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ABSTRACT
Fine-grained image categories recognition is a challenging
task aiming at distinguishing objects belonging to the same
basic-level category, such as leaf or mushroom. It is a use-
ful technique that can be applied for species recognition,
face verification, and etc. Most of the existing methods
have difficulties to automatically detect discriminative ob-
ject components. In this paper, we propose a new fine-
grained image categorization model that can be deemed as
an improved version spatial pyramid matching (SPM). In-
stead of the conventional SPM that enumeratively conducts
cell-to-cell matching between images, the proposed model
combines multiple cells into cellets that are highly responsive
to object fine-grained categories. In particular, we describe
object components by cellets that connect spatially adja-
cent cells from the same pyramid level. Straightforwardly,
image categorization can be casted as the matching between
cellets extracted from pairwise images. Toward an effective
matching process, a hierarchical sparse coding algorithm is
derived that represents each cellet by a linear combination
of the basis cellets. Further, a linear discriminant analy-
sis (LDA)-like scheme is employed to select the cellets with
high discrimination. On the basis of the feature vector built
from the selected cellets, fine-grained image categorization
is conducted by training a linear SVM. Experimental re-
sults on the Caltech-UCSD birds, the Leeds butterflies, and
the COSMIC insects data sets demonstrate our model out-
performs the state-of-the-art. Besides, the visualized cellets
show discriminative object parts are localized accurately.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software; I.4.8 [Image Processing and Computer
Vision]: Scene Analysis and Sensor Fusion
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Spatial pyramid

1. INTRODUCTION
In the past a few years, many object recognition mod-

els have been proposed for multimedia retrieval and analy-
sis [33, 34, 3]. Most of them focus on discriminative learning
for detecting and localizing instances belonging to differ-
ent basic-level categories (e.g., car, cow, and human). Re-
cently, motivated by the application in areas such as agri-
culture, medicine, and forestry, fine-grained domain recog-
nition has become a hot research topic [4, 5]. For example,
researchers are designing image retrieval models to recognize
pests found on and around some farm crops such that their
species can be monitored. Thereby, suitable chemicals can
be taken to mitigate these pests. However, it is still challeng-
ing to deal with fine-grained categorization successfully due
to two reasons: 1) the difficulty to automatically discover the
arbitrary-shaped object components as the examples shown
in Fig. 1; and 2) the dynamic backgrounds, occlusions, and
variations in lighting conditions, leading to obstacles to learn
a robust fine-grained categorization model.

To solve the above problems, we propose a new fine-

Figure 1: Birds form the Caltech-UCSD data set
can be discriminated by their beaks.

grained image categorization model that integrates the spa-
tially adjacent cells from a pyramid into discriminative ones.
These spatially adjacent cells are called cellets and describe
the discriminative object components in a coarse-to-fine man-
ner, as shown in Figure 2. An overview of the proposed
framework is presented as follows. By dividing each image
into multi-level cells hierarchically, we construct cellets by
connecting spatially adjacent cells to describe object com-
ponents with different scales. To calculate the similarity



Figure 2: The discriminative cellets hierarchically
describe an object. For example, the three different
colored cellets reveal different object details.

between images, it is straightforward to match all their cor-
responding cellets. However, the enumeratively cellet-to-
cellet matching is computationally intractable. Toward an
efficient matching process, a hierarchical sparse coding algo-
rithm is proposed. The first layer seeks the basis cellets with
the same structure; while the second layer finds the basis for
cellets with different structures. Afterward, each cellet can
be represented by a linear combination of the basis cellets.
To accelerate the cellet matching process, we derive the dis-
crimination of a cellet for selecting cellets highly descriptive
to the fine-grained categories. Finally, we represent each
image by a set of discriminative cellets, which are further
converted into an image-level feature vector. These feature
vectors are stored for training a linear SVM for fine-grained
image categorization.

