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ABSTRACT 
Bandwidth efficiency and error robustness are two essential and 
conflicting requirements for streaming media content over error-
prone channels, such as wireless channels. This paper describes a 
new scheme called content-based unequal error protection (C-
UEP), which aims to improve the user-perceived QoS in the case 
of packet loss. We use music streaming as an example to show the 
effectiveness of the new concept. C-UEP requires only a small 
fraction of the redundancy used in existing forward error 
correction (FEC) methods. C-UEP classifies every audio segment 
(e.g. an encoding frame) into different classes to improve 
encoding efficiency. Salient transients such as drumbeats and note 
onsets are encoded with more redundancy in a secondary 
bitstream used to recover lost packets by the receiver. Formal 
perceptual evaluations show that our scheme improves audio 
quality significantly over simple muting and packet repetition 
baselines. This improvement is achieved with a negligible amount 
of redundancy, which is transmitted to the receiver ahead of 
playback. 
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Processing Systems 
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1. INTRODUCTION 
The non-real-time transmission of compressed digital audio, such 
as MP3 (MPEG-1 layer 3), over the Internet has had a profound 
effect on the traditional process of music distribution. With 
increasing channel capacity available in the new generation of 
mobile networks, it is possible to stream compressed media 
content to wireless mobile terminals via the Internet. However, 
the characteristics of this scenario pose special problems. A 
significant challenge is the need for error handling, more 
specifically packet loss recovery. 

Packet loss can arise in many different forms. On the Internet, 
packets can be dropped due to congestion at switches, they can be 
misrouted, or they can arrive with such a long delay as to be 
useless. On wireless networks, packet losses can be caused by 
channel characteristics, such as fading and interference, or 
wireless network characteristics, such as handover in a cellular 
network. Under such conditions, it is crucial to guarantee user-
perceived QoS for widespread acceptance of media streaming 
applications. Our survey of three campuses in Finland, England 
and Singapore confirmed that the user-perceived QoS is among 
three dominant factors, along with “interesting content” and “low 
price” for adopting audio and multimedia streaming services. 

The objective of packet loss recovery is to reconstruct a lost 
packet so that it is perceptually indistinguishable, or sufficiently 
similar to the original one. This objective should be achieved with 
minimal system cost. From the resource allocation perspective, 
the research problem in this paper can be defined as one of 
prioritized resource optimization based on the following facts. 
First, once a wireless technology (2G, 2.5G, 3G, Wireless LAN, 
Bluetooth, etc) is established, its maximum channel capacity is 
fixed for the lifecycle of the technology. This scarce resource is 
usually shared by many users. This justifies our special effort to 
reduce bandwidth consumption in the proposed scheme. Second, 
the computational power and memory in the terminals (laptop, 
pocket PC, smart phone, PDA, etc.) are constantly improving 
according to Moore’s law. This increasingly available resource 
can be used for packet loss recovery. Third, the computational 
power and memory in the server can be assumed unlimited, 
especially for offline computations. The proposed scheme is 
based on the above assumptions. 

Unequal error protection (UEP) is an important subclass of 
forward error correction (FEC). UEP gives more protection to the 
more important information bits and enables a better trade-off 
between the performance and required redundancy than 
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conventional FEC. UEP has been an effective tool for protecting 
compressed domain audio bitstreams such as MPEG-4 AAC 
against random errors. We categorize the traditional UEP as 
bitstream-level UEP (B-UEP), which is deployed within 
individual media frames. Without a smart packetization scheme, it 
is less effective in packet-switched streaming, because the 
network typically discards the entire packet if there are bit errors 
detected. The B-UEP is a low-level UEP, which does not exploit 
any high-level (semantic-level) structures of media streams. 

In this paper, we advocate a semi-semantic-level content-based 
unequal error protection (C-UEP) framework. The proposed 
framework tackles the unequal error protection problem from a 
different perspective – content segmentation, classification and 
prioritization. Only the most significant streams or segments get 
the highest level of protection. Our scheme is designed with 
packet-switched networks in mind, and in this paper is proven to 
be more effective than existing methods in the case of music 
streaming. 

We will show that salient transients such as drumbeats and note 
onsets in music should be better protected in comparison with 
their quasi-stationary counterparts as a chord from a synthesizer if 
we want to achieve good perceptual quality in packet loss 
recovery with minimum redundancy. 

We combine receiver-based error concealment methods and 
modern parametric/structured audio coding techniques where 
transients are modeled as elementary objects. This methodology 
combines the strength of receiver-based error concealment and 
sender-based FEC, while minimizing their weaknesses. 

This paper is organized as follows. After this introduction a brief 
review of related works is given in Section 2. Then our 
conceptual framework and methodology are outlined in Section 3, 
followed by our current implementation of the system in Section 
4. Formal perceptual evaluation results are presented in Section 5. 
Discussions are given in Section 6. Finally, Section 7 concludes 
the paper. 

2. RELATED WORK 
There are many published works related to packet loss recovery 
(see [1][2] for overviews). We classify them into three categories: 
sender-based, network-based and receiver-based. 

