
Multimedia Systems (1998) 6:17–28 Multimedia Systems
c© Springer-Verlag 1998

Packet audio playout delay adjustment:
performance bounds and algorithms
Sue B. Moon, Jim Kurose, Don Towsley

Department of Computer Science, University of Massachusetts at Amherst, Amherst, MA 01003, USA;{sbmoon,kurose,towsley}@cs.umass.edu

Abstract. In packet audio applications, packets are buffered
at a receiving site and their playout delayed in order to com-
pensate for variable network delays. In this paper, we con-
sider the problem of adaptively adjusting the playout delay
in order to keep this delay as small as possible, while at
the same time avoiding excessive “loss” due to the arrival
of packets at the receiver after their playout time has al-
ready passed. The contributions of this paper are twofold.
First, given a trace of packet audio receptions at a receiver,
we present efficient algorithms for computing a bound on
the achievable performance ofany playout delay adjustment
algorithm. More precisely, we compute upper and lower
bounds (which are shown to be tight for the range of loss
and delay values of interest) on the optimum (minimum)
average playout delay for a given number of packet losses
(due to late arrivals) at the receiver for that trace. Second,
we present a new adaptive delay adjustment algorithm that
tracks the network delay of recently received packets and
efficiently maintains delay percentile information. This in-
formation, together with a “delay spike” detection algorithm
based on (but extending) our earlier work, is used to dy-
namically adjust talkspurt playout delay. We show that this
algorithm outperforms existing delay adjustment algorithms
over a number of measured audio delay traces and performs
close to the theoretical optimum over a range of parameter
values of interest.

Key words: Packetized audio – Playout delay – Multimedia
– Packet loss – Dynamic programming – Computer networks

1 Introduction

In the 20 years that have passed since the early Arpanet
experiments with packetized voice [Coh77], packetized au-
dio has blossomed into an application that many Internet
users now use regularly. For example, the audio (and video
and whiteboard) segments of many technical conferences
and workshops are now carried over the MBone multicast

Correspondence to: D. Towsley

network [CD92, Jac94, MB94]. Smaller, more interactive,
group meetings are also frequently conducted over the In-
ternet using these multimedia tools.

Packet audio tools such as NeVoT [Sch92] and vat [JM]
operate by periodically gathering audio samples generated
at the sending host, packetizing them, and transmitting the
resulting packet (via UDP unicast/multicast) to the receiving
site(s). For efficiency, a source’s audio is typically divided
into “talkspurts” (periods of audio activity) and “silence pe-
riods” (periods of audio inactivity, during which no audio
packets are generated). In order to faithfully reconstruct the
audio at a receiving site, data in packets within a talkspurt
must be played out in the same periodic manner in which
they were generated.

If the underlying network is free of variations (jitter) in
packet delays, a receiving site can simply play out an au-
dio packet as soon as it is received. However, jitter-free,
in-order, on-time packet delivery rarely, if ever, occurs in
today’s packet-switched networks. In order to compensate
for these variable delays, a smoothing buffer is thus typi-
cally used at a receiver. Received packets are first queued
into the smoothing buffer and the periodic playout of packets
within a talkspurt is delayed for some amount of time beyond
the reception of the first packet in the talkspurt. Informally,
we refer to this delay as theplayout delayof the talkspurt.
Clearly, the longer the playout delay, the more likely it is
that a packet will have arrived before its scheduled playout
time. Excessively long playout delays, however, can signif-
icantly impair human conversations. There is thus a critical
tradeoff between the length of playout delay and the amount
of loss (due to late packet arrival) that is incurred. Generally,
delays between talkspurt generation and receiver playout of
less than 400 ms [ITU93] and a loss percentage of up to
5% [Jay80] are considered to be quite tolerable in human
conversations. The talkspurt playout delays themselves can
be either fixed for the duration of the audio session (an ap-
proach examined in [Mon83, Coh77]), or adaptively adjusted
from one talkspurt to the next, with intervening silence pe-
riods artificially elongated or compressed accordingly – the
approach taken in the NeVoT and vat audio tools.

In this paper, we focus on this tradeoff between packet
playout delay and packet loss. The main contributions of

18

this paper are twofold. First, given a trace of packet audio
receptions at a receiver, we present efficient algorithms for
computing upper and lower bounds on the optimum (mini-
mum) average playout delay for a given number of packet
losses (due to late arrivals) at the receiver for that trace.
These bounds, which we show to be tight for a range of loss
and delay values of interest, are of particular importance
as they provide a bound on the achievable performance of
any adaptive playout delay adjustment algorithm. Our sec-
ond significant contribution is the development of a new
adaptive delay adjustment algorithm that tracks the network
delay of recently received packets and efficiently maintains
delay percentile information. This information, together with
a “delay spike” detection algorithm based on (but extending)
our earlier work [RKTS94], is used by the new algorithm
to dynamically adjust talkspurt playout delay. We show that
this new algorithm generally outperforms existing delay ad-
justment algorithms over a number of measured audio delay
traces and performs close to the theoretical optimum over a
range of parameter values of interest.

While the work reported in this paper is based on an In-
ternet service model which only provides best effort service,
such adaptive audio applications are of importance in both
future Internet and ATM network architectures as well. For
example, the Integrated Services Working Group of the IETF
has issued Internet Drafts [Wro95, SPW95,?] for predictive
and controlled service classes in which adaptive applications
may respond to the varying networks delays. In ATM ABR
service, the delays seen by an application during a connec-
tion may vary as well.

The remainder of this paper is structured as follows. Sec-
tion 2 provides additional background for our work, includ-
ing an extended discussion of the observed delay spikes in
the packet audio traces reported earlier in [RKTS94] as well
as in new, more recent experimental traces reported here. In
Sect. 3, we describe the algorithms used to compute bounds
on the optimum average playout delay for a given loss. In
Sect. 4, we present our new adaptive playout delay adjust-
ment algorithm and examine its performance. Section 5 con-
cludes this paper.

2 Background

As discussed above, a receiving site in an audio appli-
cation typically buffers packets and delays their playout
[ACBOS93, Mon83] in order to compensate for variable net-
work delays. The playout delay can be constant throughout
the entire audio session or can be adaptively adjusted during
the session from one talkspurt to the next. In the Internet,
end-to-end delays fluctuate significantly [Bol93, SGAJ93]
and a constant, non-adaptive, playout delay would thus likely
yield unsatisfactory audio quality for interactive audio appli-
cations. There are two approaches for adaptive playout ad-
justment: per-talkspurt and per-packet adjustment. The for-
mer approach uses the same playout delay throughout a talk-
spurt (and, as a result, faithfully reconstructs the original pe-
riodic nature of the received audio data from the sender), but
allows different playout delays from one talkspurt to another.
While this may result in artificially elongated or compressed
silence periods, this is not noticeable in played-out speech

if the change is reasonably small [Mon83]. In the latter ap-
proach, the playout delay varies from packet to packet. A
per-packet adaptive adjustment introduces gaps inside talk-
spurts and is cited as being damaging to the audio quality
[ACBOS93, Coh77].

