensor readings and the

University Downtown

Internet

Parking Space Finder Service
OA Group

SA

SA

SA
SA

SA

SA

Person Finder Service 
OA Group

Amy Kim Tom

Figure 1: IrisNet Architecture

schema that defines the contents of the database. In Sec-
tion 4, we describe the details of our implementation for this
support.

4 The IrisNet Architecture
Figure 1 shows IrisNet’s basic two-tier architecture. This
design is motivated by the following observations:

• Despite the differences between types of sensors, de-
velopers need a generic data acquisition interface for
accessing sensors. In IrisNet, the nodes that implement
this interface are called Sensing Agents (SA).

4



</block>

<parkingSpace>
<handicapped>yes</handicapped>
<available>yes</available>

</parkingSpace>
</block>

</neighborhood>
</city>

</state>
</USRegion>

<block id="block2">
<parkingSpace>

<available>yes</available>
</parkingSpace>

</block>

<USRegion id="NE">
<state id="PA">

<city id="Pittsburgh">
<neighborhood id="Oakland">

<block id="block3">
<parkingSpace>

<available>yes</available>
</parkingSpace>

</block>
</neighborhood>
<neighborhood id="Shadyside">

<block id="block1">
<parkingSpace>

<available>no</available>
</parkingSpace>

<block id="block1">

Figure 2: Part of the XML schema used in the Parking Space
Finder service.

• Services need to store the service-specific data pro-
duced by the SAs in a distributed database. In IrisNet,
The nodes that implement this distributed database are
called Organizing Agents (OAs).

In the following subsections, we describe the architecture
of OAs and SAs in detail.

4.1 OA Architecture
Service developers deploy sensing services by orchestrating
a group of OAs dedicated to the service. As a result, each
OA participates in only one sensing service (a single physi-
cal machine may run multiple OAs). The group of OAs for
a single service is responsible for collecting and organizing
sensor data in order to answer the particular class of queries
relevant to the service (e.g., queries about parking spots for
a Parking Space Finder service). OAs also should provide
fault tolerance and balance load across the system.

The Choice of Database. We envision a rich and evolv-
ing set of data types, aggregate fields, etc., within a ser-
vice and across services, best captured by self-describing
tags. In addition, each sensor takes readings from a geo-
graphic location, so it is natural to organize sensor data into a
geographic/political-boundary hierarchy. Hence, we choose

block1

NE

PA

Pittsburgh

Oakland Shadyside

block2 block3block1

Figure 3: The hierarchy defined by the id-tagged nodes in
the Parking Space Finder service.

to represent sensor-derived data in XML since it is well-
suited to representing such data. Figure 2 shows part of an
XML document describing the schema used for the Parking
Space Finder service. The schema describes the static (e.g.,
<handicapped>) and dynamic (e.g., <available>)
metadata as well as the hierarchy used by the service. The
database schema provided by the service author identifies the
hierarchical portion of the database through the use of spe-
cial id tags. Figure 3 shows the tree representation of the
hierarchy formed by the id-tagged nodes.

Distributing the Database. In order to adapt to query and
update workloads, IrisNet dynamically partitions the sensor
database among a collection of OAs. IrisNet permits an OA
to own any subset of the nodes in the hierarchy (including
non-contiguous subsets).

The path from the root of the hierarchy to a node
defines its globally unique name (this requires the id
tags of the sibling nodes to be unique). For exam-
ple, the Pittsburgh node in Figure 3 is given by
city-Pittsburgh.state-PA.usRegion-NE. Each
OA registers with DNS each split node that it owns, where
the registered name is the split node’s global name appended
with the name of the service and a registered domain suffix
(e.g., intel-iris.net). This is the only mapping from the logi-
cal hierarchy to physical IP addresses in the system, enabling
considerable flexibility in mapping nodes in the document to
OAs, and OAs to physical machines. For example, figure 4
shows an example configuration where the nodes NE, PA,
and Pittsburgh are owned by one OA and the rest of the
nodes are owned by one OA each.

Query Routing. We use the XPATH query language, be-
cause it is the most widely used query language for XML,
with good query processing support. Figure 4 shows an

5



/block[@id=’block1’ OR @id=’block3’]
/city[@id=’Pittsburgh’]/neighborhood[@id=’Oakland’]

���
���
���

���
���
���

���
���
���

���
���
���

3
3

4

2

2

1 Oakland Shadyside

block1 block4

Web Server

Physical Machine Web Server

Hierarchy Message

/parkingSpace[available=’yes’]

Pittsburgh
NE, PA

block2 block3

/USRegion[@id=’NE’]/state[@id=’PA’]

Figure 4: Top: An XPATH query. Bottom: A mapping of
logical nodes to seven machines, and the messages sent to
answer the query (numbers depict their relative order).

example XPATH query asking for all the available parking
spaces at block1 and block3 of Oakland.