The main contributions of this work can be summarized
as follows: 1) we mine image descriptors highly descriptive
to fine-grained categories, based on which an image recog-
nition model is developed, 2) a hierarchical sparse coding
algorithm for cellets quantization is introduced, and 3) the
first experimental result on a fine-grained data set contain-
ing over 5,000 real-world insects is released.

2. RELATED WORK
The proposed fine-grained categorization algorithm is closely

related to two research topics in multimedia analysis and
pattern recognition: the spatial pyramid matching (SPM)
architecture and the fine-grained image categorization.

Toward a general categorization model, SPM is devel-
oped that reflects the rough image geometric characteristics.
Some researchers [27] have pointed out that the k-means-
based codebook in SPM is less effective. Thus, sparse cod-
ing [13] and locality preservation [27] techniques are adopted
to learned the codebook. Further, to integrate high-level vi-
sual features, Li et al. proposed object-bank-based SPM [28],
wherein an image is described by a scale invariant response
map of the pre-defined generic object detectors. In [29],
Jia et al. adaptively learn the receptive fields for a specific
data set. Starting by generating a large number of recep-
tive field candidates, a classifier with structured sparisity is
learned for efficiently optimizing the receptive field param-
eters. In [30], Russakovsky et al. proposed object-centric
spatial pooling that integrates the object locations in the
pooling stage. The key is to learn object detectors using
only image-level visual cues. In summary, the pooling com-
ponents in all these SPM models are based on rectangular
receptive fields. Inevitably, these rectangles include large
areas irreverent to object components, and thus cannot be
applied for fine-grained image categorization.

As the SPM only incorporate coarse visual cues for generic
object recognition, models customized for fine-grained cate-

gorization have been developed, focusing on discovering tiny
discriminative object components. To alleviate the loss of
image details in codebook generation, Yao et al. [21] rep-
resented an image by pooling template matching responses
and then designed a bagging mechanism for classification.
In [22], Sfar et al. proposed to recognize botanical species by
combining features related to both basic-level and subordinate-
level categories. In [23], Berg et al. proposed a grid-level
saliency model for fine-grained image categorization. Ob-
ject parts are aligned and cropped into rectangles, which are
then divided into grids and their weights are learned to indi-
cate the discriminative parts. In [24], Deng et al. designed
a human interactive crowdsourcing system that allows users
to localize object parts highly discriminative to fine-grained
categories. In [25], Duan et al. proposed a fine-grained
recognition model that discovers local attributes both dis-
criminative and semantically meaningful, by leveraging the
manually annotated object bounding boxes. Further, in [26],
a joint object detection and segmentation framework is in-
troduced to localize and normalize an object. Based on it,
a state-of-the-art classification model is conducted on the
segmented regions for fine-grained categorization.

3. CELLET EXTRACTION
For each image I, we extract a set of D-dimensional lo-

cal descriptors X = [x1, x2, · · · , xM ]T ∈ RM×D, wherein xi

denotes the column vector of the i-th local descriptor (i.e.,
a 128-dimensional SIFT [14] key point), and M denotes the
number of local descriptors. To quantize the local descrip-
tors, we use sparse coding to represent each by a linear com-
bination of the basis vectors. In the training stage, we learn
a codebook by an alternative optimization:

minym,B

∑
m
||xm − ymB||2l2 + λ1||ym||l1 , (1)

where B ∈ RR×D is a codebook with R basis vectors. Nor-
mally, codebook B is an over-complete basis set, i.e., R > D.

In the encoding stage, the learned codebook B is applied
to a new set of local descriptors X′ to obtain the encoded
local descriptors, i.e.,

minY

∑
m
||xm − ymB||2l2 + λ1||ym||l1 , (2)

where Y = [y1, y2, · · · , yM′ ]T ∈ RM′×R is the encoded local
descriptors of local descriptor from X′.

To incorporate the spatial information into local descrip-
tors, a spatial pyramid is constructed. In detail, based on
the coordinates of the local descriptors, we divide the local
descriptors into several cells {Yl

ij}, where the script denotes
the ij-th cell from the l-th layer spatial pyramid. Formally,
the location of cell Yl

ij is defined as: κ(Yl
ij) = (l, i, j).