Because it is the variable nature of network delays that
gives rise to the need for playout delay adjustment algo-
rithms, an understanding of network delays and their effects
on packet audio at both the individual packet and talkspurt
level is important. It will thus be instructive to first infor-
mally examine a few traces of actual audio traffic and iden-
tify a number of characteristic aspects of the interaction be-
tween network delay and packet audio playout.

Figures 1–3 plot the variable portion of the delay be-
tween a packet’s transmission at a sender and its reception
at a receiver as a function of the time at which the packet
was transmitted at the sender. The propagation component
of the end-to-end delay has been removed by subtracting out
the minimum of the measured end-to-end delays in the entire
delay trace (presumably the case in which there is little or no
queueing of the packet in intermediate routers). Note that,
by considering only the variable delay component, the issue
of sender and receiver clock synchronization can be avoided.
The variable delay component of each packet is plotted as
a diamond on the graph. Dotted-line rectangles are used to
distinguish talkspurts from each other showing which pack-
ets belong to which talkspurt. The width of a rectangle in
the figures represents the length of a talkspurt and its height
represents the largest variable portion of network delay over
all packets within that talkspurt. A packet is generated every
20 ms during a talkspurt, and hence a missing dot at a 20-ms
interval within a talkspurt indicates a lost packet within the
network.

The delay traces shown in Fig. 1, as well as all other
traces reported in this paper, were collected using NeVoT
[Sch92], an audio conferencing tool that allows both point-
to-point or multicast connections. NeVoT has a tracing mech-
anism that can collect timestamps of packets sent and re-
ceived, RTP sequence numbers [SCFJ95], and vat virtual
timestamps of packets. In our experiments and simulations
we used vat virtual timestamps Packet audio was encoded
in 8-KHz PCM mode and the packetization unit time was
20 ms. The sending and receiving hosts, the start time and
date of the trace, the trace length, and an indication of
whether packets were sent as unicast or multicast packets
are indicated in Table 1. Traces 4, 5, and 6 are from our
earlier work, and are described further in [RKTS94]. Traces
1 through 3 are new traces consisting of the transmission
of the audio component of a recording with both female
and male voices. Figures 1–3 are all taken from Trace 1 in
Table 1.

Delay spikes are evident in Figs. 1, 2, and 3. Figure 1
shows a spike whose delay is less than an order of magnitude
greater than other “baseline” delays and whose duration is
short enough to be contained in a single talkspurt. Figures 2
and 3 show larger spikes with delay peaks that are almost an
order of magnitude larger than the “baseline” delays. A large
spike can either be contained in one talkspurt, as in Fig. 2,
or can span several talkspurts, as in Fig. 3. In Trace 1 of
Table 1, there are 23 such conspicuously large spikes; 10 of

19

Fig. 1. Small spike

Fig. 2. Big spike

Fig. 3. Spike spanning several talkspurts

Table 1. Trace details

Trace # Sender Receiver Start time(Sender) Duration Multicast
1 UMass GMD Fokus 08:41pm 6/27/95(Tu) 1348 secs No
2 UMass GMD Fokus 09:58am 7/21/95(Fr) 1323 secs Yes
3 UMass GMD Fokus 11:05am 7/21/95(Fr) 1040 secs No
4 INRIA UMass 09:20pm 8/26/93(Th) 580 secs No
5 UCI INRIA 09:00pm 9/18/93(Sa) 1091 secs No
6 UMass Osaka Univ. 00:35am 9/24/93(Fr) 649 secs No

these are contained in one talkspurt, 9 span two talkspurts,
and the remaining 4 span three talkspurts.

Previous studies [Bol93, SGAJ93, RKTS94] have indi-
cated the presence of “spikes” in end-to-end Internet delays.
Bolot [Bol93] conjectures that, with periodically generated
packets (as is the case with our audio packets and as was
the case in [Bol93, SGAJ93, RKTS94]), the initial steep rise
in the delay spike and the linear, monotonic decrease spike
after the initial rise, is due to “probe compression” – the ac-
cumulation of a number of packets from the connection un-
der consideration (the audio session, in our case) in a router
queue behind a large number of packets from other sources.
We note that probe compression is a plausibleconjecture
about the cause(s) of delay spikes. Validation of this con-
jecture would require careful measurements of packet traffic
and its delay at the routers where congestion occurs. Our
work [KKT96] discusses the many difficulties involved in
making such measurements without privileged access to the
routers.

Note that when a delay spike is properly contained within
a talkspurt, the next opportunity to change the playout de-
lay (i.e., at the beginning of the next talkspurt) occursafter
the delay spike terminates. In such a case, it is not possible
to adaptively react to the delay spike, since the delay spike
is already over (i.e., the delay has returned to its baseline
value) by the next talkspurt and any packets that were so
excessively delayed during the delay spike that they missed
their playout time have already been lost. In cases where a
delay spike spans multiple talkspurts, however, itis advan-
tageous to quickly react to the delay spike, as discussed in
[RKTS94]. Note also that the “baseline” delays fluctuate less
compared to spikes and as a result their delay distribution
does not change significantly over time.

These two observations form the basis for the new delay
adaptation algorithm to be presented in Sect. 4. First, how-
ever, we address the question of determining the playout
delays incurred under a theoretically optimum playout delay
adjustment algorithm. We do this in the following section.

20

3 Optimum average playout delay

In previous works [Coh77, Mon83, WF83, RKTS94], the
tradeoff between the average playout delay and loss due
to late packet arrival is used as the performance measure
in comparing one adaptive playout delay adjustment algo-
rithm with another – a tradeoff which we also use in this
paper. We have chosen to consider loss and delay on a per-
packet rather than per-talkspurt basis for two reasons. First,
we note that the lengths of talkspurts depend on silence de-
tection algorithms and their parameters. Per-talkspurt results
are thus closely tied to the silence detection algorithm used.
More importantly, different talkspurts have different lengths.
One might argue that, in determining an overall performance
measure, per-talkspurt measures could be weighted by the
length of the talkspurt. In a sense, we are already doing
so by considering individual per-packet delay and loss mea-
sures, and requiring that all packets within the same talkspurt
be played out periodically.

Here, a playout delay (or, more accurately, end-to-end
application-to-application delay) is defined to be the differ-
ence between the playout time at the receiver and the gen-
eration time at the sender. We refer to Fig. 4 to show the
timing information of audio packets and formally define the
average playout delay.

Consider a trace consisting ofM talkspurts. We define
the following quantities:

– tik: sender timestamp of thei-th packet in thek-th talk-
spurt.