Because our XML database is distributed, providing fast
and correct answers to user queries is quite challenging. The
system must route a query directly to the nodes of interest to
that query, and must pass data between OAs only as needed.
We now show how IrisNet accomplishes these tasks.

An XPATH query selects data from a set of nodes in the
hierarchy. In IrisNet, the query is routed directly to the low-
est common ancestor (LCA) of the nodes potentially selected
by the query. For example, Oakland is the LCA node for
the XPATH query shown in Figure 4. Note that the glob-
ally unique name of the LCA node can be derived simply by
parsing the XPATH query. A DNS lookup on this name pro-
vides the IP address of the current owner of the starting point
OA. This mechanism prevents the root of the hierarchy from
becoming a bottleneck; the LCA is typically far down in the
hierarchy.

Upon receiving a query, the starting point OA queries its
portion of the overall XML document and evaluates the re-
sult. For many queries, a single OA may not have enough of
the document to respond to the query. The OA determines
which part of a user’s query can be answered from the local
document and where to gather the missing parts (extracting
the needed global names from the document). The OA looks
up the IP addresses of the other OAs to contact and sends
subqueries to them. These OAs may, in turn, perform a sim-

ilar gathering task. Finally, the starting point OA collects
the different responses and the combined result is sent back
to the user. For the example in Figure 4, the Oakland OA
receives the query from the web server, sends subqueries to
the Block 1 and Block 3 OAs, who each return a list of avail-
able parking spaces, to be combined at the Oakland OA
and returned to the user.

Caching and Data Consistency. In order to improve the
performance of repeated requests for similar information
(e.g., multiple users requesting parking spaces downtown),
OAs cache data from any query gathering task that they
perform. The query processing mechanism of IrisNet uses
cached data even if the new query only partially matches
them. Using this cached information proves challenging
since since it complicates the OA’s task of identifying what
remaining information must be gathered to answer a query.

Because of network propagation delays and the use of
cached data, answers returned to users may not reflect the
most recent data. A query may specify consistency criteria
indicating its tolerance for stale data. We store timestamps
along with the cached data that indicate when the data were
created, so that an XPATH query specifying a tolerance is
automatically routed to data of appropriate freshness.

The complete details of IrisNet’s database distribution,
query processing and caching appear in [8].

Fault Tolerance. IrisNet replicates nodes in the logical hi-
erarchy on multiple OAs. IrisNet uses two types of repli-
cas: primary replicas that are kept strongly mutually con-
sistent and placed in geographically optimal locations (e.g.,
near the sources of the sensor readings) and secondary repli-
cas that only maintain a weakly consistent copy of the data
and are placed far from the primary replicas to maintain ro-
bustness when the primary replicas suffer correlated failure.
During query routing, the lists of all the primary and sec-
ondary replicas are retrieved by DNS lookups, and replicas
are tried sequentially until the query is successfully routed to
a live OA.

4.2 SA Architecture

SAs collect raw sensor data from a number of sensors (pos-
sibly of different types). The types of sensors can range
from webcams and microphones to temperature and pressure
gauges. The focus of our design is on sensors such as web-
cams that produce large volumes of data and can be used
by a variety of services. One SA can be shared by multiple
services.

Figure 5 shows the execution environment in an IrisNet
sensor host. A sensor host receives one or more raw sen-
sor feeds from directly attached sensors and stores them in
circular shared memory buffers.

6



SA HostWebcam

N
on

−I
ri

sN
et

 A
pp

lic
at

io
ns

Sensor Buffer
Raw

Privacy Filters Sensor Buffer
Processed

SA
 D

ae
m

on

Memory Pool
Shared Shared

Memory Pool

Trusted
Senselets

Untrusted

Senselets

Figure 5: Execution environment in SA host

Programmable SAs. IrisNet enables services to dynam-
ically upload and control the execution of code that filters
sensor readings in a service-specific fashion. We refer to this
code as a senselet. A senselet instructs the SA to take the raw
sensor feed, perform a specified set of processing steps (as
required by the specific service), and send the resulting dis-
tilled information to an OA specified by the service. A single
SA may execute one or more senselets for each service that
desires access to its sensor feeds.

