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ABSTRACT
Photo aesthetic quality evaluation is a challenging task in multi-
media and computer vision fields. Conventional approaches suffer
from the following three drawbacks: 1) the deemphasized role of
semantic content that is many times more important than low-level
visual features in photo aesthetics; 2) the difficulty to optimally
fuse low-level and high-level visual cues in photo aesthetics evalua-
tion; and 3) the absence of a sequential viewing path in the existing
models, as humans perceive visually salient regions sequentially
when viewing a photo.

To address and solve these challenges, we propose a new aes-
thetic descriptor that mimics the way humans sequentially perceive
visually/semantically salient regions in a photo. In particular, a
weakly supervised learning paradigm is developed to project the lo-
cal aesthetic descriptors (graphlets in this work) into a low-dimen-
sional semantic space. Thereafter, each graphlet can be described
by multiple types of visual features, both at low-level and in high-
level. Since humans usually perceive only a few salient regions in
a photo, a sparsity-constrained graphlet ranking algorithm is pro-
posed that seamlessly integrates both the low-level and the high-
level visual cues. The top-ranked graphlets are the discerned vi-
sually/semantically prominent graphlets in a photo. They are se-
quentially linked into a path that simulates the process of humans
actively viewing. Finally, we learn a probabilistic aesthetic mea-
sure based on such actively viewing paths (AVPs) from the training
photos that are marked as aesthetically pleasing by multiple users.
Experimental results show that: 1) the AVPs are 87.65% consistent
with real human gaze shifting paths, as verified by the eye-tracking
data; and 2) our photo aesthetic measure outperforms many of its
competitors.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence ]: Vision and Scene Understanding;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
Photo aesthetic quality evaluation is a useful technique in multi-

media applications. For example, a successful photo management
system should rank photos based on the human perception of photo
aesthetics, so that users can conveniently select their favorite pic-
tures into albums. Moreover, an effective photo aesthetics pre-
diction algorithm can help photographers to crop an aesthetically
pleasing sub-region from an original poorly framed photo. How-
ever, photo aesthetics evaluation is still a challenging task due to
the following three reasons.

• Semantics is an important cue to describe photo aesthetics,
but the state-of-the-art models cannot exploit semantics ef-
fectively. Typically, a photo aesthetic model [?] only em-
ploys a few heuristically defined semantics according to a
specific data set. They are determined by whether photos in
a data set are covered by objects like sky, water, andetc. In
addition, the semantics are typically detected using a set of
external object detectors,e.g., a human face detector. There
is no guarantee that all the pre-specified semantic objects can
be accurately discovered.

• Eye tracking experiments [?] have shown that humans allo-
cate gazes to important regions in a sequential manner. As
shown in Fig. 4, most people start with viewing the player,
and then shift gazes to the grass, and finally to the audiences
and the red track. Existing photo aesthetic models, however,
fail to encode such a gaze shifting sequence.

• Psychophysics studies [?] have shown that both the bottom-
up and the top-down visual features draw the attention of
human eye. It is generally accepted that an aesthetic model
should integrate both the low-level and the high-level visual
cues. However, current models typically fuse multiple types
of features in a linear or nonlinear way, where the cross-
feature information is not well utilized. Even worse, these in-
tegration schemes cannot emphasize the visually/semantically
salient regions within a photo.

To solve these problems, a sparsity-constrained ranking algorithm
jointly discovers visually/semantically important graphlets along
the human gaze shifting path, based on which a photo aesthetic
model is learned. An overview of our proposed aesthetic model is



Figure 1: The pipeline of the proposed photo aesthetic model.

presented in Fig. 1. By transferring semantics of image labels into
different graphlets of a photo, we represent each graphlet by a cou-
ple of low-level and high-level visual features. Then, a sparsity-
constrained framework is proposed to integrate multiple types of
features for calculating the saliency of each graphlet. Particularly,
by constructing the matrices containing the visual/semantic fea-
tures of graphlets in a photo, the proposed framework seeks the
consistently sparse elements from the joint decompositions of the
multiple-feature matrices into pairs of low-rank and sparse matri-
ces. Compared with previous methods that linearly/non-linearly
combine multiple global aesthetic features, our framework can seam-
lessly integrate multiple visual/semantic features for salient graphlets
discovery. These discovered graphlets are linked into a path, termed
actively viewing path (AVP), to simulate a human gaze shifting
path. Finally, we employ a Gaussian mixture model (GMM) to
learn the distribution of AVPs from the aesthetically pleasing train-
ing photos. The learned GMM can be used as the aesthetic mea-
sure, since it quantifies the amount of AVPs that are shared between
the aesthetically pleasing training photos and the test image.