Most existing sender-based methods belong to FEC, which can 
only achieve good performance when a considerable amount of 
redundant information is sent [1]. One of the initial motivations of 
this paper was to significantly reduce the redundancy required by 
traditional approaches in order to match the bandwidth constraints 
in wireless applications. 

Network-based methods are mostly based on re-transmission 
mechanisms, which have the penalty of long latency and overhead 
redundancy. In certain applications, such as broadcasting and 
multicasting, re-transmission is not desirable or even simply not 
possible. The proposed scheme aims to reduce the need for re-
transmission. 

Receiver-based error concealment methods serve as the last resort 
to mitigate the degradation of audio quality when data packets are 
lost. Error concealment methods generally exploit correlations 
between adjacent packets. The use of packet repetition is 

recommended as offering a good compromise between achieved 
quality and complexity [2]. However, these types of methods rely 
on assumptions that packet loss is infrequent, that the packet size 
is small and that the signal is fairly stationary. The last 
assumption is the basis for most existing methods and is not 
always valid, especially in the case of transients in music. Using 
this approach, it is very difficult, if not impossible to guarantee 
the user-perceived QoS in the case of packet loss. One of the key 
contributions of this paper is how to improve the user-perceived 
QoS in the case that the lost packet is close to a transient. 

Most published works in audio packet loss recovery have focused 
on speech [1][2][3]. Relatively few published works have dealt 
with high quality music streaming. It is worth mentioning that 
speech is mostly used for communications, while music is used 
for entertainment. Because of their different purposes, their 
quality requirements in streaming applications are quite different. 
In general, quality requirements for music are more demanding 
than for speech, partially due to the high expectations after three 
decades of exposure to CD quality audio. In addition, the primary 
objective in recovering speech signals is intelligibility, not that of 
audio quality. The different objectives and signal characteristics 
affect the choice of the optimal algorithm for packet loss 
recovery. 

It should be noted that different users have different expectations 
and requirements on QoS in music streaming. Our experience 
shows that small impairments introduced by a perceptual codec 
such as MP3 are acceptable for the majority of the general public. 
However, disruptive impairment, which is introduced by naïve 
error recovery techniques such as muting and simple packet 
repetition, can be irritating and unacceptable. 

To achieve sufficient error robustness in streaming high quality 
audio, we have tried to adopt existing schemes such as the media-
specific forward error correction (FEC) scheme presented in [2], 
which is illustrated in Figure 1. 
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Figure 1. Concept of error recovery technique using a 
secondary bitstream in addition to the primary bitstream. 

In the course of our research, we have found some problems in 
the above concept for music streaming applications. 

• Existing methods require too much redundancy. If we use 
MPEG Advanced Audio Coding (AAC) as the primary 
encoding with 64 kbps and Adaptive Multi-Rate Wideband 
(AMR-WB) [4] as the secondary encoding with 16 kbps, a 
25% overhead is incurred. This overhead is incurred for 
every packet, protecting against occasional packet loss. 
Based on our investigations, this is not the best option in a 
wireless environment. Our solution is to employ a novel 
structured music encoding scheme to significantly reduce the 



needed redundancy, which is delivered reliably and stored in 
the receiver to recover possible lost packets. This approach 
increases its robustness against burst packet loss. 

• Different codecs have different frame sizes. This sets some 
extra constraints on what codec can be used in a particular 
scheme [5]. In addition, it is not desirable to run two 
complex decoders for both the primary and secondary 
bitstreams in a small mobile terminal from the perspective of 
resource consumption. Our solution is to encode the 
secondary bitstream with a finer time index than the frame 
size of the primary bitstream. Conceptually this is equivalent 
to providing time stamps, which guide the receiver to 
reconstruct the lost packet. Our secondary bitstream is very 
simple to decode, in contrast to other solutions. 

• If one uses a Modified Discrete Cosine Transform (MDCT) 
domain codec (such as MP3 or AAC) as the primary 
encoding, and a time domain codec (such as AMR-WB) as 
the secondary encoding, some special handling has to be 
performed to avoid the un-cancelled time domain alias and 
block effect [6]. Otherwise, the secondary bitstream may be 
rendered uselessly. That is, the result of using the secondary 
bitstream can be worse than a simple receiver-based error 
concealment method in case of packet loss. We exploit the 
unique characteristics of MDCT [6] in our solution. 

• In FEC, the correlation between neighboring packets has not 
been utilized. In addition, the concept in Figure 1 is less 
effective in the case of burst packet loss. Our solution is to 
fully exploit the inter-packet correlation to recover quasi-
stationary components in music. 

The proposed scheme, which addresses the above-mentioned 
problems, aims to significantly reduce the redundancy incurred in 
FEC and the overhead in network re-transmission, yet to achieve 
much better perceptual audio quality in comparison with receiver-
based error concealment methods. This is achieved by shifting the 
most demanding computation to the sender side and by exploiting 
the increasingly available computational power and memory 
capacity in the mobile terminals. 

Our initial idea of utilizing musical beat structure to recover 
packet loss was presented in [7] and [8]. A receiver-based error 
concealment approach was presented using MP3 audio bitstreams 
and its performance was limited in practical applications. 
Subsequent partial progress has been reported in [9] and [10] 
using AAC audio bitstreams. This paper presents our overall 
conceptual framework and reports our latest developments and 
findings. 