Protection of Senselets and SA Host. The SA host and
senselets are protected from buggy or malicious senselets.
IrisNet runs senselets as different processes, and thus provide
process-level protection among senselets. We currently as-
sume trust between the administrator of a sensor host where
senselets execute and the author(s) of those senselets, and
thus trust that senselets don’t consume excessive resources
or exploit security vulnerabilities on the SA host. This model
makes sense in cases where a single organizational entity ad-
ministers the sensor hosts, and has a formal trust relationship
with the senselet authors. IrisNet also supports sandboxing
the senselets by executing them in a virtual machine (VM),
to limit the resources a senselet can consume and the opera-
tions it can execute.

Privacy Mechanisms. IrisNet aims to provide mecha-
nisms for service developers to implement appropriate pri-
vacy policies for their services. Our current prototype of SAs
uses privacy filters to identify the sensitive components (e.g.,
human faces) in an image, and replaces these regions with
black rectangles. As shown in Figure 5, IrisNet distinguishes
between trusted and untrusted senselets; trusted senselets re-
ceive raw video feeds, whereas untrusted ones only receive
the privacy-filtered video data.

Shared Computation Among Senselets. The filtering
done by the senselets is computationally expensive. To in-
crease the efficiency of execution of multiple senselets on
the same SA, we exploit the fact that one sensor feed may be
of interest to multiple different IrisNet services. For exam-
ple, a video feed in a particular location may be used in one

service to monitor parking spaces, and in another to track
passersby in the same visual field. Image processing prim-
itives (e.g., color-to-gray conversion, noise reduction, edge
detection, maintaining a statistical model of the background,
etc.) are reused heavily across senselets working on the
same video stream. IrisNet provides a mechanism for sense-
lets to share intermediate computational results with other
senselets through a shared memory pool. Intermediate re-
sults are named using the ordered series of processing steps
performed on them. In this way, a senselet can query for
intermediate results that match those it needs, and avoid re-
computing those results that have been computed previously
by another senselet.

5 Prototype Services
Here, we present three services from very different applica-
tion domains built using IrisNet. While we give overviews
of these applications in the sidebars, we now describe their
implementation and deployment.

Parking Space Finder. Our current prototype operates on
a set of mock parking lots and miniature cars laid out on
a tabletop. However, the rest of the system operates as it
would in an outdoor setting. Senselets that recognize park-
ing space availability run on laptops with webcams viewing
these mock parking lots. After initial calibration of the ref-
erence background image, each senselet detects the presence
of cars by comparing the current image of the spaces and cor-
responding background image [24]. These image processing
tasks are done using the Intel Open Source Computer Vision
(OpenCV) [1] library. Once a senselet determines which
parking spaces are empty, it sends the availability informa-
tion to the appropriate OAs.

Figure 3 shows the database schema for this application.
As mentioned earlier, this schema defines the geographically
hierarchical organization of the database and the dynamic
(e.g., availability information from the SAs) and static (e.g.,
meter restrictions on the space) descriptions for each of the
spaces.

Network and Host Monitor (IrisLog). Our current pro-
totype of IrisLog runs on PlanetLab [22], an open, shared,
planetary-scale application testbed consisting of 102 nodes
distributed across 42 sites in three continents: North Amer-
ica, Europe, and Australia. IrisLog supports a superset of
the queries supported by the currently deployed Ganglia [20]
PlanetLab monitoring service, but incurs far less network
overhead. Each PlanetLab node runs an SA, which uses the
output of the local Ganglia daemon to create a sensor feed
describing 30 different performance metrics. The senselet
for IrisLog transmits these metrics to the matching OA in
the schema.

The schema for IrisLog describes the metrics to be moni-
tored on each PlanetLab node (e.g., CPU and memory load,

7



����
�����	


��� 
���	�
�����	


���

��� 
���	

�� � ����� ��
��	

�
������
���

� �	
��
�������	��	����
����	�����	����

���

� �

� ������

���	��

�	�����	

 �
 �

 �

 �

 �

 �  �

 �

 �

 �

 �

 �

 � � �
	
�	���!��	�

Figure 6: Hierarchy used in the IrisLog service.

bandwidth usage, etc.) and organizes these metrics into a ge-
ographical hierarchy. This hierarchy, part of which is shown
in Figure 6, allows efficient processing of geographically
scoped queries (e.g., find the least loaded CMU node). To
support simple historical queries over the monitored data, the
schema uses multi-resolution vectors to store each monitored
metric. These vectors provide higher resolution samples of
recent data than older data.