The main contributions of this paper are two-fold:

• A sparsity-constrained ranking framework that discovers vi-
sually/semantically important graphlets that draw the atten-
tion of the human eye, by seamlessly combining a few low-
level and high-level visual features;

• Actively viewing path (AVP), a new aesthetic descriptor that
mimics the way humans actively allocate gazes to visually/
semantically important regions in a photo.

2. RELATED WORK
In recent years, many photo aesthetic quality evaluation methods

have been proposed. Roughly, these methods can be divided into
two categories: global feature-based approaches and local patch
integration-based approaches.

Global feature-based approaches design global low-level and high-
level visual features that represent photo aesthetics in an implicit
manner. Keet al. [?] developed a group of high-level visual fea-
tures, such as an image simplicity based on the spatial distribution
of edges, to imitate human perception of photo aesthetics. Dattaet
al. [?] proposed 58 low-level visual features,e.g., shape convexity,

to capture photo aesthetics. Dharet al. [?] proposed a set of high-
level attribute-based predictors to evaluate photo aesthetics. In [?],
Luo et al. adopted a GMM-based hue distribution and a promi-
nent lines-based texture distribution to represent the photo global
composition. To capture the photo local composition, regional fea-
tures describing human faces, region clarity, and region complexity
were developed. In [?], Marchesottiet al. proposed using generic
descriptors,i.e., the bag of visual words and the Fisher vector, to ac-
cess photo aesthetics. Experiments shown that the two generic de-
scriptors outperform many specifically designed photo aesthetic de-
scriptors. It is worth noting the limitations of the above approaches:
1) Luo et al. [?]’s approach relies on category-dependent regional
feature extraction, requiring that photos can be 100% accurately
classified into one of the seven categories. This prerequisite is in-
feasible in practice; 2) the attributes proposed by Dharet al. [?]
are designed manually and are data set dependent. Thus, it is diffi-
cult to generalize them to different data sets; and 3) all these global
low-level and high-level visual features are designed heuristically.
There is no strong indication that they can capture the complicated
spatial configurations of different photos.

Local patch integration-based approaches extract patches within
a photo and then integrate them to measure photo aesthetic quality.
In [?], Chenget al. proposed the omni-range context,i.e., the spa-
tial distribution of arbitrary pairwise image patches, to model photo
composition. The learned omni-range context priors are combined
with the other cues, such as the patch number, to form a poste-
rior probability to measure the aesthetics of a photo. One limita-
tion of Chenget al.’s model is that only the binary correlation be-
tween image patches is considered. To describe high-order spatial
interactions of image patches, Nishiyama [?] et al. first detected
multiple subject regions in a photo, where each subject region is a
bounding rectangle containing the salient parts of an object. Then,
an SVM classifier is trained for each subject region. Finally, the
aesthetics of a test photo is computed by combining the scores
of the SVM classifier corresponding to a photo’s internal subject
regions. One limitation of Nishiyamaet al.’s approach is that it
cannot model the spatial interaction of multiple image regions ex-
plicitly. In [?], Nishiyamaet al. proposed a color harmony-based
photo aesthetic evaluation method. A color harmony model is first
applied to the patches within a photo to describe their color dis-
tribution. The patch-level color distribution is then integrated into
a bag-of-patches histogram. The histogram is further classified by
an SVM to identify whether a photo is high or low aesthetics. It
is noticeable that Nishiyamaet al. [?] evaluates photo aesthetics
by utilizing visual features in the color channel only. Features de-
scribing photo aesthetics in other channels, such as texture, are ne-
glected. Bhattacharyaet al. [?] proposed a spatial recomposition
that allows users to interactively select a foreground object. The
system presents recommendations to indicate an optimal location
of the foreground object, which is detected by combining multi-
ple aesthetic features,e.g., the relative position of the foreground
objects. The major shortcoming of Bhattacharyaet al.’s method
is the necessity of human interaction, limiting its application for
large-scale photo aesthetics evaluation.

3. LOW-LEVEL AND HIGH-LEVEL LOCAL
AESTHETICS DESCRIPTION

3.1 The Concept of Graphlets
There are usually a number of of components (e.g., the human

and the red track in Fig. 2) in a photo. Among these components,
a few spatially neighboring ones and their spatial interactions cap-



ture the local aesthetics of a photo. Since graph is a powerful tool
to describe the relationships among objects, we use it to model the
spatial interactions of components in a photo. Our technique is to
segment a photo into a set of atomic regions1, and then construct
graphlets to characterize the local aesthetics of this photo. In par-
ticular, a graphlet is a small-sized graph defined as:

G = (V, E), (1)

whereV is a set of vertices representing those spatially neighbor-
ing atomic regions; andE is a set of edges, each of which connects
pairwise spatially adjacent atomic regions. We call a graphlet with
t vertices at-sized graphlet. It is worth emphasizing that the num-
ber of graphlets within a photo is exponentially increasing with the
graphlet size. Therefore, only small graphlets (i.e., vertex number
less than 10) are employed.