3. CONCEPTUAL FRAMEWORK 
The presented framework is a combination of FEC and receiver-
based error concealment. 

The receiver-based error concealment approach (interpolation, 
extrapolation, etc.) does not require any redundant packet-sending 
from the sender. In our experiments we found that the user-
perceived QoS of the reconstructed audio signal generally 
depends on the characteristics of the signal – error concealment 
usually works well if the signal is quasi-stationary but suffers 
badly if the lost packet is close to a transient such as a drumbeat 
or note onset. In addition to the double-drumbeat effect [9], one 

can experience a distortion, which we define as the melody-
disruption-effect, if a simple packet repetition is used to recover a 
lost packet around a note change. The melody-disruption-effect is 
particularly noticable in music that does not have percussive 
rhythm. Classical music exhibits this property. This effect is 
illustrated in Figure 2. 

Based on the above observation, it is clear that the result of error 
concealment can be rather poor if the structure of the music is not 
effectively utilized. This gives us a clear clue as to how to solve 
the problem – we simply need to indicate the locations of all 
transients and their key attributes. That is, the performance of 
error recovery can be significantly improved with structural 
knowledge of music signals. 
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Figure 2. Melody-disruption effect with a simple packet 
repetition approach. The blank rectangle represents a 
correctly received packet, and the shaded rectangle represents 
the lost packet. The dashed line illustrates the pitch of the 
music signal. 

In conventional media-specific FEC, the secondary bitstream 
(redundancy) is just a degraded version of the primary bitstream. 
It does not utilize the correlation between adjacent packets [1], or 
music structure. This explains why the conventional method is not 
efficient. 

In order to reduce the secondary data significantly, we focus on a 
compact representation of the salient transients in music, which 
guides the receiver to reconstruct lost packets around transients 
with better results. For the quasi-stationary part, we simply rely 
on the receiver-based error concealment based on the correlation 
between adjacent packets. That is, the only redundancy is 
transmitted from the sender in advance, where the receiver cannot 
recover the lost packet from its neighboring packets. This 
approach eliminated the problems of both the conventional 
receiver-based error concealment (unpredictable quality) and the 
conventional FEC (excessive redundancy). 

What are the salient transients in music? Although different 
people may have different opinions, we broadly classify the 
salient transients of music into two categories as illustrated in 
Figure 3. For simplicity we limit the salient transients to include 
only drumbeats (short bursts of sound) and note onsets that rise to 
full intensity from a low level followed by little or no decay. 

Figure 3 shows a possible classification tree for coding a music 
segment. More detailed characteristics are given as the tree grows. 
At the second level there are four classes: symbol (a) represents 
silence, (b) stationary sound, (c) drumbeat, and (d) note onset 
without drumbeat. At the third level, some classes can be split 
further. Symbol (c1) represents a drumbeat without other 



sustaining sound, (c2) drumbeat with other sustaining sound such 
as singing, (c3) drumbeat associated with note onset. 
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Figure 3. Classification of music segment – a symbolic 
representation. The solid lines and dashed lines represent 
loudness and pitch respectively. Letters indicate different 
classifications of the segment (see details in the main text). 

All the leafs of the classification tree are encoded with the key 
attributes, such as a pre-classification index, the onset position. 
The encoded secondary bitstream is sent to the receiver for packet 
loss recovery. 

Although the scheme illustrated in Figure 1 can be used for 
delivering the secondary bitstream, it is not the best operation 
mode for two reasons. First, the scheme prevents us from using 
the most compact encoding method to represent the secondary 
bitstream. Second, it is not effective against burst packet loss. 
Therefore, we send the secondary bitstream of an entire song as a 
chunk to the receiver using a reliable transmission mechanism. 
This is done in parallel with buffering before the playback at the 
receiver begins. The transmission of the small amount of 
secondary data increases the buffering time slightly. 

This secondary bitstream is then decoded and stored in the 
receiver to repair possible packet loss. It will be up to the 
constraints of the terminal’s computational and memory capacity 
how the secondary bitstream is used to perform the error 
recovery. 

4. SYSTEM IMPLEMENTATION 
The current implementation of our system is divided into two 
parts: structured music encoding offline at the sender side and 
packet loss recovery operation at the receiver side. The proposed 
concept can be implemented with any specific audio codec. Our 
current implementation is based on MPEG AAC frame structure. 
That is, we use an AAC bitstream as the primary bitstream and 
our structured encoding scheme as the secondary bitstream. 

4.1 Structured Music Encoding at the Sender 
Side 
A high-level block diagram of the proposed transient encoding 
scheme is illustrated in Figure 4. 

The first step is an onset detector, which picks up all salient 
transients with an AAC sub-frame accuracy (~ 3 ms in time 
resolution) [10]. Then, these onsets are characterized and 
classified as either drumbeats or note onsets without drumbeats 

(see Figures 3 and 4). These classes are encoded differently. In 
our current implementation, our classification tree stops at the 
second level. 
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Figure 4. Onset detection, classification and encoding. 

Individual blocks of the structured music-encoding algorithm are 
explained in the following subsections. 