A Coastal Imaging Service. Researchers from Oregon State
University placed cameras and computers along the Oregon
coast to monitor the ocean. The senselet for this service
produces image data such as 10-minute interval snapshots,
10-minute time exposure images that show wave dissipation
patterns (hence submerged sand-bars), variance images, and
photogrammetric meta-data.

The schema defines a shallow hierarchy consisting of a
root node with each of the coastal camera locations con-
nected as leaf nodes. Each leaf node stores only the most
recent snaphot and 10-minute time exposure, while the root
stores an archive of all past snapshots from all the coastal
cameras. These nodes are mapped onto physical OAs such
that the root is located at a computer at OSU and the leaf
OAs are located at the corresponding coastal locations.

6 Conclusions

Sensor network research has largely focused on localized de-
ployments of low-power wireless sensors collecting numer-
ical measurements. However, as illustrated by the examples
presented in this article, many applications require a wide-
area network of powerful sensors such as video cameras. In
this article, we have discussed the desirable features of a per-
vasive architecture for Internet-scale sensing, and the techni-
cal challenges in realizing these goals. We described Iris-
Net, a general-purpose software infrastructure designed for
Internet-scale sensing services. We have discussed features

in IrisNet that greatly simplify many common tasks in these
services, such as collecting, filtering and combining sensor
feeds, and enabling distributed queries with reasonable re-
sponse times.

Today, we are far from the vision of highly-available,
high-performance, easy-to-use Internet-scale sensing. In ad-
dition to the technical challenges discussed in this article,
there are important policy, privacy, and security concerns
that must be addressed before rich sensors can be deployed
pervasively at a global scale. Moreover, sensors must be de-
ployed and maintained. Currently, companies such as Hon-
eywell and ADT provide sensor-based home security sys-
tems; we envision that in time, such private sector companies
in combination with public sector entities, non-profits and
individuals will provide the needed sensor infrastructure.
Acknowledgements. We thank A. Deshpande and R. Suk-
thankar for their important contributions to the IrisNet sys-
tem. We thank M. Satyanarayanan for many valuable sug-
gestions and C. Helfrich for helping with the experimental
setup.

References
[1] Intel Open Source Computer Vision Library.

http://www.intel.com/research/mrl/research/opencv/.

[2] Libra: Scalable advanced network services based
on coordinated active components. http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/cmcl/www/team/.

[3] D. Agrawal and S. Sengupta. Modular synchronization
in distributed, multi-version databases: Version control
and concurrency control. IEEE TKDE, 1993.

[4] R. Alonso, D. Barbara, and H. Garcia-Molina. Data
caching issues in an information retrieval system. ACM
TODS, 1990.

[5] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sen-
sor database systems. In MDM, 2001.

[6] S. W. Chen and C. Pu. A structural classification of
integrated replica control mechanisms. ACM TODS,
1992.

[7] R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade. Al-
gorithms for cooperative multisensor surveillance. Pro-
ceedings of the IEEE, 89(10):1456–1477, Oct. 2001.

[8] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan.
Cache-and-query for wide area sensor databases. In
SIGMOD, 2003.

[9] I. Foster and C. Kesselman. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann,
1999.