– ai
k: receiver timestamp of thei-th packet in thek-th

talkspurt.
– nk: number of packets in thek-th talkspurt. Here, we

only consider those packets actually received at the re-
ceiver.

– N : total number of packets in a trace,N =
∑M

k=1 nk.

The playout time of a packet depends on which algorithm
is used at the receiver to estimate the playout delay of the
packet. Consider a playout algorithmA. Thenpi

k(A) is the
playout timestamp of thei-th packet in thek-th talkspurt
underA. When it is obvious which algorithm is used, we
omit the parameterA. If the i-th packet of thek-th talkspurt
arrives later thanpi

k(A) (i.e., pi
k(A) < ai

k), it is considered
lost. Otherwise, it is played out with the playout delay of
(pi

k(A) − tik). Let ri
k(A) be an indicator variable for whether

thei-th packet of thek-th talkspurt arrives before its playout
time, as computed by playout algorithmA:

ri
k(A) =

{
0, if pi

k(A) < ai
k

1, otherwise.

The total number of packets played out under AlgorithmA
is denoted asN (A) and computed usingri

k(A):

N (A) =
M∑
k=1

nk∑
i=1

ri
k(A).

Then the average playout delay of those played-out packets
is defined as:

1
N (A)

M∑
k=1

nk∑
i=1

ri
k(A)(pi

k(A) − tik).

If there areN packets in a trace and, among them,N (A)
packets are played out under AlgorithmA, the loss percent-
agel is:

l =
N − N (A)

N
× 100.

Our goal in this section is to present a bound on the opti-
mum (minimum) average playout delay for a given number
of packet losses (due to late arrivals) at the receiver for a
given packet delay trace. To illustrate this problem, suppose
we are given a trace of sender and receiver timestamps of
audio packets in an audio session. Suppose now that we
are free to set the playout delays of the various talkspurts to
whatever values we choose such that only one packet (in the
entire trace) will be lost. That is, we want to lose a packet,
so that the average playout delay over all played-out packets
in the trace is minimized. This provides a bound on the av-
erage delay achievable byany delay adjustment algorithm,
given that only one out of all the received packets in the
trace is lost. We then repeat this procedure for two packet
losses, and so on.

The obvious way to calculate the exact minimum bound
is as follows: for a given number of dropped packets, sayi,
determine all possible configurations ofi lost packets, com-
pute the average playout delay for each configuration, and
compute the minimum of these average playout delays. The
number of computations ofi lost packets grows exponen-
tially in N . We reduce the computational cost by instead de-
riving upper and lower bounds on the optimum (minimum)
playout delay for a given loss percentage, that requires an
amount of computation that is polynomial in the number of
packets in the trace.

Section 3.1 provides the background needed for present-
ing these algorithms and defines our notation. In Sects. 3.2
and 3.3, we describe our approach in detail.

3.1 General overview

Below we introduce additional terminology to be used in
following sections.

– d̂i
k: delay between the generation of thei-th packet of

the k-th talkspurt at the sender and its reception at the
receiver, namelŷdi

k = ai
k −tik. We do not need to assume

that the sender and receiver clocks are synchronized, but
do need to assume that they do not drift.

– d̂: d̂ = min
1≤k≤M,1≤i≤nk

{d̂i
k}.

– di
k: normalized delay of thei-th packet of thek-th talk-

spurt. This accounts only for the variable portion of
the end-to-end delay. We will use this normalized delay
(rather thand̂i

k) in calculating the bounds of the optimum
average playout delay,

di
k = d̂i

k − d̂.

– d(i)
k : i-th smallest normalized delay in thek-th talkspurt.

Recall that the playout delay of all packets in thek-
th talkspurt should be thesamedue to the periodic nature
of packet generation within a talkspurt at the sender and

21

Fig. 4. Timings associated with thei-th packet in thek-th
talkspurt

periodic playout at the receiver. Given an algorithmA, we
denote the playout delay of thek-th talkspurt as ˆpk(A). The
playout time of thei-th packet in thek-th talkspurt is then:

pi
k(A) = tik + p̂k(A). (1)

In later sections, where there is no confusion about which
algorithm is used, we will denote ˆpk(A) simply as ˆpk.

To successfully play outi packets from thek-th talkspurt,
at leasti packets during thek-th talkspurt must arrive before
their playout time calculated by Eq. 1. To achieve this goal,
the playout delay of an algorithm must be set to be larger
than or at least equal tod(i)

k . In practice (i.e., in an actual
on-line implementation),d(i)

k cannot be known in advance
before all the packets belonging to thek-th talkspurt arrive,
but pi

k(A) must often be determined before these packets ar-
rive. Since our bounding algorithms are off-line algorithms,
we assume thattik andai

k are available at the start of their
executions.

The packet arrival times in a talkspurt are not the only
quantities that determine the playout delay. The long playout
delay of one talkspurt may force the playout of packets of
the subsequent talkspurt to be further delayed. For example,
consider a playout delay algorithmA. Assume that, in order
to play out all packets contained in thek-th and (k + 1)-th
talkspurts, algorithmA sets the playout delays ˆpk(A) and
p̂k+1(A) to d(nk)

k andd(nk+1)
k+1 , respectively. The playout time

of the first packet in the (k+1)-th talkspurt,p1
k+1(A), becomes

t1
k+1 + p̂k+1(A). If the playout time of the first packet of the

(k + 1)-th talkspurt comes before the playout time of the last
packet of thek-th talkspurt, i.e.,tnk

k +p̂k(A) > t1
k+1+p̂k+1(A),

then the beginning of the (k + 1)-th talkspurt overlaps the
end of thek-th talkspurt at the receiver. We refer to this as a
collision of the k-th and (k + 1)-th talkspurts. The condition
for a collision can be summarized as

tnk

k + p̂k(A) > t1
k+1 + p̂k+1(A), or

p̂k(A) > (t1
k+1 − tnk

k) + p̂k+1(A). (2)

In order to avoid such collisions, the playout delay of the
subsequent talkspurt must be increased. Note that collisions
can occur in a cascade when the above collision condition
persists over several talkspurts in a row. We call such a
sequence of collisions acollision train.

In order to provide a lower bound of the optimum aver-
age playout delay, we first simplify the problem by ignor-
ing the effect of collisions and assume that packets of talk-

spurts in a collision are allowed to overlap. Note that this
underestimates the optimum average playout delay (since, in
practice, some talkspurts would be further delayed in order
to avoid overlapping packets from different talkspurts), and
thus represents a potentially unachievable lower bound on
the minimum playout delay for a given loss. Later we will
account for collisions. Our algorithms are based on dynamic
programming [Ber87].