In this work, we characterize each graphlet in both color and

Figure 2: An example of differently sized graphlets extracted
from a photo.

texture channels. Given at-sized graphlet, each row of matrixMc
r

represents the 9-dimensional color moment [?] and each row of
matrix Mt

r denotes the 128-dimensional HOG [?] of an atomic
region. To describe the spatial interactions of atomic regions, we
employ at× t adjacency matrix as:

Ms(i, j) =

{
θ(Ri, Rj) if Ri andRj are spatially adjacent
0 otherwise

,

(2)
whereθ(Ri, Rj) is the horizontal angle of the vector from the cen-
ter of atomic regionRi to the center of atomic regionRj . Based on
the three matricesMc

r, Mt
r, andMs, the color and texture chan-

nel of a graphlet is described byMc = [Mc
r,Ms] andMt =

[Mt
r,Ms], respectively. Moreover, similar to many feature fusion

algorithms [?,?] that allow only vector representation of a sample,
the color channel matrixMc and the texture channel matrixMt

of a graphlet are further converted into vectors by staking each of
them in row-wise.

3.2 Semantically Local Aesthetics Pursuit
In addition to color and texture channels description, high-level

semantic cues should also be exploited for photo aesthetics evalu-
ations. In this paper, the semantic cues are integrated based on a
weakly supervised paradigm. Particularly, we transfer the seman-
tics of image labels2 into different graphlets in a photo. This is

1The atomic regions are superpixels segmented using SLIC [?].
The codes are publicly available. Experiments show SLIC is ef-
ficient and the generated superpixels are neatly adherent to object
boundaries.
2With the advances of supervised image retrieval, nowadays image
labels are cheaply available. They can be efficiently and accurately
acquired by many existing models,e.g., SPM [?] and its variants.

implemented based on a manifold embedding algorithm described
as follows:

arg min
Y

[
∑
i,j

||yi − yj ||2ls(i, j)−
∑
i,j

||yi − yj ||2ld(i, j)]

= arg minY tr(YRYT ), (3)

whereY = [y1, y2, · · · , yN ] denotes a collection ofd-dimensional
post-embedding graphlets;ls(·, ·) andlb(·, ·) are functions measur-
ing the similarity and discrepancy between graphlets;R = [~eT

N−1,

−IN−1]W1[~e
T
N−1,−IN−1]+· · ·+[−IN−1,~e

T
N−1]WN [−IN−1,

~eT
N−1]; Wi is anN ×N diagonal matrix whoseh-th diagonal el-

ement is[ls(h, i)− ld(h, i)].
More specifically,ls(·, ·) and ld(·, ·) are functions measuring

Figure 3: An illustration of embedding graphlets into the se-
mantic space on manifold.

the semantic similarity and difference between graphlets, respec-
tively. Denotebi as theC-dimensional row vector containing the
multiple labels of the photo from which graphletGi is extracted;
and ~N = [N1, · · · , NC ]T whereNc is the number of photos for
categoryc, thenls andld are defined as:

ls(i, j) =
[bi ∩ bj ]~N∑

c Nc
· dGW (Gi,Gj), (4)

ld(i, j) =
[bi ⊕ bj ]~N∑

c Nc
· dGW (Gi,Gj), (5)

wheredGW (Gi,Gj) = ||Mo
i − Mo

j ||2; Mo
i andMo

j are the or-
thonormal basis to the matrices of graphletsGi andGj , respectively.

Inspired by many manifold algorithms [?], we assume a linear
approximation of the graphlet embedding process. Therefore, we
supposeY = UT X and thus (3) can be reorganized into:

arg minU tr(UT XRXT U)

= arg minU tr(UT LU) s.t. UT U = Id, (6)

whereX is obtained by row-wise stacking matrix[Mc
r,M

t
r,Ms]

into a vector,U is the linear projection matrix, andL = XRXT .
The above objective function (6) is a basic optimization problem
that can be solved using the Lagrangian multiplier. The optimal
solution is thed eigenvectors associated with thed smallest eigen-
values of matrixL.