Different cells may contain different numbers of local de-
scriptors. Toward a fixed length of feature vector for each
cell, the max pooling scheme [6] is applied on each cell:

ul
ij = ξ(Yl

ij), (3)

where ξ denotes the maximum element on each row of Yl
ij ;

and ul
ij denotes a R-dimensional column feature vector.

As we discussed above, the SPM architecture cannot ful-
fill fine-grained categorization. This is because the cell-to-
cell matching includes visual features non-discriminative to
object components. To tackle this problem, we propose cel-
lets for spatial pyramid matching. A cellet denotes a set



of spatially adjacent cells U = {ul
ij} associated with their

structure, which can be defined as follows:

z = [ψ(U), φ(U)]T . (4)

The first term ψ(U) = ∪u∈U[uT ] denotes a set of spatially

Figure 3: Left: cellets with different structures;
Right: spatial relations of cells with different K.

adjacent cells, wherein ∪[·] is a vector concatenation oper-
ator. As shown on the left of Figure 3, cellets with the
same number of cells may have different structures. These
structures are discriminative cues that can contribute to the
fine-grained categorization. Thus, we use the second term
φ(U) = vec(ϕ(U)) to represent the structure of a cellet.
Here, vec(·) is a row-wise vector stacking operator, and ϕ is
the binary spatial relations between cells in U:

ϕ(i, j) =

{
k if k∗π

K
≤ θ(ui, uj) ≤ (k+1)∗π

K
0 otherwise

, (5)

where θ(ui, uj) denotes the angle between the spatially ad-
jacent cells ui and uj and K determines the minimum angle
that can be discriminated. We can set K to 4 or 8 depend-
ing on different data sets, as shown on the right of Figure 3.

Based on the location of a cell, we define the location of a
cellet z by combining the locations of all the cells in z, i.e.,

κ(z) = ∪u∈U[κ(u)]. (6)

In summary, the flowchart of generating cellets from an
image is presented in Figure 4.

4. HIERARCHICAL CELLECTS ENCODING
Conventional SPM methods cast image categorization as

the cellet-to-cellet matching between images. However, there
are numerous cellets in a spatial pyramid. Denote |z| as the
number of cells that construct cellet z, the number of cellets
from the l-th level of spatial pyramid is no less than:

H = 4l−1 · 4 · 6 · · · · · (2|z|) = 4l−1|z|!2|z|−1. (7)

Thus, given a moderate cellet size, it is intractable to com-
pare pairwise images by enumeratively cellet-to-cellet match-
ing. For fine-grained recognition task, only cellets discrimi-
native to object details should be preserved.

4.1 Hierarchical Sparse Coding of Cellets
To measure the discrimination of a cellet, first we need

to measure the similarity between cellets. Because the term
φ(U) in (4) is un-quantized, it is necessary for us to learn
a codebook from the training cellets. The codebook allows
to represent a cellet by a linear combination of the basis
cellets. However, due to the large number of cellets, it is
intractable to learn the codebook by employing the training
cellets once-for-all, as the standard sparse coding [13].

To solve this problem, a hierarchical sparse coding is pro-
posed that decomposes the encoding task on a large number

of cellets into a set of sub-procedures. In the first layer, the
basis cellets with the same structure are derived. Particu-
larly, given N training images, we collect cellets with the
same structure:

Z = [z1, z2, · · · , zN ], (8)

where zi is the cellet from the i-th training image.
Then, we use sparse coding to find a set of basis cellets:

minD1

{
1

N

∑N

i=1
||zi −D1αi||2l2 + λ2||αi||l1

}
, (9)

where D1 ∈ RS×T is a codebook learned from Z and each
column of D1 represents a basis cellet. After the first layer
sparse coding, each cellet can be represented by a linear
combination of basis cellets with the same structure.

