
Yima Server PE v1.1 Internals

Beomjoo Seo

Feb., 10, 2010

0 Compilation Guide

Let source files be downloaded and extracted to the following directory.
YIMAHOME = /home/user account/YimaPE v1.1

First, you need to set up your base port number, which is a unique per project
group at $YIMAHOME/sysinclude/Yima module interfaces.h. Otherwise, your
code would result in port conflicts with other server instances.

#define BASE_PORT_NUMBER 50000

In this example, your RTSP port number is assigned as 50000 and, therefore,
your corresponding RTSP url is rtsp://cervino.ddns.comp.nus.edu.sg:50000/xxx.
The rest of the compilation guide will be exactly same as that of the version
1.0.

1 Overview

This document describes the internal architecture of Yima Server Personal Edi-
tion version 1.1 for a class project. Since a lot of server codes, especially file
interfaces, have been re-factored for readability, new codes are no longer com-
patible with the old Yima Client.

As illustrated in Figure 1, the yima server consists of three processes: RTSP
front-end, RTSP back-end, and yima node. The RTSP front-end process re-
ceives RTSP commands from a remote RTSP client, parses them to construct
corresponding internal messages (SysmonDMsg T), and passes them to the RTSP
back-end. The RTSP back-end, waiting the internal messages on a LINKPORT,
relays the messages from the RTSP front-end to the yima node process, and vice
versa. The yima node processes all the server functionalities such as session
management, media file retrieval, packetization, and network delivery except
RTSP commands handling. It consists of four threads (scheduler, sysmond w,

sysmond rsp, and MP4Flib) and a set of file related interfaces, called FLIB,
which are used by the scheduler and MP4Flib threads.

Scheduler is a thread whose main routine is defined at Scheduler::run scheduler()
in “Server/SCH SYSMOND/scheduler sysmon.cc”. Its main functionality is to

1

RTSP Client

RTSP front-end

RTSP back-end

sysmond-w sysmond-rsp

MP4Flib

scheduler

FLIB (File Interface)
Yima node

session list

RTP data

RTSP request: DESCRIBE, SETUP, PLAY, ...

RTSP response: OK, FAIL

SYSMOND-RTSP-*-REQ SYSMOND-RTSP-*-RESP

SYSMOND-RTSP-*-REQ

SYSMOND-RTSP-*-RESP

FLIB-*-REQ FLIB-*-RESP

Figure 1: Internal software components of Yima server and their message flow.

send RTP packets to the network and to prepare a next RTP packet to be
served. Following is a pseudo code of its main routine:

while forever

wait until any playing session exists.

compute minimum time to be served among active sessions.

if minimum time > 0

sleep minimum time

for every session in active sessions

play_session()

if there is no next RTP packet to be served, return

compute current time

get the time of the last RTP packet sent

if remaining time to be sent is within threshold

transmit RTP packet

if the last packet of a block is served

notify to mp4Flib thread

get next RTP packet from Flib

2

recompute the next time to be delivered

SysMonD w is a front-end thread of the yima node, waiting internal messages
(defined as SysmonDMsg T in “Server/sysinclude/Yima module interfaces.h”)
from an external RTSP back-end process. It interprets the internal messages
and replying back to RTSP processes or forwarding the messages to MP4Flib
for file-related operations.

SysMonD rsp is a thread, waiting internal messages from MP4Flib thread
on a message queue and replying back to the RTSP back-end process after
performing node-wide operations.

MP4Flib queue, waiting internal messages on an MP4Flib queue, receives
them coming from sysmond w thread, executes related file interface functions,
and sends response messages to spsmond rsp thread via sysmond queue.

2 RTSP

2.1 RTSP front-end

It receives RTSP commands from a RTSP client, translates them to server-
specific request messages (SysmonDMsg T), sends the converted messages to
RTSP back-end process, receives response messages from the RTSP back-end,
again converts the responses to printable characters, and sends the characters
back to the RTSP client. Following is the pseudo description of the RTSP
front-end routine.

infinite loop

wait on sockets

who sent the message ?

if RTSP client

create a RTSP session and session ID

fill client information

else if RTSP back-end process

if read message successfully

find the RTSP session

convert system message to a RTSP response

send the RTSP response to the RTSP client

update session state

else // continue to read data from RTSP client

read message

if reading failed

clean up corresponding session structure

else

find the RTSP session

convert RTSP request to a system message

send the system message to back-end process

3

It maintains an internal structure called conntable, which stores intermedi-
ate parsing results of RTSP commands and can be accessible via socket descrip-
tor or via session ID. You may add other information for your own purposes.
When the RTSP front-end server receives a new TCP connection request from
a RTSP client, it first finds an empty slot from the conntable table and as-
sociates it with a unique RTSP session id and a newly reallocated TCP socket
descriptor.