4. SPARSITY-CONSTRAINED SALIENT
GRAPHLETS DISCOVERY

In a human vision system, usually only the distinctive sensory in-
formation is selected for further processing. From this perspective,
only a few visually/semantically salient graphlets within a photo
are usually perceived by humans. These salient graphlets are signif-
icantly different from those non-salient ones, either in their appear-
ances or in their semantics. Inspired by this, a sparsity-constrained
ranking scheme is developed to discover salient graphlets, by ex-
ploring color, texture, and semantic channels collaboratively. More



specifically, the ranking algorithm can be formulated as follows:
Formulation: Let X1,X2, andX3 be the three feature matri-

ces in color, texture, and semantic channels respectively, where the
columns in different matrices with the same index correspond to
the same graphlet. The size of eachXi is di ×N , wheredi is the
feature dimension andN is the number of graphlets. Then, the task
is to find a weighting function to each graphletS(Gi) ∈ [0, 1] by
integrating the three feature matricesX1,X2, andX3.

Based on the theory of visual perception [?], there are usually
strong correlation among the non-salient regions in a photo. That
is to say, the non-salient graphlets can be self-represented. This
analysis suggests that feature matrixX (X can be any one of ma-
tricesX1,X2, andX3) can be decomposed into a salient part and
a non-salient part,i.e.,

X = XZ0 + E0, (7)

whereXZ0 denotes the non-salient part that can be reconstructed
by itself, Z0 denotes the reconstruction coefficients, andE0 de-
notes the remaining part corresponding to the salient targets.

Without a constraint, there are an infinite number of possible
decompositions with respect toZ0 andE0. Toward a unique so-
lution that indicates those salient graphlets, we need some criteria
for characterizing matricesZ0 andE0. Aiming at this, two obser-
vations are made. On one hand, motivated by many approaches in
computer vision, we assume that only a small fraction of graphlets
are salient,i.e., matrixE0 is sparse. The connection between spar-
sity and saliency is also consistent with the fact that only a small
subset of sensory information is selected for further processing in
a human vision system. On the other hand, the strong correlation
among the background graphlets suggests that matrixZ0 is with
low rankness. Based on the above analysis, we can infer the salient
graphlets by adding a sparsity and low-rankness constraint to (7),
thereby the graphlet saliency detection can be formulated as a low-
rank representation (LRR) [?] problem:

min
Z0,E0

||Z0||∗ + λ||E0||2,1, s.t. X = XZ0 + E0, (8)

where|| · ||∗ denotes the matrix nuclear norm that is a convex re-
laxation of the rank function, parameterλ > 0 is used to balance
the effects of the two parts, and|| · ||2,1 is thel2,1 norm defined as
the sum of thel2,1 norms of the columns of a matrix:

||E0||2,1 =
∑

i

√∑
j
(E0(j, i))2. (9)

It is noticeable that the minimization of thel2,1 norm encourages
the columns ofE0 to be zero, and hence it fits well with our saliency
detection problem. For a column corresponding to thei-th graphlet
Gi, a larger magnitude implies that the corresponding graphlet is
more salient in drawing the attention of the human eye.

Let E∗0 be the optimal solution (with respect toE0) to problem
(7). To obtain the saliency value of graphletGi, we quantify the
response of the sparse matrix as follows:

S(Gi) = ||E∗0(:, i)||2 =

√∑
i
(E∗0(j, i))2. (10)

where||E∗0(:, i)||2 denotes thel2 norm of thei-th column ofE∗0(:
, i). A larger score ofS(Gi) means that graphletGi has a higher
probability to be salient.

The objective function (7) calculates the saliency of a graphlet
based on one type of visual feature, which is suboptimal since mul-
tiple visual features determine graphlet saliency collaboratively. To
combine together visual features in color, texture, and semantic

channels, we generalize the objective function (7) into a multi-
modal version:

min
Z1,Z2,Z3
E1,E2,E3

3∑
i=1

||Zi||∗ + λ||E||2,1, s.t. Xi = XiZi + Ei, (11)

whereE = [E1;E2;E3] is formed by vertically concatenatingE1,
E2, andE3 together along a column. The integration of multiple
features is seamlessly performed by minimizing thel2,1 norm ofE.
That is, we enforce the columns ofE1, E2, andE3 to have jointly
consistent magnitude values.

Let {E∗1,E∗2,E∗3} be the optimal solution to (11), to obtain a
saliency score for graphletGi, we quantify the response of the
sparse matrices as follows:

S(Gi) =
∑3

j=1
||E∗j (:, i)||2, (12)

where||E∗j (:, i)||2 denotes thel2 norm of thei-th column ofE∗j .
A larger score ofS(Gi) means that graphletGi has a higher prob-
ability to be salient. Algorithm 1 summarizes the procedure of our
proposed multimodal graphlet saliency detection. The details of
solving (11) are illustrated in the Appendix.

Algorithm 1 Multimodal Salient Graphlets Discovery

input: Graphlets from a labeled photo, the projection matrixU;
output: A number of graphlets ranked by their saliency values;
1) Compute the feature matrices{X1,X2,X3} in color, texture,
and semantic channels to describe each graphlet;
2) Obtain the sparsity matrices{E1,E2,E3} in color, texture,
and semantic channels respectively, by solving the objective
function (11);
3) Compute the graphlet saliency based on (12), and a few top-
ranked graphlets are deemed as the salient ones.