Because the number of basis cellets in D1 is still large,
the second layer sparse coding is proposed to find basis cel-
lets with different structures. Following (7), we obtain H
codebooks from the first layer sparse coding:

D1 = [D1
1,D

2
1, · · · ,DH

1 ], (10)

Thereafter, the second layer sparse coding learns a codebook
D2 from D1, i.e.,

minD2

{
1

HT

∑HT

i=1
||di −D2βi||2l2 + λ3||βi||l1

}
, (11)

where di denotes the i-th column of matrix D1. After the
second layer sparse coding, given a new cellet ztest, we rep-
resent it by a linear combination of the basis cellets:

minγ

{||ztest −D2γ||2l2 + λ3||γ||l1
}

, (12)

where γ(ztest) is the sparse representation of cellet ztest.
The algorithm of our proposed hierarchical sparse coding

of cellets is summarized below.

Algorithm 1 Hierarchical Sparse Coding of Cellets

input: A set of training images {I1, I2, · · · , IN},
the size of cellet |z|, a test cellet ztest;
output: the sparse representation of cellet ztest;
1. Extract SIFT descriptors for each image; use sparse
coding to encode them based on (1) and (2);
2. Construct spatial pyramid for each image and obtain
cellets with size |z| according to (4);
3. Partition the cellets according to their structure;

for cellets with the i-th structure do
Compute the first layer codebook Di

1 from (9);
end for;
Compute the second layer codebook D2 from (11);

4. Obtain the sparse representation of ztest.

4.2 Selecting Discriminative Cellets
To select cellets descriptive to the fine-grained categories,

we need to measure the discrimination of a cellet. Inspired
by the Fisher’s linear discriminant analysis [1], the measure
of a cellet’s discrimination can be defined as:

d(z) =

∑
z′ ||γ(z)− γ(z)|| · σ(z, z′)∑

z′ ||γ(z)− γ(z′)|| · σ′(z, z′)
, (13)

where σ(z, z′) and σ′(z, z′) are functions indicating whether
cellets z and z′ belonging to the same category, i.e., if z
and z′ belong to different categories, then σ(z, z′) = 1 and
σ′(z, z′) = 0; otherwise σ(z, z′) = 0 and σ′(z, z′) = 1. A
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Figure 4: The flowchart of cellets generation (X → Y: sparse coding of local descriptors; Y → U: max pooling
of encoded local descriptors in each cell; U → Z: cellets by extracting spatially adjacent cells).

larger d(z) reflects a higher discrimination of cellet z.
In order to compute (13), we have to employ all the train-

ing cellets to compare with cellet z, which is highly time-
consuming. To accelerate it, following the SPM architec-
ture, only cellets z′ with the same location of cellets z are
compared. Therefore, (13) can be reformulated as:

d′(z) =

∑
z′∧κ(z′)=κ(z) ||γ(z)− γ(z)|| · σ(z, z′)∑

z′∧κ(z′)=κ(z) ||γ(z)− γ(z′)|| · σ′(z, z′)
. (14)

It is worth emphasizing another advantage of replacing
(13) by (14). In the training stage, the locations of the
discriminative cellets are learned implicitly. These learned
locations can guide the extraction of the discriminative cel-
lets from the test images. That is to say, there is no need
to compute the discrimination of cellets in the test stage,
which accelerates the test stage remarkably.

5. THE SVM CLASSIFICATION MODEL
Based on the discrimination measure, for each image, we

select fixed number of cellets closely related to its category.
These cellets capture the object categorical cues in a coarse-
to-fine manner, which can be converted into a vector as:

γ(Zd) = ∪z∈Zd [γ(z)]. (15)

Denoting C as the number of categories, an SVM-based
fine-grained classification is carried out by using a pairwise
scheme. And C(C − 1)/2 classifiers are obtained, each of
which is trained by images from two different classes. For
images from the p-th class and those from the q-th class, we
construct a linear SVM classifier as:

minα∈RNpq

{
||α||2 + C

∑Npq

i=1
l(α, γ(Zd

i ), ci)
}

, (16)

where γ(Zd
i ) is the feature vector from the i-th training im-

age; ci ∈ {1, 2, · · · , C} is the category to the i-th training
image; α determines the hyper-plane to separate images in
the p-th category from those in the q-th category; and Npq is
the number of training images either from the p-th category
or from q-th category.