8



Related Work
There have been a variety of related efforts addressing a issues related to enabling Internet-scale sensing services. These
can be classified into efforts that have similar applications goals (sensor networks and video surveillance) and those that
employ similar techniques (Internet service frameworks and distributed databases).
Sensor Networks. Sensor networks and IrisNet share the goal of making real world measurements accessible by appli-
cations. The work on sensor networks has largely concentrated on the use of “motes,” small nodes containing a simple
processor, a little memory, a wireless network connection and a sensing device. Because of the emphasis on resource-
constrained motes, earlier key contributions have been in the areas of tiny operating systems [13] and low-power network
protocols [16]. Mote-based systems have relied on techniques such as directed diffusion [12] to direct sensor readings to
interested parties or long-running queries [5] to retrieve the needed sensor data to a front-end database. Other groups have
explored using query techniques for streaming data and using sensor proxies to coordinate queries [17, 18, 19], to address
the limitations of sensor motes. None of this work considers sensor networks with intelligent sensor nodes, high-bit-rate
sensor feeds, and global scale.
Video Surveillance. The use of video sensors has been explored by efforts such as the Video Surveillance and Monitoring
(VSAM) [7] project. Efforts in this area have concentrated on image processing challenges such as identifying and tracking
moving objects within a camera’s field of vision. These efforts are complementary to our focus on wide-area scaling and
service authorship tools.
Internet Services Frameworks. A number of different efforts, e.g., [29, 27, 2, 9] have developed frameworks for simpli-
fying the development of scalable, robust Internet services. In general, these projects target a lower level of the architecture
than IrisNet. They concentrate on issues that are generic to all Internet services, such as load balancing, resource allocation
and network placement. In contrast, IrisNet addresses issues that are unique to services that need to collect vast amounts of
data and process queries on the data. In this way, IrisNet is largely complementary to these previous efforts and could, in
fact, be implemented using these frameworks.
Distributed Databases. The distributed database infrastructure in IrisNet shares much in common with a variety of large-
scale distributed databases. For example, DNS [21] relies on a distributed database that uses a hierarchy based on the
structure of host names, in order to support name-to-address mapping. LDAP [28] addresses some of DNS’s limitations
by enabling richer standardized naming using hierarchically organized values and attributes. However, it still supports
only a relatively restrictive querying model. Harren et al. [11] have investigated peer-to-peer databases that provide a
richer querying model than the exact-match queries supported by existing DHT systems, to limited success (significant
hotspots in storage, processing, and routing were reported). DHT-based databases are more robust than the replicated
hierarchically-based approach we propose, but are less well suited to leveraging XML and the hierarchically-scoped queries
typical in sensing services. Distributed databases supporting a full query processing language such as SQL are a well-studied
topic [26], with the focus on supporting distributed transactions or other consistency guarantees (c.f. [25, 10, 23, 3, 15, 4, 6]).
None of the previous work addresses the difficulties in distributed query processing over an XML document. There is also
considerable work on query processing over a federation of heterogeneous databases [26], dealing with issues such as
incompatible schemas. These issues do not arise in our current architecture, because the service author defines the schema
for an entire service.

9



[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dan-
gers of replication and a solution. In SIGMOD, 1996.

[11] M. Harren, J. Hellerstein, R. Huebsch, B. Loo,
S. Shenker, and I. Stoica. Complex queries in DHT-
based peer-to-peer networks. In IPTPS, 2001.

[12] J. Heidemann et al. Building efficient wireless sensor
networks with low-level naming. In SOSP, 2001.

[13] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for network
sensors. In ASPLOS, 2000.

[14] R. Holman, J. Stanley, and T. Ozkan-Haller. The
application of video sensor networks to the study of
nearshore oceanography. submitted to Pervasive Com-
puting special issue on sensor networks, 2003.

[15] N. Krishnakumar and A. Bernstein. Bounded igno-
rance in replicated systems. In PODS, 1991.

[16] J. Kulik, W. Rabiner, and H. Balakrishnan. Adaptive
Protocols for Information Dissemination in Wireless
Sensor Networks . In MOBICOM, 1999.

[17] S. Madden and M. J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In
ICDE, 2002.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad hoc
sensor networks. In OSDI, 2002.

[19] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query pro-
cessor for sensor networks. In SIGMOD, 2003.

[20] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: Design, imple-
mentation, and experience. Submitted for publication,
February 2003, http://berkeley.intel-research.net/bnc/.

[21] P. V. Mockapetris and K. J. Dunlap. Development of
the Domain Name System. In SIGCOMM, 1988.

[22] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
internet. In Hotnets-I, 2002.

[23] C. Pu and A. Leff. Replica control in distributed sys-
tem: An asynchronous approach. In SIGMOD, 1991.

[24] Shapiro and Woods. Computer Vision. Prentice-Hall,
2001.

[25] J. Sidell, J. Sidell, P. M. Aoki, S. Barr, A. Sah,
C. Staelin, M. Stonebraker, and A. Yu. Data replica-
tion in mariposa. In ICDE, 1996.

[26] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database Systems Concepts. McGraw Hill, 2002.

[27] J. R. von Behren, E. Brewer, N. Borisov, M. Chen,
M. Welsh, J. MacDonald, J. Lau, S. Gribble, and
D. Culler. Ninja: A framework for network services. In
Proceedings of 2002 USENIX Annual Technical Con-
ference, 2002.

[28] M. Wahl, T. Howes, and S. Kille. Lightweight Di-
rectory Access Protocol (v3). Technical report, IETF,
1997. RFC 2251.

[29] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
architecture for well-conditioned, scalable internet ser-
vices. In SOSP, pages 230–243, 2001.

10