5. PERCEPTION-GUIDED PROBABILISTIC
AESTHETIC MEASURE

Based on the above discussion, the top-ranked graphlets are the
salient ones that can draw the attention of the human eye. That is,
humans first fixate on the most salient graphlet in a photo, and then
shift their gazes to the second salient one, and so on. Inspired by
the scan path used in human eye-tracking experiments, we propose
an actively viewing path (AVP) to mimic the sequential manner bi-
ological species perceive a visual scene. The procedure of generat-
ing an AVP from a photo is described in Fig. 4. It is noticeable that
all the AVPs from a data set are with the same number of graphlets
K. Typically, we setK to 4 and its influence on photo aesthetics
prediction is evaluated in our experiments.

Given a set of aesthetically pleasing training photos{I1, · · · , IH}
and a test imageI∗, they are highly correlated through their respec-
tive AVPsP andP∗. Thus, a probabilistic graphical model is uti-
lized to describe this correlation. As shown in Fig. 5, the graphical
model contains two types of nodes: observable nodes (blue color)
and hidden nodes (gray color). More specifically, it can be divided
into four layers. The first layer represents all the training photos,
the second layer denotes the AVPs extracted from the training pho-
tos, the third layer represents the AVP of the test photo, and the last
layer denotes the test photo. The correlation between the first and
the second layers isp(P|I1, · · · , IH), the correlation between the
second and the third layers isp(P∗|P), and the correlation between
the third and the fourth layers isp(I∗|P∗).

According to the formulation above, photo aesthetics can be
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Figure 4: An illustration of AVP generation based on the top-
ranked graphlets.
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Figure 5: An illustration of the probabilistic graphical model.

quantified as the similarity between the AVPs from the test photo
and those from the training aesthetically pleasing photos. The sim-
ilarity is interpreted as the amount of AVPs that can be transferred
from the training photos into the test image. That is, the aesthetic
quality of the test photoI∗ can be formulated as:

γ(I∗) = p(I∗|I1, · · · , IH)

= p(I∗|P∗) · p(P∗|P) · p(P|I1, · · · , IH). (13)

The probabilitiesp(I∗|P∗), p(P∗|P), andp(P|I1, I2, · · · , IH) in
(13) are computed respectively as:

p(I∗|P∗) =
∏

G∗∈P∗
p(I∗|G∗)

=
∏

G∗∈P∗
p(G∗1 , · · · ,G∗T |I∗)p(I∗)

p(G∗1 , · · · ,G∗T )

∝
∏

G∗∈P∗
p(G∗1 , · · · ,G∗T |I∗)p(I∗)

=
∏

G∗∈P∗
∏T

i=1

∏Yt

j=1
p(G∗t (j)|I∗), (14)

whereT is the maximum graphlet size,Yi is the number ofi-sized
graphlets in the test photoI∗, andG∗t (j) is thej-th t-sized graphlet
of AVP from the test photo.p(G∗t (j)|I∗) denotes the probability of
extracting graphletsG∗t (j) from the test photoI∗, which is calcu-
lated as described next.

As shown in Fig. 6, the graphlet extraction is based on ran-
dom walk. We first index all atomic regions in a photo and choose
a starting one with probabilityp(Y )

Y
, whereY means there areY

atomic regions in photoI andp(Y ) is the corresponding probabil-
ity. We then visit a spatially adjacent larger-indexed vertex3 with
probability 1

2
∑

d pd(Rl)d(Rl)
, whered(Rl) is the degree of the cur-

rent atomic regionRl andpd(Rl) denotes the probability of atomic
regionRl with degreed(Rl). In our implementation,pd(Rl) ∝
3It is with the same probability of visiting a larger-indexed vertex
or visiting a smaller-indexed one.

 !
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Figure 6: Graphlet extraction based on a random walk model.

exp
(
− 1
||d(Rl)−d̄p(Rl)d(Rl)||

)
andp(Y ) ∝ exp

(
− ||Y−Ȳ ||2

σ2
Y

)
. The

random walk process stops when the maximum graphlet size is
reached. Therefore, we obtain

p(G|I) ∝ p(Y )

Y

∏T−1

l=1

1

2
∑

d pd(Rl)d(Rl)
, (15)

Theprobabilityp(P∗|P) measures the similarity between AVPs
from the training photos and that from the test photo:

p(P∗|P) =
∏H

i=1

∏
G∗∈P∗
G∈Pi

p(G∗|G), (16)

wherep(G∗|G) measures the similarity between the same-indexed
graphlets from the test and the training photos, respectively. In our
implementation,p(G∗|G) is implemented as a Gaussian kernel.