4.1.1 Onset Detection 
The onset detector is similar to our earlier system in [10], which 
detects onsets based on intensity change in subbands. Some 
modifications are made according to [11] in order to pick up 
softer onsets. The key features of our onset detector are 
summarized in this sub-section. 

We limit the maximum number of onsets within each AAC frame 
to one. There are 8 short windows within each AAC frame, as 
illustrated in Figure 5. The time duration of an AAC frame is 
approximately 46 ms for the sampling frequency of 44.1 kHz. In 
consideration of the 50% window overlap, the time resolution of 
the onset detector is roughly 3 ms, which is sufficient for 
monophonic audio signals [16]. 
 

8 short windows in frame i 

(a)

(b)

(c)

AAC framelength in time domain (long window) 

8 short windows in frame i+1 8 short windows in frame i-1 

Figure 5. Improved time resolution for onset detection (a) and 
lost frame reconstruction (b-c). The shaded rectangle 
represents the lost AAC frame. The two arrows represent 
interpolation. The triangles represent drumbeats. 

Figure 5(a) illustrates AAC frame structure and short windows. 
The 8 dots indicate the central positions of 8 short windows, 
indicating finer time grids. (b) illustrates the reconstruction of the 
missing stationary objects based on interpolation. (c) illustrates 
the reconstruction of a frame having drumbeat. The lost frame is 
first reconstructed by a band-limited interpolation, and then mixed 
with a stored drumbeat. 



For onset detection in subbands, there are two essential 
components: feature extraction and threshold-setting. We use the 
same features as in [10], but modified our adaptive threshold to: 

CstdkmFthr +⋅+= ,    (1) 

where m and std are the mean and standard deviation respectively 
that are calculated over a long rectangular window of 301 short 
windows (~ 900 ms) excluding the middle 5 short windows (see 
Figure 6). The reason for excluding the 5 middle short windows is 
that we want to increase the probability to pick up an impulsive 
candidate, thus reducing the probability of missing an onset. k is a 
constant that determines the percentage of selected candidates 
over the total number of candidates. C is a constant that prevents 
the threshold getting too low, and indicates the minimum 
detectable changes in each subband. It is calculated based on a 
large set of training data statistics. 

Figure 6 shows different windows and their relative positions for 
onset detection and subsequent classifications. For onset 
detection, we use short overlapping windows (solid lines in Figure 
6) to extract features with good time resolution (~3ms). For 
subsequent transient classifications, we use long sine windows 
(dashed lines in Figure 6) to extract features with an increased 
frequency resolution. The arrow indicates a salient onset and the 
current time index. The long rectangular window is used in 
threshold-setting for onset detection. 

Figure 6. Onset detection and classifications using different 
window shapes and sizes. 

Figure 7 shows an example of how an onset is detected using our 
subband approach. The waveform in the time domain is illustrated 
in (a). Feature vector (FV) in subbands 4-1 with thresholds 
(generally horizontal lines) are illustrated in (b-e). The detected 
onsets are indicated in (f). 

 

Figure 7. Onset detection in subbands. (a) waveform versus 
time index in second, (b-e) subband features and thresholds 
versus short window indices, (f) detected salient onsets versus 
short window index. 

Drumbeat detection in pop-music is a relatively straightforward 
task, in contrast to note onset detection. Due to characteristics of 
different instruments, note onset analysis can be a challenging 
task even for an experienced musician. Some instruments, such as 
the violin, have relatively long attack time and note onsets are not 
necessarily seen as peaks in energy domain. Also, the concept of 
a note onset is not as well-defined as a drumbeat; some 
instruments can slide from one note to another, in which case the 
exact position of a note change is impossible to define. However, 
we focus on salient note onsets, which are relevant for our 
application. 

4.1.2 Structured Music Encoding 
For the sake of simplicity, we employ a decision tree to classify 
and subsequently encode every AAC frame. With salient onset 
detection, every AAC frame is first classified into two classes: 
stationary and transient. At the second level, stationary frames are 
further classified into silence and sustaining sound, while 
transient frames are further classified into note onset without 
drumbeat and drumbeat. In the conceptual level, our encoding 
scheme can be considered as a special implementation of that in 
[15]. 

We use a linear classifier to classify a stationary AAC frame 
further into silence or sustaining sound based on a simple 
threshold of the sound intensity of the frame. Transient frames are 
more complicated to deal with. For simplicity, we classify them 
into two classes: note onsets and drumbeats. Therefore, we need 
only 2 bits to pre-classify every AAC frame as shown in Figure 8.  

Stationary   (0) 

AAC 
frame

Silence      (00)

Drumbeat  (11)

Transient    (1) 

Sustaining 
sound        (10) 

Note onset 
without 
drumbeat   (01)

Figure 8. Pre-classification of every audio segment (an AAC 
frame) and encoding with 2 bits. 

For a transient frame, a few more bits are needed to encode its 
key attributes, such as onset time index. In our current 
implementation, 3 bits are used for encoding the time index of the 
onset within each AAC frame (see Figure 5(a)). However, it is a 
challenging task to determine the optimal amount of bits for 
encoding other attributes of drumbeats and note onsets. 