3.2 Off-line algorithm without collisions

Our first algorithm provides a lower bound of the optimum
average playout delay for a given loss percentage. Recall that
it is obtained by ignoring additional delays due to collisions,
i.e., the effect of one talkspurt’s long playout delay on that of
the subsequent talkspurt is not considered. We defineD(k, i)
to be the minimum average playout delay possible when
choosingi packets to be played out from thek-th to M -th
talkspurts. Using dynamic programming, calculatingD(1, i)
for i from 0 toN generates the lower bounds on the optimum
average playout delay for loss percentages of 100% down
to 0%. It is described by the following equation.

D(k, i) =

0, if i = 0
d(i)

k , if k = M and i ≤ nM

∞, if k = M and i > nM

min
0≤j≤i

(
((i − j)D(k + 1, i − j) + jd(j)

k)/i
)

,

otherwise.

(3)

In the following theorem, we prove thatD(k, i) in Eq. 3
is the minimum average playout delay when choosingi
packets fromk-th to M -th talkspurts to be played out, for
the case that collisions are ignored.

Theorem 1. D(k, i) is the minimum average playout delay
of choosingi packets to be played out fromk-th to M -th
talkspurts.

Proof. Assume thatD(x, y) is minimal for k + 1 ≤ x ≤
M, 0 ≤ y ≤ i − 1, but thatD(k, i) obtained via Eq. 3 is not.
Here,j packets are chosen from thek-th talkspurt with the
playout delay to bed(j)

k , and (i−j) packets from (k+1)-th to
M -th talkspurts. Those (i − j) packets have a playout delay
of D(k + 1, i − j). Thus,

iD(k, i) > (jd(i)
k + (i − j)D(k + 1, i − j)) ,

22

which contradicts the definition ofD(k, i) in Eq. 3, namely
that:

jd(i)
k + (i − j)D(k + 1, i − j) ≥ iD(k, i).

Thus,D(k, i) is minimal.

3.3 Off-line algorithm with collisions

The second algorithm computes an upper bound on the op-
timum average playout delay. It relies on dynamic program-
ming as in Sect. 3.2, but is more complicated due to the
manner in which it accounts for collisions. In the first algo-
rithm, the playout delay of a talkspurt is simplyd(i)

k , givenk
andi at each step of computation in Eq. 3. To take collisions
into account, condition 2 is checked for everyk andi in the
second algorithm. If there is a collision, the playout delay
of the latter of the two colliding talkspurts is adjusted to a
larger value to avoid a collision. Checking condition 2 for
collisions requires not only the playout delays of two adja-
cent talkspurts but also the sender timestamps of the last and
first packets of each talkspurt. The identity of the first and
last packets played out in a given talkspurt vary, depending
on which packets are chosen by the bounding algorithm to
be played out. To track those packets played out at every
step of the computation, we introduce the vectorC(k, i),
whose components are the sets of packets belonging to talk-
spurtsk, . . . , M that are played out. Here,i denotes the total
number of packets contained within these sets.

An informal description for the second algorithm is as
follows. DefineD(k, i) as before. Givenk and i, assume
that D(x, y) is known for k + 1 ≤ x ≤ M, 0 ≤ y ≤ i − 1.
The calculation ofD(k, i) consists of choosingj packets
from thek-th talkspurt, and (i− j) packets from the (k + 1)-
th to M -th talkspurts to be played out so as to minimize
the average playout delay of those packets. If playing outj
packets from thek-th talkspurt results in a collision between
k-th and (k + 1)-th talkspurts, then the playout delay of the
(k+1)-th talkspurt becomes larger and is accounted for when
calculating the average playout delay. Choosingj packets
from thek-th talkspurt may cause a cascade of collisions, in
which case the playout delays are increased for all talkspurts
involved in the collision, and if so, more delays are added
to calculate the average playout delay.C(k, i) records which
packets are chosen for the minimum total sum at this step
of computation.

Let us now introduce the additional notation used in the
second algorithm. Throughout,S = (S1, . . . , Sk, . . . , SM) is
an M -dimensional vector, whereSk ⊆ {1, . . . , nk} is a set
of packets from thek-th talkspurt. If|Sk| = l, thenSk con-
tains the identities (indices) of thel packets with thel small-
est normalized delays in thek-th talkspurt. Henceforth,S
will be referred to as a playout vector. Letek(i, j) be anM -
dimensional vector whose components are all the empty set,
∅, except for thek-th component which is the set of pack-
ets with the (i + 1)-th through (i + j)-th smallest normalized
delays in thek-th talkspurt. Last, ifS andX are playout vec-
tors whose components are sets, thenS ∪ X is understood
to be the vector whose components are the unions of the
components inS andX.

– sk(S): difference in the sender timestamps of the last
packet played out from thek-th talkspurt and of the first
packet from the (k + 1)-th talkspurt, givenS. This value
is used in adjusting the playout delay in the case of a
collision. It is given as

sk(S) =

0, if k = M, Sk = ∅, or Sk+1 = ∅
min{tik+1 : i ∈ Sk+1} − max{tik : i ∈ Sk},

otherwise.

sk(S) can be interpreted as the length of the silence pe-
riod at the sender between thek-th and (k + 1)-th talk-
spurts consisting ofSk andSk+1, respectively.

– p̂k(S): playout delay of thek-th talkspurt when the play-
out vector isS. It differs from d

(|Sk|)
k in the case of a

collision. It is given by the following recursion:

p̂k(S) =

0, if Sk = ∅,

d
(|S1|)
1 , if k = 1,

max{d
(|Sk|)
k , p̂k−1(S) − sk−1(S)},

otherwise.

(4)

If a collision has occurred, the playout delay ˆpk(S) be-
comes ˆpk−1(S) − sk−1(S). It is d

(|Sk|)
k otherwise.

– ∆(S, k, j): sum of the increases in the playout delays
incurred in the (k + 1)-th to M -th talkspurts from colli-
sions due to the introduction ofj additional packets to
be played out in thek-th, talkspurt given that the play-
out vector was originallyS. It is given by the following
expression.

∆(S, k, j) =
M∑

x=k+1

|Sx|(p̂x(S∪ ek(|Sk|, j)) − p̂x(S)). (5)

If the introduction ofj additional packets to thek-th
talkspurt incurs collisions, the playout delays of the (k +
1)-th to the last talkspurts in a collision train become
larger. The difference between the new larger playout
delay and the original playout delay of the talkspurt is
multiplied by the number of packets chosen from that
talkspurt. These values are summed to obtain the total
amount of additional playout delay.

In the second algorithm, not onlyD(k, i) but alsoC(k, i)
is calculated at each step of computation. The equations for
D(k, i) andC(k, i) are as follows:

D(k, i) =

0, if i = 0
d(i)

k , if k = M, i ≤ nM

∞, if k = M, i > nM

min
0≤j≤i

{
(i−j)D(k+1,i−j)+jd(j)

k
+∆(C(k+1,i−j),k,j)

i

}
,

otherwise.