The probabilityp(P|I1, · · · , IH) measures the probabilities of
AVPs generated from the training photos, which is calculated as:

p(P|I1, · · · , IH) =
∏H

i=1
p(Pi|Ii)

=
∏H

i=1

∏
G∈Pi

p(G|Ii), (17)

In summary, the procedure of our proposed photo aesthetics eval-
uation algorithm is presented in Algorithm 2.

Algorithm 2 Perception-Guided Photo Aesthetic Model

input: A set of training aesthetically pleasing{I1, · · · , IH},
the number of graphlets in an AVP:K, and the test photoI∗;
output: The aesthetic score of the test photoI∗;
1) Extract graphlets from each training photo; represent them
in both color and texture channels; learn the embedding model
and represent each graphlet in semantic channel;
2) Construct the AVPs of each photo by selectingK salient
graphlets, based on the sparsity-constrained ranking algorithm
described in Sec. 4;
3) Compute the aesthetic score of the test photoI∗ using (13).

6. EXPERIMENTS AND ANALYSIS
This section evaluates the effectiveness of the proposed method,

which can be divided into four parts. The first part compares our
approach with well-known photo aesthetic models. The second part
step-by-step evaluates each component of the proposed approach.
Third, based on an eye-tracking experiment, we make a quantita-
tive comparison between the proposed AVP and a real human gaze
shifting path. Lastly, we analyze the influence of different parame-
ter settings on our aesthetic model.

6.1 Data Sets and Implementation Details
To the best of our knowledge, there exist three off-the-shelf data

sets for evaluating photo aesthetics: the CUHK [?], the Photo.net,



Table 1: Comparison of aesthetics prediction accuracies.

CUHK PNE AVA
Dharetal. 0.7386 0.6754 0.6435
Luo etal. 0.8004 0.7213 0.6879
Marchesottietal. (FV-Color-SP) 0.8767 0.8114 0.7891
Chengetal. 0.8432 0.7754 0.8121
Nishiyamaetal. 0.7745 0.7341 0.7659
Theproposed method 0.9059 0.8552 0.8413

andthe AVA [?]. A rough description of the three data sets is as
follows: 1) The CUHK [?] contains 12,000 photos collected from
DPChallenge.com. These photos have been labeled by ten indepen-
dent viewers. Each photo is classified as highly aesthetic if more
than eight viewers agree on the assessment. We use a standard split
of training/test sets on this data set. 2) The Photo.net [?] consists
of 3581 images. Only URLs of the original photos are provided.
Approximately half of the images have since been removed from
the websites, leaving only nearly 1,700 images available. Thus, we
extend this data set by online crawling 4,000 photos and name the
extended Photo.net data set PNE. The aesthetics of these addition-
ally crawled photos are manually labeled. They are randomly split
into equal partitions, one for training and the rest for testing. 3)
The AVA [?] data set contains 25,000 highly- and low-aesthetic
photos, each of which is associated with two semantic tags. The
selection criteria is based on the aesthetic quality of each photo,
which is scored by 78 to 549 amateur/professional photographers.
The training and test photos of the AVA data set are pre-specified.

For the classifier-based photo aesthetic models, such as those
proposed by Marchesottiet al. [?] and Nishiyammaet al. [?],
both the highly- and low-aesthetic photos are adopted to learn the
model. More specifically, the highly aesthetic photos are used as
positive samples and the low aesthetic ones are used negative sam-
ples. For those models that are based on transferring aesthetic fea-
tures (e.g., Chenget al. [?]’s model), they employ only the “good”
aesthetic features to score a test photo. Thus, it is necessary to as-
sign a weight for each training AVP indicating its “goodness”,i.e.,
a larger weight reflects a higher aesthetic level. The weight is deter-
mined by the aesthetics of the photo from which the graphlet is ex-
tracted. For the three data sets, different settings are used to assign
the weight of each photo. For the CUHK, we use the probabilis-
tic output described in Yanet al.’s work [?] to rank the aesthetics
of each photo. For the PNE, we manually select 674 highly aes-
thetic photos and leave the rest as the low-aesthetic ones. Then, we
extract the aesthetic features based on [?], and further use a proba-
bilistic SVM output to score the aesthetics of each photo. For the
AVA, each training photo is rated by multiple users. We average
the rating scores of a photo as its overall aesthetic score.

All the experiments were carried out on a personal computer with
an Intel X5482 processor and 8GB RAM. The algorithm is imple-
mented on the Matlab 2011 platform.