The drumbeats are encoded with a parametric vector quantization 
(PVQ) scheme as outlined in [10]. PVQ is used to cluster 
drumbeats into a few classes due to the highly repetitive nature of 
drumbeats in music. Drumbeats are commonly used in pop music 
to maintain musical beat and are generally difficult to reconstruct 



from neighboring frames using interpolation or extrapolation. 
This explains why it is necessary to transmit a small amount of 
audio samples in the form of a codebook from the sender to the 
receiver [10]. The codebook in this paper means a set of short 
audio segments in the PCM domain, which are the representatives 
of all drumbeats in a song. It is fairly straightforward to see that a 
drumbeat without other sustaining sound is usually the best 
candidate for the percussive codebook (see Figure 3 (c1)). 

Intuitively, the VQ codebook size should be the number of 
different drumbeats and their combinations used in a piece of 
music. It is rather difficult to determine the right size of codebook 
since the number of different drumbeats in a piece of music is 
unknown. However, the purpose of our PVQ is not to distinguish 
different drumbeats, but to cluster them into a number of artificial 
classes based on their perceptual similarity [10]. Using 
expectation maximization (EM)-based algorithm, the total 
average-distortion of VQ will decrease monotonically when the 
size of codebook increases. That is, the larger the codebook size, 
the more accurate representation of the codebook for the FV 
space. 

However, using an unnecessarily large codebook requires time-
consuming codebook training and more bits for encoding the 
codebook and codeword index. Our experiments have shown that 
8 clusters are sufficient for most of our test music signals. Even 4 
clusters can be satisfactory for a large number of music samples. 
The drumbeats within each class are perceptually similar [10]. 

Note onsets without drumbeats are more common in classical 
music, where the melody is a key attribute. Since the signal 
before and after a note onset is quasi-stationary, it usually 
requires a smaller amount of data for the structured encoding in 
comparison to a drumbeat. In our current implementation, we use 
3 bits for encoding the position of the onset and 3 bits for 
encoding the slope of note onset. 

These are the general principles of our transient encoding scheme. 
Based on our experiments, a majority of AAC frames in our test 
music signals are quasi-stationary. Therefore only 2 bits 
redundancy is needed for most parts of a music signal. For the 
transient segments, different coding methods apply as described 
earlier. An example is given to show a possible secondary 
bitstream in Figure 9. 
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Figure 9. Data structure of primary and secondary 
bitstreams. The solid rectangles represent AAC frames 
(primary data). The arrow represents a drumbeat. The step-
function represents a note onset. 

To distinguish drumbeats from note onsets, we use three features: 
1) the temporal energy contours, especially the onset and decay 
slopes in the time domain; 2) the spectral flatness measure (SFM) 
[24] in the frequency domain, for note onsets usually have clear 
harmonic structure, while drumbeats are quite chaotic with rather 
flat spectrum; 3) the bandwidth defined in [14], since the 
bandwidth of a note onset is usually smaller than that of a 
drumbeat. We use the above features to form a 4-dimensional 
feature vector (2 dimensions for temporal energy contour, 1 for 
spectral flatness, and 1 for bandwidth), and employ the same 
LBG-VQ algorithm as in [10] to classify the feature space into 
two classes. It is clear that the above feature space is different in 
comparison to that for onset detection. 

4.1.3 Transmitting the Secondary Bitstream 
The general principle of transmitting some redundancy (media-
specific FEC) in a separate packet is not novel and was discussed 
in [3]. In the conventional approaches, the primary and secondary 
bitstreams are transmitted with the same mechanism and priority 
(see Figure 1). 

In our scheme, the payload of each packet is an AAC frame (~46 
ms), which serves as a gross time index. The finer time index is 
provided by the 8 short windows within each AAC frame (see 
Figure 5). Using the same time index, it is easy to synchronize the 
primary and secondary bitstreams during playback and packet 
loss recovery. With this timing mechanism, we can transmit the 
primary and secondary bitstreams separately with different 
priority and robustness. In our scheme, we transmit the entire 
secondary bitstream including the percussive codebook ahead of 
the playback. In other words, we assume error-free transmission 
of the secondary bitstream. 

This transmission mode enables us to use a more compact 
encoding scheme such as a run-length encoding algorithm, since 
there are usually long quasi-stationary segments between two 
adjacent transients. The run-length encoding algorithm is briefly 
explained with help of Figure 9. We use a symbol to represent a 
codeword of the secondary data. Each symbol indicates the same 
gross time index as an AAC frame. Assume that A represents 00 
(silence) and B represents 10 (quasi-stationary). If there are long 
sequences of A or B, the run-length encoding can greatly improve 
the coding efficiency. 

The above transmission mode is possible due to the extremely 
small amount of secondary data. It does not result in long delay in 
buffering even on band-limited wireless channels. Assume that 
the duration of drum clips in the drumbeat codebook is 2048 PCM 
samples and the codebook size is 4, it results in 16 Kbytes of data. 
If a music signal is 5 minutes in duration and has 4 
transients/second on average as in one of our test samples, the 
secondary bitstream for indexing is approximately 2 Kbytes. The 
total secondary data in this case is 18 Kbytes, which increases the 
buffering time by about 200 ms. In contrast, a conventional FEC 
using a secondary encoding with 16 kbps results in 600 Kbytes of 
data. Our encoding scheme consumes 3% of the bits needed for 
the conventional FEC, which is a significant saving. 

