CS5248: Systems support for continuous media

Content-based UEP: A new Scheme for Packet loss Recovery in Music Streaming

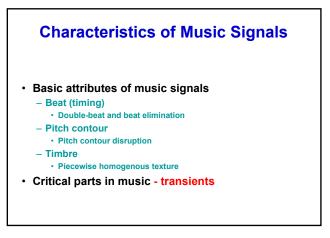
> Guest Lecturer: Dr Wang, Ye {wangye@comp.nus.edu.sg}

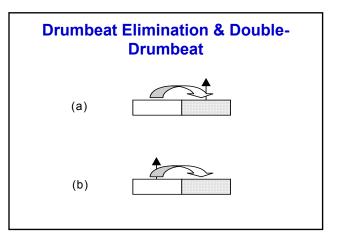
Content

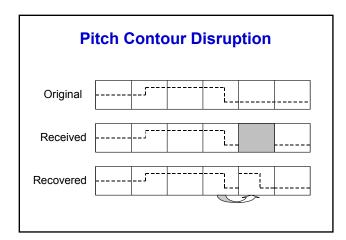
- Motivation for research on error resilient audio streaming
 - Source coding and channel characteristics
 - Methods for increased error robustness
 - Why new methods are needed
- Content-based UEP (C-UEP) scheme
 - Concept: Combination of FEC and error concealment
 Audio segmentation, classification and prioritization
 - System implementation
 - Sender side
 - Receiver side
- Performance evaluation
- Discussion and conclusion

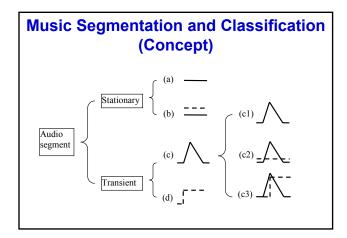
Motivations

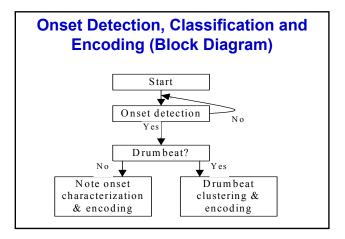
- Mismatch between source coding and channel characteristics
 - Most existing audio codec are not designed for packet switched network transmission
 - Internet is not designed for delivery of continuous media
- Packet loss inevitable in IP+wireless networks
- Existing methods do not provide satisfactory solutions
- · New methods are needed


Challenges to Existing Methods

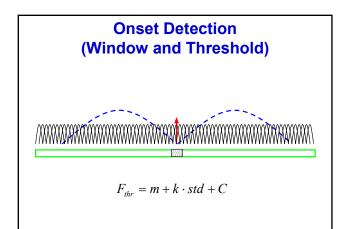

- Sender-based methods (FEC, UEP)
 - Must balance between redundancy and QoS
- Network-based methods (retransmission, packetization)
 - Must consider system latency and availability of feedback channel
- Receiver-based methods (error concealment)
 - Effective only if
 - Packet loss is infrequent
 - Packet size is small
 - Signal is quasi-stationary

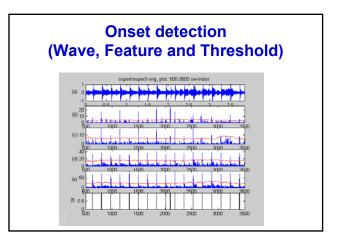


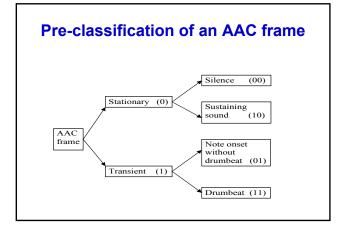

Limitation of the current FEC and a new Solution

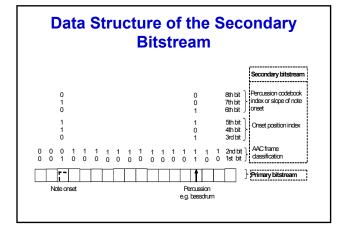

- Unnecessarily high redundancy
 - Don't use correlation between neighboring packets effectively
- Mismatch between primary and secondary coders
 Characteristics of Modified Discrete Cosine Transform
 (MDCT)
 - Frame size constraints
- Solution: a good combination of FEC and concealment

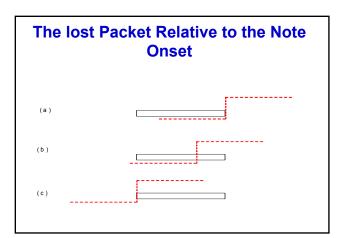


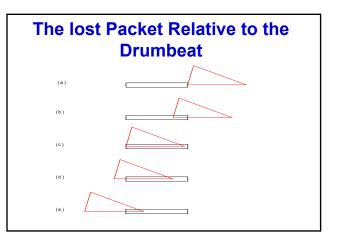


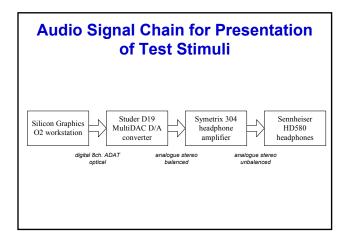


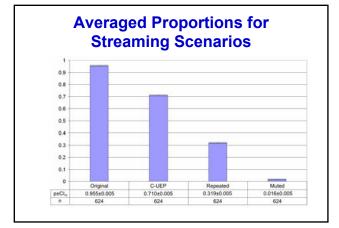












Programme	Time	Tempo	Description
	signature	(qpm)	
Slow Rock	4/4	81	Distorted guitar, bass, piano and drums wt melodic instruments sustaining held chord. Dynamics dominated by drums. No vocals.
Dance	4/4	123	Electronic dance music with prominent female vocal through entire programme. Consistent "disco" type bass drum on every beat.
Prog. Rock	9/8	112*	Progressive rock with drums playing polyrhythms with unconventional use of accented individual drums. No vocals.
Country	4/4	120	Prominent strummed acoustic guitar, female vocals and laptop slide guitar. Guiro is also played throughout with drums less prominent

Conclusion

- The proposed content-based unequal error protection (C-UEP) is effective in music streaming scenario
- · Useful to exploit characteristics of music signals
- The combination of FEC and receiver-based error concealment seems to be a suitable strategy for streaming music over Internet and wireless channels

References

- Wang, Y., Ahmaniemi, A., Isherwood, D., Huang, W., "Content-based UEP: A new Scheme for Packet Loss Recovery in Music Streaming," ACM International Conference on Multimedia, November 2-8, 2003, Berkeley, California, USA
- Wah, B.W., Su, X. and Lin, D., "A Survey of Error Concealment Schemes for Real-time Audio and Video Transmissions over the Internet," IEEE International Symposium on Multimedia Software Engineering, Taipei, Taiwan, pp.17-24, Dec. 2000
- Perkins, C., Hodson, O., Hardman, V., "A Survey of Packet Loss Recovery Techniques for Streaming Audio," IEEE Network, pp.40-48, Sept/Oct, 1998