(6)

The only difference between Eqs. 3 and 6 of the two bound-
ing algorithms is the extra term∆() in Eq. 6, which accounts
for the extra delays incurred by collisions.

23

C(k, i) =

(∅, . . . , ∅), if i = 0
ek(0, i), if k = M, i ≤ nM

ek(0, nM), if k = M, i > nM

C(k + 1, i − j) ∪ ek(0, j)
wherej = arg min

0≤j≤i{
(i−j)D(k+1,i−j)+jd(j)

k
+∆(C(k+1,i−j),k,j)

i

}
,

otherwise.

(7)

Whenj out of i packets are chosen from thek-th talkspurt
for someD(k, i), the indices of those packets are inek(0, j).
The union ofek(0, j) andC(k+1, i−j) is assigned toC(k, i).

The second algorithm accounts for the collisions in its
calculation, but does not generate the exact optimum average
playout delay. A close look at Eq. 6 reveals why. Consider a
case, where, for someD(k, i) resulting from the algorithm,
j packets are played out from thek-th talkspurt and cause
a collision between thek-th and (k + 1)-th talkspurt. The
j packets from thek-th talkspurt chosen to be played out
are those with thej smallest normalized playout delays. The
algorithm thus doesnot consider the case where playing out
some otherj packets from thek-th talkspurt would not incur
a collision (or as severe a collision) to the (k+1)-th talkspurt.

It is worth noting that it is not necessary to keep track
of the identities of every packet to be played out inC(k, i).
It suffices to keep track of the number of packets in each
talkspurt, the normalized delays, and the sender timestamps
of the earliest and latest of the packets being played out. We
found it simpler to present the algorithm as described above.

3.4 Computational complexity

The time complexity of the first algorithm isO(M · N2)
and the space complexity isO(M · N). The total number
of packets in a trace,N , easily exceeds 30,000 for a trace
lasting longer than 10 min. A closer look at Eq. 3 reveals
that j can vary only from 0 to max1≤k≤M{nk} in a real
trace. If all talkspurts but one, in a trace, contain only one
packet, then max1≤k≤M{nk} is approximatelyN , and the
time and space complexities are as indicated above. On the
other hand, if all talkspurts in a trace have the same number
of packets, then max1≤k≤M{nk} is N/M . This decreases
the time complexity toO(N2). The space complexity also
reduces toO(N).

The second algorithm has higher time and space com-
plexities; the time complexity isO(M2 · N2), and the space
complexity alsoO(M2 · N2).

In some cases, it is possible to partition talkspurts into
groups such that no two talkspurts from different groups
collide. In this case, we can apply the second bounding al-
gorithm to groups, and treat groups as talkspurts under the
first bounding algorithm to obtain the upper bounds. This
two-step computation can be used to reduce the algorithm’s
running time. If such a grouping eventually yields groups
with only one talkspurt, the exact optimum average playout
delay is calculated using the first bounding algorithm for the
trace.

In this section, we have introduced two algorithms that
provide the lower and upper bounds on the optimum average
playout delay. The results from these two algorithms will be

used later in Sect. 4.4 to compare the performance of various
on-line adaptive algorithms.

4 On-line adaptive algorithm based on past history

In this section we present a new adaptive, on-line playout de-
lay algorithm and discuss its motivation, design, and imple-
mentation. In Sect. 4.1, our observations regarding existing
playout delay algorithms, and how they motivated the design
of a new algorithm, are discussed. In Sect. 4.2, the new algo-
rithm is presented in pseudo-code. In Sect. 4.3, we look into
the implementation issues of the algorithm. In Sect. 4.4, we
compare the new algorithm with others and with the bounds
presented in Sect. 3.

4.1 Motivation

Let us first consider the playout delay adjustment algorithms
Algorithm 1 and Algorithm 4 from [RKTS94]. We renum-
ber these as Algorithms 1 and 2 in this paper. These two
algorithms are based on stochastic gradient algorithms used
in estimation and control theory [LS83] and operate by es-
timating two statistics characterizing the network delay in-
curred by audio packets: the delay itself, and a variational
measure of the observed delays. Each of these estimates is
recomputed each time a new packet arrives.

α = 0.998002
ûi

k = αûi−1
k

+ (1 − α)d̂i
k

v̂i
k = αv̂i−1

k
+ (1 − α)

∣∣ûi
k − d̂i

k

∣∣
Fig. 5. Algorithm 1

IF (mode == NORMAL)
IF (

∣∣d̂i
k − d̂i−1

k

∣∣ >
∣∣v̂i−1

k

∣∣ ∗ 2 + 800)
var = 0;
mode = SPIKE;

ELSE
var = var /2 +

∣∣(d̂i
k − d̂i−1

k
)/8 + (d̂i

k − d̂i−2
k

)/8
∣∣;

IF (var ≤ 63)
mode = NORMAL;
d̂i−2

k
= d̂i−1

k

d̂i−1
k

= d̂i
k

return;
IF (mode == NORMAL)

ûi
k = 0.125∗ d̂i

k + 0.875∗ ûi−1
k

;
ELSE

ûi
k = ûi−1

k
+ d̂i

k − d̂i−1
k

;
v̂i

k = 0.125∗
∣∣d̂i

k − ûi
k

∣∣ + 0.875∗ v̂i−1
k

;

d̂i−2
k

= d̂i−1
k

d̂i−1
k

= d̂i
k

return;

Fig. 6. Algorithm 2

Algorithms 1 and 2 are in [RKTS94], but are presented
here for completeness. Let ˆui

k and v̂i
k be an estimate of the

packet delay and variational measure of thei-th packet of

24

Fig. 7. Delay estimates of three algorithms

the k-th talkspurt. At the beginning of a new talkspurt, the
playout delay ˆpk is estimated as follows:

p̂k = û
nk−1

k−1 + βv̂
nk−1

k−1 . (8)

Here,β is a variation coefficient and provides some slack in
playout delay for arriving packets. The larger the coefficient,
the more packets that are played out at the expense of longer
playout delays. It is thus a parameter which can be used to
control the delay/loss tradeoff incurred under Algorithms 1
and 2. It is used as such later in our simulations.

Algorithms 1 and 2 both use Eq. 8 to determine the play-
out delay for a talkspurt; they only differ in how they cal-
culate ûi

k and v̂i
k. The algorithms themselves are given in

Figs. 5 and 6.
Algorithm 1 is a linear filter that is slow in catching up

with a change in delays, but is good at maintaining a steady
value, when (1− α), the gain of the estimator, is set to be
very low. We use a specific value ofα = 0.998002 chosen
for NeVoT1.4 in our simulations. The choice ofα is further
discussed in Sect. 4.4

Algorithm 2 shown in Fig. 6 has two modes of operation,
depending on whether a spike has been detected. In normal
mode, it operates like Algorithm 1 with a different gain, but
in spike-detection mode,ui

k is updated differently.
Figure 7 plots the playout delay of Algorithms 1 and

2, as well as that of our new algorithm, Algorithm 3 (to
be described shortly), for a given delay trace. In Fig. 7, the
x-axis indicates the elapsed time since the beginning of a
session. A diamond plots the end-to-end queueing delay of
a packet received at that point in time. Solid rectangles de-
lineate talkspurt boundaries. The playout delay computed by
each of the three algorithms is indicated by a horizontal line
that is as long (in the x-dimension) as the talkspurt.