Conversion from RTSP request to system message

ConvertRequest converts following RTSP commands to their corresponding sys-
tem messages (SYSMOND RTSP * REQ) that are later processed by the RTSP
back-end process.

Conversion from system message to RTSP response

ConvertResponse converts system messages generated from the back-end pro-
cess (SYSMOND RTSP * RESP) to their RTSP response messages such as
RTSP/1.0 200 OK or RTSP/1.0 FAIL.

2.2 RTSP back-end

Its primary functionality is to simply forward an incoming system message from
RTSP front-end process to a number of yima node instances (sysmond w, in
particular), collect response messages from the instances, and relay them to the
RTSP front-end process. Since our project uses a single yima node instance and
the code does not execute any conversion on the message, this process may well
be considered as a dummy process.

3 message flow

In this section, we describe how messages flow throughout yima server compo-
nents.

DESCRIBE

When a DESCRIBE command is reached at the RTSP front-end, it is first con-
verted to a SYSMOND RTSP DESCRIBE REQ message, in which the session
id, movie name, and client address fields are filled accordingly. Such fields are
later used by sysmond w, which newly allocates a session structure that is in-
ternally managed by the yima node process and attaches it to the session list,
which is shared by all threads in the yima node process.

Sysmond w then sends a FLIB GET NPT RANGE REQmessage to MP4Flib
thread, which, in turn, calls Flib get npt range() function to configure content-
specific information. After the function return, the MP4Flib sends its response

4

message (FLIB GET NPT RANGE RESP) to sysmond rsp, which again sends
a SYSMOND RTSP DESCRIBE RESP message to the RTSP back-end.

The RTSP front-end finally receives the response message from the RTSP
back-end and replies to the RTSP client with a RTSP response message that
includes SDP information that contains streaming related information for the
client to figure out how to set up the connections for all the media in the movie
file during the SETUP stage.

SETUP

The RTSP front-end converts a SETUP request to a SYSMOND RTSP SETUP REQ
message, identifying client RTP and RTCP port numbers pre-allocated by the
RTSP client. Such port numbers are then piggybacked on a SYSMOND RTSP SETUP REQ
message.

Sysmond w, upon the reception of the message, configures the port numbers
in a corresponding session structure and sends a SYSMOND RTSP SETUP RESP
message back to the RTSP front-end via the RTSP back-end, specifying server-
side RTP and RTCP1 port numbers per connection.

The RTSP front-end builds a RTSP response message that includes the
server-side RTP port and RTCP port numbers.

PLAY

A PLAY command is either converted to SYSMOND RTSP PLAY REQ if there
is a specified NPT range or to SYSMOND RTSP RESUME REQ, otherwise.

Sysmond w for the SYSMOND RTSP PLAY REQ identifies the NPT ranges,
configures the start time (in the unit of microseconds) for scheduler to begin
to send out RTP packets, and sends a FLIB PLAY REQ to MP4Flib. For the
SYSMOND RTSP RESUME REQ, it checks current status of the session, con-
figures the session for scheduler to resume the delivery of RTP packets, and
sends a SYSMOND RTSP RESUME RESP back to the RTSP front-end via
the RTSP back-end.

MP4Lib for the reception of the FLIB PLAY REQ message calls Flib play(),
which makes the FLIB to load first two block files onto a memory, and Flib getNextPacket()
to fetch the first RTP packet from the loaded block data, and sends a FLIB PLAY RESP
to sysmond rsp.

Sysmond rsp reads the first RTP packet by setting up the pointer to the
RTP packet (nextRTPPkt p), its sequence number (nextRTPPktSeqNo), the RTP
packet length (nextRTPPktSize), and the pointer to the first loaded block data
(blockPtr). After changing the session state to PLAYING, it then sends a SYS-
MOND RTSP PLAY RESP back to the RTSP back-end.