4.2 Recovering Lost Audio Packets at the 
Receiver Side 
From the secondary bitstream (semi-semantic metadata), the 
receiver knows the characteristics of every AAC frame. Based on 



the different characteristics of the lost AAC frame, the receiver 
can choose various strategies for lost packet recovery. 

In the receiver, the secondary bitstream is decoded and stored in a 
buffer before the actual streaming begins. If a packet loss is 
detected, (e.g., via sequence number of a packet), the receiver will 
check the stored secondary data for the signal characteristics. If 
the lost packet and its immediate neighboring packets are quasi-
stationary, it uses conventional error concealment methods such 
as repetition to reconstruct the lost packet. If the computational 
complexity and memory consumption is not an issue, more 
sophisticated methods such as the ones in [12] and [13] can be 
employed. 
 

( a )  

( c )  

( b )  

Figure 10. Relative location of the lost packet (blank 
rectangles) and the pitch (dashed lines). 

If the lost packet is close to a note onset as illustrated in Figure 
10, the lost packet recovery should be performed according to the 
relative locations of the two. In the case of (a), the lost packet 
should be extrapolated from the previous packet. In the case of 
(b), the lost packet should be extrapolated from both sides until 
the note onset. In the case of (c), the lost packet should be 
extrapolated from the following packet. 

To minimize a possible blocking effect on the boundary, it is 
generally necessary to have a suitable cross-fade. 
 

( a )  

( e )  

( d )  

( c )  

( b )  

Figure 11. Different packet loss recovery operations 
depending on the relative locations of the lost packets 
(rectangles) and the percussions (triangles) 

If the lost packet is close to a drumbeat as illustrated in Figure 11, 
the receiver should reconstruct the lost packet also according to 
their relative locations, which critically affect the reconstruction 
performance. In the case of (a), the lost packet should be 
reconstructed only using the previous packet to avoid the double-

drumbeat-effect. In the cases of (b) and (c), where the onset of the 
percussion is within the lost packet, and it will be wise to use both 
the immediate neighboring packets and the drumbeat codebook to 
reconstruct the lost packet. Interpolation of the neighboring 
packets is used to reconstruct the stationary component, which is 
then mixed with the correct drumbeat from the stored codebook as 
illustrated in Figure 5 (b and c). In the case of (d), the lost packet 
is directly after the onset. It is advantageous to use simple 
interpolation between the previous and the following packets in 
the frequency domain, but without using the buffered drumbeat to 
avoid the double-drumbeat-effect. In the case of (e), the lost 
packet should be reconstructed using its subsequent packet. 

A simplified formulation of the mixing in time domain is as 
follows (see Figure 5); 

( )( ) ( ) jiii pxxx βααβ −+−+= +− 11 11   (2) 

where i  is the sequence number of packets, x  is time domain 

samples of a packet, jp  is a drumbeat selected from the 

codebook, α  is a cross-fade function to avoid possible 
discontinuity of the reconstructed stationary component [12], β  
is cross-fade function for mixing the percussion. β  models the 
contour of the percussion. For simplicity, β  can be a simple 
triangle function to model the contour of a percussion as shown in 
Figure 11. 

5. PERCEPTUAL EVALUATIONS 
During the development of the C-UEP algorithm, continuous 
benchmarking against different recovery methods was done. Of 
these benchmarking sessions, some were informal tests performed 
by the authors while others were formal listening tests performed 
by a battery of experienced listeners to try to find not only the 
relative ranking between methods but also the perceptual 
distances qualitatively separating them. These formal tests were 
designed and administered to validate the author’s experience that 
C-UEP offered superior audio quality in the case of packet loss 
near percussive segments when compared with conventional 
methods such as muting and packet repetition. 

To highlight our algorithm’s performance around transient 
packets, tests were designed to have one packet loss around every 
transient, which translates to packet loss rate in the range of 2-5%. 
The codebook size of the PVQ is 4. 

This section describes one such formal listening test. At the point 
during the development process that this test was performed the 
onset detector was primarily designed for detecting drumbeats, 
and was not capable of detecting pure note onsets produced by 
e.g. violin. Nevertheless, the results still provide a relevant 
measure of how well C-UEP performs. 

5.1 Test Stimuli 
A comparison between four audio streaming scenarios was 
decided upon. The scenarios were; 1) no lost packets 
[ORIGINAL], 2) lost packets are replaced using content-based 
unequal error protection [C-UEP], 3) lost packets are replaced 
with the previous error free packet [REPEATED] and 4) lost 
packets are muted [MUTED]. 



The new C-UEP scenario is described in detail in the previous 
sections. With REPEATED scenario, the lost frame is simply 
replaced with the previous frame. With MUTED scenario, all 
2048 PCM samples within each missing frame are set to zero. 

Programme Time 
signature 

Tempo 
(qpm) 

Description 

Slow Rock 4/4 81 Distorted guitar, bass, piano and drums wt 
melodic instruments sustaining held chord. 
Dynamics dominated by drums. No vocals. 