Given a feature vector γ(Zd
test) from a test image, its cat-

egory (p or q) is predicted by:

sgn(
∑Npq

i=1
αiγ(Zd

test) + b). (17)

During test, C(C − 1)/2 times classification will be con-
ducted and the voting rule is utilized for the final decision.
That is, each binary classification can be deemed as a vot-
ing process, and γ(Zd

test) is assigned to the class with the
maximum number of votes.

To summarize the discussion above, we present the pipeline
of our proposed model in Algorithm 2.

Algorithm 2 Cellet-Encoded Spatial Pyramid for Fine-
grained Image Categorization

//training stage
input: A set of training images {I1, I2, · · · , IN} labeled by
the fine-grained image categories;
output: Discriminative cellets, a multi-class linear SVM;
1. For image Ii, obtain its cellets {z1

i , z2
i , · · · , zH

i }; Repr-
esent each cellet by a set of basis cellets by Alg. 1;
2. For each cellet, compute its discrimination from (14);
select the discriminative ones; and represent training
image Ii by a feature vector γ(Zd

i ) according to (15);
3. Train a multi-class linear SVM based on (16).
//test stage
input: A test image Itest; output: The category of Itest;
1. Obtain the discriminative cellets Zd

test of image Itest

based on the location of the discriminative cellets;
2. Compute the feature vector γ(Zd

test); classify it using
the trained linear SVM classifier.

5.1 Time Complexity Analysis
The time consumption of our approach is as follows: In

the training stage, Step 1 and Step 3 respectively contain
one sparse coding; the time consumption of the linear SVM
training in Step 4 is O(N); and Step 2 contains H times
sparse coding. In our experiment, H ranges from 100 to
5000, reflecting that the training time consumption is largely
determined by the efficiency of sparse coding. Practically,
there are many off-the-shelf efficient sparse coding solvers,
such as that proposed by Lee et al. [13]. Thus, the training
time consumption is acceptable. Different from the training
phase, the test stage can be carried out rapidly. This is
because the time complexity of Step 1 and Step 2 areO(|Zd|)
and O(1) respectively, where |Zd| denotes the number of the
selected discriminative cellets.

6. EXPERIMENTAL RESULTS
This section justifies the effectiveness of the proposed al-

gorithm based on three experiments. The first experiment
compares the proposed cellet-encoded SPM with the other
SPM variants and fine-grained categorization models. The
second experiment test the influence of different parameter
settings. Last but not least, we visualize the discovered cel-
lets, which illustrates the high accuracy of our approach.

Toward a comprehensive evaluation, we complied a new
data set termed COSMIC insects, containing insects from
15 categories. The 15 categories are listed in Table 1. In ad-
dition, we also experiment on the Caltech-UCSD birds [31]
and the Leed butterflies [32]. The experiments are carried
out on a computer equipped with an Intel Xeon X5482 CPU
and 8GB RAM. All the comparative algorithms are imple-
mented on the Matlab 2011 platform.



Table 1: Statistics of the COSMIC insects data set
Aphids Armyworm Bollworm Colorado. DBM FleaBeetle Jassides LeafRoller

340 533 444 446 437 237 136 219
Mealybugs Planthopper Serpentine. StinkBug Thrips WhiteFly WhiteGrub