From the figure, we see that Algorithm 1 computes the
playout delay in such a way that the playout delay begins to
increase only well after the delay spike has occurred. Note
that, under Algorithm 1, the packets at the beginning of the
talkspurt beginning at approximately 13 s are lost. This is
because Algorithm 1 uses a delay estimator that reacts too
slowly to delay spikes. Algorithm 2, on the other hand, com-
putes a playout delay that reacts quickly to the delay spike.
For example, the playout delay computed via Algorithm 2

for this high-delay talkspurt is such that no packets are lost.
In the following talkspurt, however, the playout delay is
underestimated by Algorithm 2 and many packets are lost.
The problem here is that Algorithm 2 attempts to track the
network delays too closely and loses packets whenever its
delay estimate is small, and the following talkspurt begins
with packets that have suffered an even slightly higher delay
(i.e, the talkspurt beginning near time 16 and beyond). In the
following section, we discuss the design of a new algorithm
based on these observations.

(1) IF (mode == SPIKE)
(2) IF (d̂k

i ≤ tail * old d) /* the end of a spike */
(3) mode == NORMAL;
(4) ELSE
(5) IF (d̂i

k > head * p̂k) /* the beginning of a spike */
(6) mode = SPIKE;
(7) old d = p̂k; /* save p̂k to detect the end

of a spike later */
(8) ELSE
(9) IF (delays[curr pos] ≤ curr delay)
(10) count -= 1 ;
(11) distr fcn[delays[curr pos]] -= 1 ;
(12) delays [curr pos] = d̂i

k;
(13) curr pos = (curr pos+1) % w;
(14) distr fcn[d̂i

k] += 1 ;
(15) IF (delays[curr pos] < curr delay)
(16) count += 1 ;
(17) WHILE (count < w × q)
(18) curr delay += unit ;
(19) count += distr fcn[curr pos] ;
(20) WHILE (count > w × q)
(21) curr delay -= unit ;
(22) count -= distr fcn[curr pos] ;

Fig. 8. Algorithm 3

(1) IF (mode == SPIKE)
(2) p̂k = d̂1

k;
(3) ELSE (mode == NORMAL)
(4) p̂k = curr delay ;

Fig. 9. Playout Delay Estimation of Algorithm 3

4.2 Design

Let us first informally describe Algorithm 3. The key idea
behind our new algorithm is to collect statistics on packets
that have already arrived and to use them to estimate the
playout delay. Instead of using the linear filter mechanism,
each packet’s delay is logged and the distribution of packet
delays is updated at every packet arrival. When a new talk-
spurt starts, our algorithm calculates a given percentile point
q in the distribution function of the packet delays for the last
w packets, and uses it as the playout delay for the new talk-
spurt. As in Algorithm 2, Algorithm 3 detects spikes and
behaves accordingly: once a spike is detected, it stops col-
lecting packet delays and follows the spike until it detects
the end of a spike. Upon detecting the end of a delay spike,
it resumes its normal operation. As shown in Sect. 2, the

25

Fig. 10. Delay distribution of traces

delays of packets in a spike decrease in a linear fashion.
Thus, it is reasonable to use the delay of the first packet of
a talkspurt as the playout delay for the talkspurt, if a new
talkspurt begins during a spike. In the next paragraph, we
give a high-level description of the algorithm. For ease of
understanding, the algorithm is presented in C-language-like
pseudo code in Fig. 8, and is referred to during the design
description below.

Algorithm 3 operates in two modes. For every packet that
arrives at the receiver, the algorithm checks the current mode
and, if necessary, switches its mode to the other in lines 1–7
of Fig. 8. Lines 9–22 update the delay distribution in normal
mode. If a packet arrives with a delay that is larger than some
multiple of the current playout delay, the algorithm switches
to spike-detection mode. The end of a spike is detected in
a similar way: if the delay of a newly arrived packet is less
than some multiple of the playout delay before the current
spike, the mode is set back to normal. Two parametershead
and tail are used in lines 5 and 2 of Fig. 8 in detecting the
beginning and end of a spike. To determine the sensitivity
of the algorithm to these parameters, we variedheadfrom 2
to 20 andtail from 1 to 4 and evaluated Algorithm 3 using
our delay traces. We found the algorithm to be relatively
insensitive to values ofheadbetween 2 and 10, and oftail
between 1 to 3. We chose 4 and 2 forhead and tail in
our simulations, as multiplication by powers of 2 can be
implemented as shift operations.

Depending on the current mode, the playout delay for
the next talkspurt is estimated differently in each mode, as
shown in Fig. 9. In spike-detection mode, the delay of the
first packet of a talkspurt becomes the estimated playout de-
lay for the talkspurt. Otherwise,curr delay , which is the
given percentile point of delay based on previous statistics
of packet delays, is used.

4.3 Implementation

All of the algorithms are executed every time a packet ar-
rives at the receiver. Since the packetization interval of audio
packets varies from 16 ms to 32 ms [Jay80], the algorithms
should be efficient enough to run 30–60 times a second and
need to leave enough processing power for other activities.
For Algorithm 3, lines 9–22 consist primarily of updating
counters, and are integer operations. Theoretically, its time
complexity is proportional to the number of packet delays,
w, that are stored. However, since most delay distributions
are bell-shaped (Fig. 10 plots these distributions from our six
traces), it is expected to execute only a few loops, and thus,
in practice, we expect that the time complexity per packet
for this algorithm to be constant.

(1) WHILE (there is a packet in a trace file)
(2) fetch a packet;
(3) first checkpoint;
(4) packet processing of the algorithm;
(5) second checkpoint;

Fig. 11. Playout delay estimation of Algorithm 3

To verify our hypothesis, a simple experiment was de-
vised to measure the running time of our algorithm as well
as that of Algorithm 1. Our measurements were performed
as shown in Fig. 11. The difference in time between the first
and second checkpoints is accumulated over the entire trace
of packets and the sum is divided by the number of pack-
ets in a trace. We ran the simulator on an SGI Indy R4600
(134-MHz) IRIX 5.2 and used thegettimeofday() sys-
tem call for checkpointing. If the simulator is interrupted by
other processes between two checkpoints, the time differ-
ence between two checkpoints includes not only the running
time of our simulator, but also that of other processes. This
impedes the exact measurement of algorithm running time,

26

Fig. 12. Trace 1

Fig. 13. Trace 2

Fig. 14. Trace 3

Fig. 15. Trace 4

Fig. 16. Trace 5

Fig. 17. Trace 6

and affects both algorithms. To minimize the effect of this
extraneous measurement, our experiments were run under
light loads, and also to checkpoint not per packet but rather
per 10000 packets. In addition we performed the same mea-
surement for the case that the time to execute the algorithm

10,000 times was measured. All experiments on six traces
gave the same order of magnitude value under 200µs for the
per-packet processing of the algorithm – a relatively small
amount of time given that packets are generated every 20 ms.
Algorithm 1 was also simulated and run through the same

27

set of experiments. We found no significant difference in the
running times of Algorithms 1 and 3.