6.2 A Comparative Study
The first experiment compares our approach with five photo aes-

thetics evaluation methods. The compared algorithms include three
global feature-based approaches proposed by Dharet al.[?], Luo et
al. [?], and Marchesottiet al. [?], respectively; and two local patch
integration-based methods proposed by Chenget al.[?] and Nishiyamaet
al. [?], respectively.

In the comparative study, we notice that the source codes of the
above five compared methods are not provided and some experi-
mental details are not mentioned, therefore it is difficult to strictly
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Figure 7: Cropped photos produced by the compared methods
and the preference matrices (OP: the original photo; the red
numbers denote the scores of the algorithms).

implement them. Toward a convincing comparative study, we try to
strengthen some components of the compared methods. Based on
this, we adopt the following implementation settings. For Dhar’s
approach, we use the public codes from Liet al. [?] to extract the
attributes from each photo. These attributes are combined with the
low-level features proposed by Yehet al. [?] to train the aesthetic
classifier. For Luoet al.’s approach, not only are the low-level
and high-level features in their publication implemented, but also
the six global features from Getlteret al. [?]’s work are used to
strengthen the aesthetic prediction ability. For Marchesottiet al.’s
approach, similar to the implementation of Luoet al.’s method,
the six additional features are also adopted. For Chenget al.’s ap-
proach, we implement it as a simplified version of our approach,i.e.,
only 2-sized graphlets are employed for aesthetics measure. No-
tably, for the three probabilistic model-based aesthetics evaluation
methods (i.e., Chenget al.’s method, Nishiyamaet al.’s method,
and our model), if the aesthetic score is larger than 0.5, then this
photo is deemed as highly aesthetic, and vice versa. We choose 0.5
as the threshold because for each of the three data sets, about half
of the photos are highly aesthetic.

We present the aesthetics prediction accuracy on the CUHK, the
PNE, and the AVA in Table 1. On the three data sets, our approach
outperforms Marchesottiet al.’s approach by nearly 3%, and ex-
ceeds the rest of the compared methods by more than 6%, which
demonstrates the effectiveness our approach.

Last but not least, we evaluate the proposed aesthetic model in
comparison with several well-known cropping methods. For our
approach, the sub-region with the highest aesthetic score in each
photo is cropped. The compared cropping methods are sparse cod-
ing of saliency maps (SCSM [?]), sensation based photo cropping
(SBPC [?]), omni-range context-based cropping (OCBC [?]), per-
sonalized photo ranking (PPR [?]), describable attribute for photo
cropping (DAPC [?]), and the graphlet transferring-based photo
cropping(GTPC) [?], respectively. We conduct a paired comparison-
based user study [?] and present the preference matrix obtained
from the above methods. Each preference matrix is filled by 25∼40



Table 2: Aesthetics prediction accuracy decrement.

CUHK PNE AVA
Graphlet→singleatomic region -4.31% -3.55% -4.76%
Remove adj. mat from graphlet -3.38% -3.65% -2.77%
Mani. Grap. emb.→Single-ch. emb. -3.16% -2.81% -2.89%
Mani. Grap. emb.→kernel PCA -6.21% -5.12% -4.33%
Prob. mea.→ clasf. mea. -3.31% -2.81% -2.91%

volunteers. As shown in Fig. 7, the result again demonstrates the
advantage of the proposed method.

6.3 Step-by-Step Model Justification
The proposed photo aesthetic model includes three main compo-

nents: the multimodal graphlet representation, the sparsity-constrained
graphlet ranking, and the probabilistic aesthetics measure, which
are theoretically indispensable and inseparable. To demonstrate the
effectiveness of each step, we replace each component by a func-
tionally reduced counterpart and report the corresponding aesthet-
ics prediction accuracy.

• To illustrate the effectiveness of the first component, two ex-
perimental settings are applied: 1) reducing the multimodal
graphlet representation to a single channel one (Mani.Grap→
Sing-ch), where only the color channel is used. The color
channel is preserved here because as shown by several photo
aesthetics methods [?], it is the most important channel for
representing photo aesthetics; and 2) replacing the manifold
graphlet embedding by kernel PCA (Mani.Grap.emb→ ker-
nel PCA), where the kernel is calculated as:

k(G,G′) ∝ exp(−dGW (M,M′)), (18)

whereM = [Mc
r,M

t
r,M

s
r,Ms] anddGW (·, ·) is the Golub-

Werman distance between identically sized matrices.

• To justify the usefulness of the sparsity-constrained graphlet
ranking, we replace this component by the locality preserv-
ing active learning paradigm proposed by Zhanget al.[?]. In
Zhanget al.’s model, the weighting matrix (W in Eqn. (12)
of Zhanget al. [?]) is calculated by considering a graphlet
and its spatially neighboring graphlets in a photo. As the
comparative aesthetic features shown in Fig. 8, our approach
prefers to select small graphlets due to the sparsity constraint
in our model. More importantly, our approach can explicitly
model the gaze shifting sequence of each photo, while the
other methods fail.