575 144 202 447 222 362 445

Table 2: Comparison of categorization accuracies on
the three data sets

Method Caltech-UCSD Leeds COSMIC

30% train

SPM 35.4% 31.6% 42.2%
SC-SPM 38.9% 32.4% 44.4%

LLC-SPM 38.7% 31.9% 43.2%
Our 41.9% 36.4% 45.7%

50% train

SPM 40.1% 36.4% 63.2%
SC-SPM 44.3% 39.1% 63.8%

LLC-SPM 44.1% 37.7% 64.5%
Our 47.8% 41.3% 65.2%

6.1 Comparison with the Existing Methods
In this subsection, we first compare our method with the

conventional SPM [2] and its two variants: SC-SPM [6],
LLC-SPM [27]. The Matlab codes of all the three com-
pared methods are publicly available1. The parameter set-
tings of the compared methods are as follows. For SPM,
SC-SPM and LLC-SPM, we construct a three level spatial
pyramid; then we extract over one million SIFT descriptors
from 16 × 16 patches computed over a grid with spacing of
8 pixels from all training images. Finally, a codebook with
size 256 is generated by k-means [12] clustering on these
SIFT descriptors. For each of the three data sets, 30% and
50% images are used respectively for training, while the rest
are for testing. We report the categorization accuracy in
Table 2. As can be seen, the proposed method outperforms
SPM and its two variants, since the discovered cellets are
more descriptive to object parts than the conventional cells.

In addition, we compare our method with four existing
fine-grained categorization models that are proposed by Yao
et al. [21], Berg et al. [23], Duan et al. [25], and Angelova et
al. [26] respectively. We implement all the four algorithms
because their codes are unavailable. Different proportion of
training images are used by selecting 10% to 90% training
images. As shown in Figure 5, the proposed approach beats
all the compared methods. Further, the per-category accu-
racy on the Caltech-UCSD birds is presented in Figure 6. We
compare our approach with Duan et al.’s approach, which
is the second best in Figure 5. As can be seen, for most
categories, the proposed method outperforms Duan et al.’s
approach significantly.

6.2 Effects of Different Parameter Settings
In this subsection, we study the influence of different pa-

rameter settings on the three aforementioned data sets. Par-
ticularly, we first set the default values of the parameters as
detailed in Table 3. Then, we tune one of the parameters
and report the categorization accuracy correspondingly. For
convenience, the codebook size and the regularization pa-
rameter of the dual sparse codings are set to be equal.
1) We report the performance of our approach with differ-

ent codebook sizes in Table 4. As seen, by increasing the
codebook size from 128 to 256, 512 and 1024, the recogni-

1http://www.ifp.illinois.edu/ jyang29/
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Figure 5: Comparative results with four state-of-
the-art fine-grained categorization models (PM: the
proposed method).

Table 3: The default parameter settings
Parameter Caltech-UCSD Leeds COSMIC
Codebook size 256 256 256
Regular. para. 10−1 10−1 10−1

Cellet size 4 4 4
Value of K 4 4 8
Pyramid level 3 3 4

tion accuracy improves dramatically. But the improvement
becomes smaller when the codebook size is larger than 512.
2) Then we report the recognition accuracy under different

regularization parameter of sparse coding. More specifically,
we choose the regularization parameter from [0, 10−4, 10−3,
10−2, 10−1] and report the categorization accuracy in Ta-
ble 5. As can be seen, the highest categorization is always
achieved when the regularization parameter is 10−3 or 10−2.
3) Next, we report recognition accuracy with different size
of cellets (under 30% training samples on each data set).
As seen from Figure 7, when the cellet size is tuned from 1
to 10, the categorization accuracy increases moderately and
steadily, but the time consumption increased sharply. This
observation demonstrates that in practice, we should choose
an optimal cellet size.
4) Then, we present the categorization accuracy with dif-

Table 4: Comparison of recognition accuracy on the
Caltech-UCSD, the Leeds and our own data set

Code. size 128 256 512 1024

30% train
Catletch-UCSD 41.2% 41.9% 42.4% 42.6%

Leeds 35.8% 36.4% 37.1% 37.4%
COSMIC 34.5% 39.5% 40.3% 41.2%

50% train
Caltech-UCSD 47.1% 47.8% 48.4% 48.6%

Leeds 41.5% 41.3% 41.8% 42.0%
COSMIC 54.5% 62.1% 54.5% 65.1%
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Figure 6: Comparative per-category accuracies of the 200 categories from the Caltech-UCSD birds (the
categories are in alphabetical order).