The space complexity of Algorithm 3 is linear inw, be-
cause delays of the previousw packets must be stored. The
length of the history determines how sensitive the algorithm
is in adapting to the change. If it is too short, the algorithm
will have a myopic view of the past and is likely to produce
a poor estimate of the playout delay. If it is too long, the
algorithm will keep track of an unnecessarily large amount
of past history. One potential weakness of our algorithm is
that it may be slow to adapt to a steady increase or decrease
in the “baseline” delays in the case of clock drifts. The deci-
sion on the length of history was made after evaluating the
algorithm with different lengths of history. For lengths of
history below 10,000 packets, the performance degraded as
the length became shorter. Above 10,000 packets, any per-
formance enhancement was marginal. Thus, in the results
reported in the following section, the length of historyw
is set to 10,000 packets, corresponding to 200 s of time in
the absence of silence periods. This results in a memory re-
quirement of 40,000 bytes with 4-byte integers – a negligible
amount of memory in today’s workstations.

4.4 Comparison of delay adaptation algorithms with bounds

As mentioned in the introduction to this paper, the perfor-
mance metric we use to compare different delay adaptation
algorithms is the average playout delay vs. loss percentage.
To evaluate Algorithms 1–3, we designed and implemented a
simulator that reads in the sender and receiver timestamps of
each packet from a trace, determines if it has arrived before
the playout time that is computed by a specific algorithm,
and executes the algorithm. The simulator calculates the av-
erage playout delay and loss percentage for the given trace
and outputs them. This allows us to compare the algorithms
under the same conditions.

In Figs. 12–17, the average playout delay is plotted as
a function of the loss percentage for each algorithm. In the
absence of any specific reference, all figures mentioned in
this section are Figs. 12–17.

For Algorithms 1 and 2, instead of using the buffer size
as the control parameter to be varied to achieve different loss
percentages (as was done in [RKTS94]), we here variedβ
in Eq. 8. The range of values forβ varies from 1 to 20 in
our simulations. In Figs. 12–17, a diamond for Algorithm 1
and a plus for Algorithm 2 are used explicitly to mark the
β value of 4, which was used in [RKTS94].

For Algorithm 1, we ran a set of simulations to deter-
mine the sensitivity of the algorithm to the value ofα. For
0.90 ≤ α ≤ 0.999, the algorithm’s performance did not
change dramatically. Forα < 0.90, however, the perfor-
mance degraded. The specific value of 0.998002 was chosen
for NeVoT1.4, and we used this value in our simulations.

Since Algorithm 3 does not use the mean or variational
measure, it is parametrized by the percentile point of 50–
100% on the figures. On the graphs of Algorithm 3, 99%
and 97% points are marked with a square and a cross, re-
spectively.

As the algorithms for bounding performance use normal-
ized delays in their calculation of average playout delay, the

average playout delay of Algorithms 1–3 is also normalized
by subtractingd̂ from it; these normalized average playout
delays are plotted in the figures. The lower and upper bounds
of the optimum average playout delay are always below the
graphs of Algorithms 1–3, since they are the theoretically
optimum (minimum) bounds of the average playout delay
for any given loss percentage. Algorithms 1–3 yield a single
point on the graph of an average playout delay versus a loss
percentage for a fixed control parameter (variation coeffi-
cient or percentile point). The graphs of Algorithms 1–3 are
drawn by connecting a finite set of those points.

Our figures illustrate several interesting points. First, note
that the upper and lower bounds on the optimum playout
delay versus loss tradeoff are quite close, as long as the
loss percentage is 1% or more. Eqs. 3 and 6 thus provide
very tight lower and upper bounds on the optimum average
playout delay for loss percentages in the range of interest.

Trace 2 in Fig. 13 was collected between two multicast
sites on the MBone during busy hours. The network loss
percentage between the sender and the receiver is a hor-
rendously high 58%. It also has a long blackout period of
almost 2 min, when no packets arrived at the sender. This
blackout phenomenon on the MBone is reported in [YKT].

Trace 3 in Fig. 14 was also collected during busy hours,
but using unicast connections over the Internet. It suffered
a network loss percentage of 17%, which is far lower than
that of Trace 2, but still far from the desirable range of 2–
5%. For Trace 3, all three algorithms show similar average
playout delays near 0.35 s on the y-axis for marked points.

In Figs. 15–17, Algorithm 3 performs best in all points,
nearly touching the optimum delay in Fig. 16. All four
marked points on the graphs are close in their y-coordinates,
but their x-coordinates are somewhat dispersed. The marked
points of Algorithm 2 are consistently positioned to the right
of other marked points on the x-axis, which means it drops
more packets due to late arrival for a given playout delay.
This verifies our previous observation that Algorithm 2 un-
derestimates the playout delay after spikes.

5 Conclusion

In this paper, we have focused on the tradeoff between
packet playout delay and packet playout loss. We presented
algorithms for computing upper and lower bounds on the op-
timum (minimum) average playout delay for a given number
of packet losses (due to late arrivals) at the receiver for a
given trace of packet delays. These bounds were shown to
be tight for a range of loss and delay values of interest,
and are important, as they provide a bound on the achiev-
able performance ofany adaptive playout delay adjustment
algorithm. We also presented a new adaptive delay adjust-
ment algorithm that tracks the network delay of recently
received packets and efficiently maintains delay percentile
information. Our new algorithm was shown to outperform
existing delay adjustment algorithms over a number of mea-
sured audio delay traces and performs close to the theoretical
optimum over a range of parameter values of interest.

28

Acknowledgements.We wish to thank Henning Schulzrinne for providing
us with the invaluable tool, NeVoT, to collect traces and allowing us to use
his machine in Germany for experiments. We also thank Ramachandran
Ramjee for use of his traces. This work was supported in part by the
National Science Foundation under grants NCR-911618 and NCR-9206908,
and the Defense Advanced Research Projects Agency under contract NAG2-
578.