Dance 4/4 123 Electronic dance music with prominent female 
vocal through entire programme. Consistent 
“disco” type bass drum on every beat. 

Prog. Rock 9/8 112* Progressive rock with drums playing 
polyrhythms with unconventional use of 
accented individual drums. No vocals. 

Country 4/4 120 Prominent strummed acoustic guitar, female 
vocals and laptop slide guitar. Guiro is also 
played throughout with drums less prominent 

* Specified tempo is equivalent quarter note tempo 

Table 1. Description of programmes used in listening test. 
Four musical programmes, which have a broad range of musical 
and acoustic functions, were chosen to evaluate our new recovery 
method. All four programmes were between 20 and 30 seconds in 
duration. Table 1 gives some details of the properties of these. In 
general, these were chosen due to having differing tempos, 
dynamics and accents. Programmes were also chosen to have 
greater or lesser melodic/harmonic sustain, e.g. having a sustained 
vocal performance that is varying melodically. These choices 
were made to stress the C-UEP method in a range of ways. 

5.2 Test Design 
A forced-choice, binary paired comparison test methodology was 
chosen for the test, for which the listener is presented with two 
stimuli that are the same program material but with different 
recovery methods applied. The listener is then forced to simply 
choose, “Which of A and B do you think has better reproduction 
quality”. The paradigm states that if the stimuli are qualitatively 
equivalent then there will be equal occurrence of preference for 
both over all presentations. The statistical significance associated 
with the proportions of preference for both stimuli can state 
whether one stimulus is preferred over the other [18]. This was 
felt to be the most suitable test methodology because it is simple 
for the listener to comprehend and use, is likely to result in less 
noisy data than scaled paired comparison methodologies when 
listeners that are unfamiliar with critically differentiating certain 
types of stimuli are used, and produces data having a 
comprehensive family of statistical analysis methods that can be 
applied to it. 

For the comparison between the 4 streaming scenarios, 
presentation of all permutation pairs (A-B and B-A) results in 12 
different stimuli pairs for each program. Each of these pairs was 
presented 4 times to each listener, resulting in 192 test pairs that 
each listener had to grade. Additionally, 24 pairs, representing all 
combinations of scenario pairs for all programs, were presented 
prior to testing as training in the use of the test method and user 
interface, and to familiarize the listeners with the stimuli. 

Thirteen listeners that were experienced in listening to streamed 
audio over the Internet, and thus were familiar with packet loss 
artifacts, were chosen to perform the test. All had experience in 

performing listening tests on perceptual encoders and had proven 
to have good intra-rater reliability. However, given their naivety 
in performing listening tests involving packet loss, they could not 
be classified as expert listeners a priori based on previous inter-
rater agreement. All were males in their 20s with no hearing loss. 

The test was administered using the Guineapig listening test 
system [19] in a controlled, silent listening environment, specified 
in [21]. The audio signal chain for presentation is shown in Figure 
12, and the user interface used for presentation of pairs is shown 
in Figure 13. The stimuli were 16bit, 44.1kHz PCM recordings of 
the original material. The monophonic stimuli were presented 
diotically over headphones. All stimuli were loudness aligned 
using Moore’s steady-state loudness model [20] to be 20 sones 
when averaged across the entire sample. This alignment was 
performed to negate any biasing effect associated with the 
loudness of one error recovery method over another. 
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MultiDAC D/A

converter

Symetrix 304
headphone
amplifier

Sennheiser
HD580

headphones

analogue stereo
balanced

analogue stereo
unbalanced

digital 8ch. ADAT
optical  

Figure 12. Audio signal chain for presentation of test stimuli. 

 
Figure 13. Test administration user interface. 

5.3 Test Results 
Table 2 contains the proportions of grades given between each 
streaming scenario; for each program separately, and averaged 
over all programs. The table is oriented to show preference for 
each scenario (columns) compared to each of the other scenarios 
(rows). 

A Wilcoxon non-parametric significance test was performed on 
the data. There was found to be no significant difference between 
programs (p>0.05). The differences between each of the 
streaming scenarios were all found to be significant (p<0.01) for 
all programs. 

The ordinal responses from a test such as this can be converted 
into interval perceptual distances using a discriminant model 
based on Thurstone’s law of comparative judgment [22]. 
However, the basic model assumes that grades for a given 
stimulus are normally distributed, and requires that at least some 
stimuli overlap measurably, i.e. if the discriminal distribution of 
any streaming scenarios do not overlap with any of the others, its 
interval location cannot be determined [23]. In the above data, the 
ordinal proportions are so polarized that this model cannot be 
used. This does not infer any shortcomings in the data, rather that 
the discriminant model cannot be applied when the strength of 
preference between pairs is so absolute. Thus, only the averaged 



proportions for each streaming scenario are calculated, shown in 
Figure 14. 