Table 5: Performance under different regularization parameter
Regu. Para. 0 10−4 10−3 10−2 10−1

30% train
Caltech-UCSD 34.5% 38.7% 41.9% 41.1% 40.1%

Leeds 27.6% 34.6% 36.4% 35.4% 34.3%
COSMIC 35.6% 38.7% 40.3% 37.2% 36.9%

50% train
Caltech-UCSD 37.6% 42.4% 45.1% 47.8% 47.1%

Leeds 32.8% 39.2% 38.4% 41.3% 37.7%
COSMIC 55.7% 58.7% 59.3% 61.2% 61.9%

Table 6: Performance under different regularization
parameter

K 4 8

30% train
Caltech-UCSD 41.9% 43.2%

Leeds 36.4% 37.7%
COSMIC 39.7% 41.2%

50% train
Caltech-UCSD 47.8% 50.1%

Leeds 41.3% 43.8%
COSMIC 57.6% 64.7%

Table 7: Performance under different pyramid level
L 1 2 3 4

30% train
Caltech-UCSD 26.4% 36.9% 41.9% 43.3%

Leeds 21.2% 31.4% 36.4% 38.4%
COSMIC 28.5% 32.2% 37.2% 41.7%

50% train
Caltech-UCSD 30.2% 35.1% 41.9% 43.5%

Leeds 26.2% 3.06% 36.4% 38.4%
COSMIC 47.4% 54.3% 57.5% 59.8%

ferent values of K, the minimum angle that can be discrim-
inated. As shown from Table 6, the categorization accuracy
increases slightly from K = 4 to K = 8 on the Leeds and
the Caltech-UCSD data sets.
5) Last but not least, we report the categorization accu-

racy with different value of L, the pyramid level, wherein
the values is tuned from 1 to 4. As can be shown in Table 7,
the recognition accuracy increases dramatically when L in-
creases, but the time consumption of our approach increases
significantly also.

6.3 Visualization of Discriminative Cellets
A unique property of our approach is the “transparency”

of the fine-grained visual features extraction process. As
shown in Figure 8, we visualize the most discriminative cel-
lets from the Catletch-UCSD birds, the COSMIC insects,
and the Leeds butterflies data sets. Due to space limita-
tion, only cellets from the last layer spatial pyramid are
shown, reflecting the most detailed object discriminative
components. As can be seen, the discriminative cellets from
different categories have significantly different appearances
and structures, which demonstrates the effectiveness of our
proposed model. Further, the selected cellets contain little
background information, reflecting that our model is robust
to the dynamic backgrounds.

7. CONCLUSIONS
This paper proposes a novel fine-grained image catego-

rization framework. By introducing cellet to represent the
spatial layout of an image, we cast fine-grained categoriza-
tion as the matching between cellets from pairwise images.
Then, we develop a hierarchical sparse coding algorithm that
represents each cellet by a linear combination of the basis
cellets. Finally, the discrimination of cellet is derived for
selecting a few discriminative cellets for fine-grained catego-
rization. Experimental results thoroughly demonstrate the
advantage of the proposed model.

The training time of the proposed method is moderately
large, while the testing time consumption is very small. Re-
cently, the cloud computing technique has become a hot
research area. Inspired by this concept, the training stage
of the proposed method can be computed in a distributed
way, e.g., based on a workstation. And the test stage can be
calculated based on a the cell phone. Therefore, the training
and testing can both be carried out efficiently.
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[15] Zäıd Harchaoui, Francis Bach, Image Classification
with Segmentation Graph Kernels, in Proc. of ICCV,
pages: 1–8, 2007.

[16] Nino Shervashidze, S V N Vishwanathan, Tobias
Petri, Kurt Mehlhorn, Karsten Borgwardt, Efficient
Graphlet Kernels for Large Graph Comparison, in
Proc. of AISTATS, pages: 488–495, 2009.