1In the project, you don’t have to implement this protocol.

5

PAUSE

A PAUSE command is transformed to a SYSMOND RTSP PAUSE REQ mes-
sage. Sysmond w changes the current status of the session to READY, which forces
scheduler to stop the sending of RTP packets, and sends SYSMOND RTSP PAUSE RESP
back to the RTSP front-end via the RTSP back-end.

TEARDOWN

A TEARDOWN request is converted to a SYSMOND RTSP TEARDOWN REQ
by the RTSP front-end. Additionally, it check the incoming request whether
QUIT is specified. If so, it sets up the crashFlg in the message.

Sysmond w changes the status of the session to disable the delivery of its
RTP packets and sends a FLIB TEARDOWN REQ to MP4Flib, which sends
a SYSMOND RTSP TEARDOWN RESP message back to sysmond rsp, which
sets the status to TEARDOWN, and forwards it to the RTSP front-end. Conse-
quently, the scheduler thread, upon the detection of the TEARDOWN session
during the inspection of every session, removes the session from the session list.
The RTSP front-end responds with the SYSMOND RTSP TEARDOWN RESP
and returns the result to the RTSP client.

4 FLib: File Interface

The file interface maintains two data structures: a locally managed session
structure (struct sessionInfo) and cached block data (struct usedBlock).
Both structures are implemented as a singly linked list. To access the session
structure, the interface function requires session id as an input. To access the
block data, it requires the block name of a movie file. Here describes file interface
functions implemented.

• getBlockNum() obtains a block number from a given block name. If no
block number is associated with, it will return zero. For example, for a
block file name test.mp4 2, it returns 2.

• InitDisks() fetches the path name of the directory that stores movie files
from a configuration file.

• InitMovies() loads movie information (name, size, playback time) from a
configuration file. You may modify this routine to fetch more information
related with the movie playback (i.e., time-stamp information, RTP packet
lengths, SDP, or RTP packet offset in a block).

• getMovieDetails() returns the pointer to the loaded information of a spec-
ified movie.

• getStartBlockName() returns the file name of a starting block from a given
movie name and starting time. For simplicity, it ignores the starting time,

6

returning the fixed starting block name. You need to implement to find the
appropriate starting block number by examining timestamp information
that matches the starting time.

• getNextBlockName() returns the file name of next block to be fetched from
given movie name and current block name. If there is no block to read
next, the returned next block name will be a null-terminated character.
You also need to implement missing parts.

• getNumPackets PackSize() returns the number of RTP packets of a given
block data (via block name) and their packet lengths. If packet length
field is given as a NULL pointer, you don’t have to return the length
information. You need to complete the writing of this function.

• readBlock() reads a given block file and loads the block data onto the
memory (specified in the input parameter) and returns the number of
packets and the lengths of individual packets in the block data.

• localReadBlock() scans the cached block list whether a requested block
is already loaded. If so, it returns the memory location of the loaded
block data, the number of packets in the block, and the lengths of individ-
ual packets in the block. Otherwise, it allocates a new memory location
that holds whole block data, loads the block data onto the memory, and
attaches to the cached block list.

• releaseUsedBlock() releases the use of a given block data area. If no stream
uses the block data, it frees the memory location of the block data and
the cached entry as well.

• Flib play() allocates, if necessary, a new session structure and attaches to
the head of the session list and reads two block files in advance.

• Flib getNextPacket() accesses a given session, find the RTP packet loca-
tion and its packet length, and returns its sequential number, timestamp
(which will be used for scheduling). If the packet reaches to the end of
the block data, it sets up the flag that is notified by the scheduler thread,
which in turn triggers MP4Flib to prepare the next block to read. Sched-
uler thread will continue to call this function when necessary.

• Flib tear down() frees the session structure and used block data.

• Flib lastpktofBlock() computes the next block to read, loads its block file
to a memory, and releases previously used blocks.

• Flib get npt range() reads duration information from the movie structure
and configures starting and ending time.

Some functions are left incomplete for you to finalize the code for the project.
You may add your own proprietary codes if necessary.

7