References

[ACBOS93] Alvarez-Cuevas F, Bertran M, Oller F, Selga JM (1993) Voice
synchronization in packet switching networks. IEEE Networks Mag
7(5):20–25

[Ber87] Bertsekas DP (1987) Dynamic Programming: Deterministic and
Stochastic Models. Prentice-Hall, Englewood Cliffs, NJ 07632, USA

[Bol93] Bolot J-C (1993) End-to-end packet delay and loss behavior in
the Internet. In: Proceedings of ACM SIGCOMM ’93, San Francisco,
Calif., pp 289–298

[CD92] Casner S, Deering S (1992) First IETF Internet Audiocast. ACM
Comput Commun Rev 22(3):92–97

[Coh77] Cohen D (1977) Issues in transnet packetized voice communica-
tion. In: Proc. Fifth Data Communications Symposium, Snowbird, Ut.,
6.10–6.13

[ITU93] Telecommunication Standardization Sector of ITU (1993) ITU-T
Recommendation G.114. Technical report, International Telecommu-
nication Union

[Jac94] Jacobson V (1994) Tutorial notes: Multimedia conferencing on the
Internet. In: Proceedings of ACM SIGCOMM ’94, London, UK

[Jay80] Jayant NS (1980) Effects of packet loss on waveform coded
speech. In: Proc. Fifth Int. Conference on Computer Communications,
Atlanta, Ga., pp 275–280

[JM] Jacobson V, McCanne S: vat.
ftp://ftp.ee.lbl.gov/conferencing/vat/ .

[KKT96] Kasera S, Kurose J, Towsley D (1996) Exploring the dynamic
behaviour of the internet using ip options. Technical Report 96-
12, Department of Computer Science, University of Massachusetts at
Amherst, Amherst, MA 01003, USA

[LS83] Ljung L, S̈oderstrom T (1983) Theory and Practice of Recursive
Identification. MIT Press, Cambridge, Mass.

[MB94] Macedonia M, Brutzman D (1994) Mbone provides audio and
video across the internet. IEEE Comput Magazine 21(4):30–35

[Mon83] Montgomery WA (1983) Techniques for packet voice synchro-
nization. IEEE J Select Areas Commun 6(1):1022–1028

[RKTS94] Ramjee R, Kurose J, Towsley D, Schulzrinne H (1994) Adap-
tive playout mechanisms for packetized audio applications in wide-area
networks. In: Proceedings of IEEE INFOCOM ’94 Montreal, Canada

[SCFJ95] Schulzrinne H, Casner S, Frederick R, Jacobson V (1996) RTP:
A transport protocol for real-time applications. Request for Comments:
1889 Internet Engineering Task Force, Audio-Video Transport WG

[Sch92] Schulzrinne H (1992) Voice communication across the Internet:
A Network Voice Terminal. Technical report, Dept. of ECE, Dept. of
CS, University of Massachusetts, Amherst, MA 01003, USA

[SGAJ93] Sanghi D, Gudmundsson O, Agrawala A, Jain BN (1993) Exper-
imental assessment of end-to-end behavior on Internet. In: Proceedings
of IEEE INFOCOM ’93,4 San Francisco, Calif., pp 867–87

[SPDB95] Shenker S, Partridge C, Davie B, Breslau L (1995) Specification
of predictive quality of service. INTERNET-DRAFT draft-ietf-intserv-
predictive-svc-01, Internet Engineering Task Force

[SPW95] Shenker S, Partridge C, Wroclawski J (1995) Specification of
controlled delay quality of service. INTERNET-DRAFT draft-ietf-
intserv-control-del-svc-02, Internet Engineering Task Force

[WF83] Weinstein C Forgie JW (1983) Experience with speech communi-
cation in packet networks. IEEE J Select Areas Commun 6(1):963–980

[Wro95] Wroclawski J (1995) Specification of the controlled-load network
element service. INTERNET-DRAFT draft-ietf-intserv-ctrl-load-svc-
01, Internet Engineering Task Force

[YKT] Yajnik M, Kurose J, Towsley D: Packet loss correlation in the
Mbone multicast network. In: Proceedings of IEEE Global Internet
Mini-Conference, Part of GLOBECOM ’96, London, England, pp 94–
99

Sue B. Moon received the B.S. and
M.S. from Seoul National University,
Seoul, Korea, in 1988 and 1990, respec-
tively, all in computer engineering. From
1990 to 1991, she worked for IMIGE
Systems, Inc. in Seoul, Korea. Since
1992, she has been a PhD student in
the Dept. of Computer Science at the
University of Massachusetts at Amherst.
Her research interests include multime-
dia communications and systems, and
high-speed networks. She is a student
member of ACM and IEEE.

Jim Kurose received a B.A. degree
in physics from Wesleyan University in
1978 and his M.S. and Ph.D. degrees in
computer science from Columbia Uni-
versity in 1980 and 1984, respectively.
In 1984, he joined the Computer Sci-
ence faculty at the University of Mas-
sachusetts, where he is currently a Pro-
fessor. He was a Visiting Scientist is
the Communications Department at IBM
Research during the 1990/91 academic
year. Dr. Kurose’s current research in-
terests include real-time and multime-
dia communication, network protocols
for parallel machines, operating systems,
and modeling and performance evalua-

tion. Dr. Kurose is the past Editor-in-Chief of the IEEE Transactions on
Communications and of the IEEE/ACM Transactions on Networking. He
has been active in the program committees for both the IEEE Infocom con-
ference the ACM SIGCOMM conference for a number of years. He has
also won a number of awards for his teaching, including outstanding teach-
ing awards from the National Technological University (NTU), the College
of Natural Science and Mathematics at the University of Massachusetts,
and the Northeast Association of Graduate Schools. He is a member of the
IEEE, ACM, Phi Beta Kappa, Eta Kappa Nu, and Sigma Xi.

Don Towsley received the B.A. degree in physics and the Ph.D. de-
gree in Computer Science from University of Texas in 1971 and 1975,
respectively. From 1976 to 1985 he was a member of the faculty of the
Department of Electrical and Computer Engineering at the University of
Massachusetts, Amherst. He is currently a Professor of Computer Science
at the University of Massachusetts. During 1982-1983, he was a Visit-
ing Scientist at the IBM T.J. Watson Research Center, Yorktown Heights,
NY. and during the year 1989-1990, he was a Visiting Professor at the
Laboratoire MASI, Paris, France. His research interests include high-speed
networks and multimedia systems. He is currently on the editorial boards of
Networks and Performance Evaluation and was previously on the editorial
boards of IEEE Transactions on Communications, IEEE/ACM Transactions
on Networking and Journal of Discrete Event Dynamic Systems. He was a
Program Co-chair of the joint ACM SIGMETRICS and PERFORMANCE
’92 conference. He was elected Fellow of the IEEE for “contributions in
the modeling and analysis of computer networks”. He is also a member of
the ACM, ORSA and the IFIP Working Groups 6.3 and 7.3.