[17] Yakov Keselman, ven Dickinson, Generic Model
Abstraction from Examples, IEEE T-PAMI, 27(7),
pages: 1141-1156, 2005.

[18] M. Fatih Demirci, Ali Shokoufandeh, Yakov Keselman,
Lars Bretzner, Sven Dickinson, Object Recognition as

Many-to-Many Feature Matching, IJCV, 69(2), pages:
203–222, 2006.

[19] Pedro F. Felzenszwalb, Daniel P. Huttenlocher,
Pictorial Structures for Object Recognition, IJCV,
61(1), pages: 55–79, 2005.

[20] Yong Jae Lee, Kristen Grauman, Object-Graphs for
Context-Aware Category Discovery, in Proc. of CVPR,
pages: 346-358, 2009.

[21] Bangpeng Yao, Gary Bradski, Li Fei-Fei, A
Codebook-Free and Annotation-Free Approach for
Fine-Grained Image Categorization, in Proc. of CVPR,
pages: 3466–3473, 2012.

[22] Asma Rejeb Sfar, Nozha Boujemaa, Donald Geman,
Vantage Feature Frames For Fine-Grained
Categorization, in Proc. of CVPR, pages: 835–842,
2013.

[23] Thomas Berg, Peter N. Belhumeur, POOF:
Part-Based One-vs.-One Features for Fine-Grained
Categorization, Face Verification, and Attribute
Estimation, in Proc. of CVPR, pages: 955–962, 2013.

[24] Jia Deng, Jonathan Krause, Li Fei-Fei, Fine-Grained
Crowdsourcing for Fine-Grained Recognition, in Proc.
of CVPR, pages: 580–587, 2013.

[25] Kun Duan, Devi Parikh, David Crandall, Kristen
Grauman, Discovering Localized Attributes for
Fine-grained Recognition, in Proc. of CVPR, pages:
3474–3481, 2013.

[26] Anelia Angelova, Shenghuo Zhu, Efficient Object
Detection and Segmentation for Fine-grained
Recognition, in Proc. of CVPR, pages: 811–818, 2013.

[27] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv,
Thomas Huang, Yihong Gong, Locality-constrained
Linear Coding for Image Classification, in Proc. of
CVPR, pages: 3360–3367, 2010.

[28] Li-Jia Li, Hao Su, Eric P. Xing, Li Fei-Fei, Object
Bank: A High-Level Image Representation for Scene
Classification and Semantic Feature Sparsification, in
Proc. of NIPS, pages: 1378–1386, 2010.

[29] Yangqing Jia, Chang Huang, Trevor Darrell, Beyond
Spatial Pyramids: Receptive Field Learning for Pooled
Image Features, in Proc. of CVPR, pages: 3370–3377,
2012.

[30] Olga Russakovsky, Yuanqing Lin, Kai Yu, Li Fei-Fei,
Object-Centric Spatial Pooling for Image Classification,
in Proc. of ECCV, pages: 1–15, 2012.

[31] Peter Welinder, Steve Branson, Takeshi Mita,
Catherine Wah, Florian Schroff, Caltech-UCSD Birds
200, California Institute of Technology,
CNS-TR-2010-001, 2010.

[32] Josiah Wang, Katja Markert, Mark Everingham,
Object-Centric Spatial Pooling for Image Classification,
in Proc. of BMVC, pages: 1–11, 2009.

[33] Yue Gao, Meng Wang, Dacheng Tao, Rongrong Ji,
Qionghai Dai, 3D Object Retrieval and Recognition
with Hypergraph Analysis, IEEE T-IP, 21(9), pages:
4290–4303, 2012.

[34] Yue Gao, Meng Wang, Zhengjun Zha, Jialie Shen,
Xuelong Li, Xindong Wu, Visual-Textual Joint
Relevance Learning for Tag-Based Social Image Search,
IEEE T-IP, 22(1), pages: 363–376, 2013.