  Scenarios 
 Scenarios 1 2 3 4 

1. Original - 0.058 0.000 0.000 
2. C-UEP 0.942 - 0.000 0.000 
3. Repeated 1.000 1.000 - 0.038 

Sl
ow

 ro
ck

 

4. Muted 1.000 1.000 0.962 - 
1. Original - 0.173 0.000 0.019 
2. C-UEP 0.827 - 0.000 0.000 
3. Repeated 1.000 1.000 - 0.107 D

an
ce

 

4. Muted 0.981 1.000 0.893 - 
1. Original - 0.115 0.000 0.000 
2. C-UEP 0.885 - 0.000 0.000 
3. Repeated 1.000 1.000 - 0.019 

Pr
og

. r
oc

k 

4. Muted 1.000 1.000 0.981 - 
1. Original - 0.173 0.000 0.000 
2. C-UEP 0.827 - 0.000 0.000 
3. Repeated 1.000 1.000 - 0.038 

C
ou

nt
ry

 

4. Muted 1.000 1.000 0.961 - 
1. Original - 0.130 0.000 0.005 
2. C-UEP 0.870 - 0.000 0.000 
3. Repeated 1.000 1.000 - 0.043 A

LL
 

4. Muted 0.995 1.000 0.957 - 
Table 2. Proportions of listeners preferring each streaming 
scenario (columns) compared to each of the other scenarios 
(rows) for each program separately and averaged over all 
programs. 

 
Figure 14. Averaged proportions for streaming scenarios. 
Significant differences between ranks are found at p<0.01 

6. DISCUSSIONS 
The listening test has shown that C-UEP error recovery is 
preferable over both repetition and muting for this sample set. 
Two aspects are discussed in the following sub-sections. The first 
aspect concerns the strengths, weaknesses, and possible 
improvements of the scheme in music streaming. The second 
aspect concerns a generalized C-UEP concept, which we believe 
is useful in many real-life multimedia streaming applications. 

6.1 Strengths, Weaknesses and Possible 
Improvements 
To our knowledge, this is the first attempt to establish a content-
based UEP framework for error-resilient music streaming 
applications with promising results. Our structured music coding 
scheme is more efficient than the existing coding methods that we 
are aware of. This framework is particularly suitable for 
streaming high quality music from a server to many wireless 
mobile clients, where burst packet loss may happen. However, the 
particular approach presented in this paper is not suitable for two-

way real-time communications due to the requirement of offline 
encoding in the server. 

In principle, a percept of an onset is caused by a noticeable 
change in intensity, pitch and timbre of the sound [17]. We have 
only considered onsets caused by intensity and pitch in our 
current implementation. This is based on our assumption that 
drumbeats and note onsets are the most common and important 
musical transients, which are difficult to recover from their 
neighboring packets. Other musical attributes, e.g. vibrato or 
gradual fade-in, can be recovered relatively well using receiver-
based error concealment. 

The structured music data (metadata) is transmitted to the receiver 
and it is up to the receiver to decide how to use this data. In 
addition to packet loss recovery, it can also be used for many 
other purposes such as synchronizing events with music, audio 
classification and summarization, etc. 

In the current implementation, the metadata is transmitted first 
followed by the RTP stream. This is not an essential requirement. 
Alternatively, a TCP connection could be used in parallel with the 
primary RTP stream, or the metadata could be protected with an 
error correction scheme such as retransmission. These alternatives 
would only apply to the metadata. 

The proposed scheme is suitable for many different types of 
mobile terminals with different computational and memory 
capacities. It can also be designed to be independent of any 
particular audio codec. 

The proposed C-UEP scheme can be extended to encode 
transients other than drumbeats and note onsets. In general, a 
heterogeneous media stream can be segregated into piecewise 
homogenous segments. The boundaries between individual 
homogenous media segments are important. Further research is 
needed in this direction. 

6.2 Generalized C-UEP 
To improve user-perceived QoS, UEP is a simple and effective 
concept which can be deployed at different levels, from lower-
level B-UEP to high-level C-UEP, to protect semantically 
significant parts of multimedia content. C-UEP can also facilitate 
scalability in streaming applications. That is, in case of bandwidth 
constraints, packets can be dropped according to their semantic 
importance. 

We believe that different media streams (e.g., audio and video), 
even different segments in individual media streams, are of 
different level of importance in streaming services. For example, 
during the live reporting of breaking news events, if we lose the 
video track, the service can still be continued with some 
constraints. However, if we lose the audio track, the service 
breaks down immediately since it is extremely difficult for us to 
read lips from the video without an audio track. From an 
information theory viewpoint, the reporter’s face in the video 
does not convey much information, but his/her report (audio 
track) conveys the most relevant information to the audiences. 
Instead of having bad quality in both media streams 
simultaneously, it can be a better option to freeze the video 
temporarily and to guarantee the audio stream. 

Therefore, it is important to analyze the significance of individual 
media streams and segments. Based on this information, it is 



possible to optimize the resource allocation in different situations 
and to achieve the best user-perceived QoS. Some efforts in this 
direction can be found in [25][26]. 

7. CONCLUSION 
A novel content-based unequal error protection (C-UEP) scheme 
has been proposed for music streaming, which yields a good 
balance between user perceived QoS and relevant resources. The 
key technology is to fully exploit the structural characteristics of 
music signals and encode only the most relevant attributes of 
transients in a secondary bitstream. In comparison to traditional 
bitstream-level unequal error protection (B-UEP) schemes, we 
believe that C-UEP concept is a big step forward in improving 
user-perceived QoS in many multimedia streaming applications 
where the bandwidth is constrained. 
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