• To demonstrate the effectiveness of the third component, we
replace the probabilistic aesthetics measure by a kernel SVM-
based one (Prob.mea.→Clas.mea.), wherein the kernel is com-
puted the same as that in the above kernel PCA.

As shown in Table 2, when replacing one component of the pro-
posed approach by an existing one, the aesthetics prediction accu-
racy reduces dramatically. This demonstrates that each component
of the proposed approach is indispensable and inseparable.

6.4 Visualization of the Active Viewing Paths
and the Photos Ranked by Aesthetics

This subsection quantitatively and qualitatively compares the pro-
posed actively viewing path (AVP) with real human gaze shifting
path. In particular, we record the eye fixations of five viewers by

making use of the eye-tracker EyeLink II, and then link the fixa-
tions into a path in a sequential manner. As can be seen from Fig. 9,
in most photos, the proposed AVPs are consistent with human gaze
shifting paths. In addition, we calculate the proportion of the hu-
man gaze shifting path that overlaps with an AVP. The overlapping
between our proposed AVP and a real human gaze shifting path is
computed as shown in Fig. 10. Given the five real gaze shifting
paths, we connect all the segmented regions on the gaze shifting
path and then obtain the human gaze shifting path with segmented
regions. Based on this, the similarity between an AVP and a gaze
shifting path with segmented regions is calculated by:

s(P1, P2) =
nPixel(P1 ∩ P2)

nPixel(P1) + nPixel(P2)
, (19)

whereP1 andP2 denote an AVP and the gaze shifting path with
segmented regions, respectively,nPixel counts the pixels within
an image region, andP1∩P2 denotes the shared region betweenP1

andP2. Based on (19), we observe that the overlapping percentage
between an AVP and a real human gaze shifting path is 87.65%
on average. This observation shows that the AVP can accurately
predict the human gaze shifting process.

Next, we visualize the top-ranked graphlets from images in

Figure 9: An illustration of the overlapping between an AVP
and a human gaze shifting path.

the LHI [?] data set. As shown in Fig. 12, for each image, the
first four most visually/semantically salient graphlets are presented.
The results again demonstrate the importance of mining the spatial
interaction of image regions for describing photo aesthetics.

Further, we visualize photos of the AVA data set that are ranked
by our probabilistic photo aesthetics measure. As can be seen from
Fig. 11, we made the following three observations.

• As shown in the photos whose aesthetics are ranked between
0.8 and 1, highly aesthetic photos with multiple interacting
objects are assigned with very high scores, which shows that
our proposed AVPs well predict how humans perceive lo-
cal/global aesthetics in these beautiful photos.

• As seen from the photos whose aesthetics are ranked between
0.5 and 0.8, highly aesthetic photos with a single object are
also appreciated by the proposed aesthetics model. This is
because graphlets are naturally local composition descrip-
tors, and they influence photo aesthetics by making use of
the proposed probabilistic model.

• Objects from the photos whose aesthetics are ranked between
0 and 0.5 are either spatially disharmoniously distributed or
blurred. Thus, these photos are considered as aesthetically
low by our model.



Figure 8: A comparison of representative graphlets (blue rectangles) and the AVPs (red rectangles).

Figure 10: Comparison of gaze shifting paths from five observers (differently colored) and the proposed AVPs.
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Figure 11: Ranking results on the AVA data set. The yellow paths denote the AVPs predicted by our model, where each circle
indicates the location of a graphlet. The three pie charts show statistics of photos from the three data sets based on our model.



Figure 12: Visualized highly ranked graphlets of the LHI data
set.

We compare the AVPs predicted by our approach, under both low
aesthetic and high aesthetic photos. As shown in Fig. 11, neither
low nor high aesthetic photo have particular path geometry, such as
the angle between pairwise shifting vectors (yellow arrows). How-
ever, for high aesthetic photos, the fixation points (yellow circles)
are aesthetically pleasing and the objects along the path are harmo-
niously distributed.

6.5 Parameter Analysis
The experiment evaluates the influence of the graphlet sizeT and

the number of graphlets of each AVPK on the performance of the
proposed photo aesthetics model.

To analyze the effects of the maximum graphlet sizeT on pre-
dicting photo aesthetics, we set up an experiment by varyingT
continuously. In the top graph of Fig. 13, we present the aesthetics
prediction accuracy (on the CUHK data set) when the maximum
size of the graphlet is tuned from 1 to 10. As can be seen, predic-
tion accuracy increases moderately whenT ∈ [1, 5] but remains
almost unchanged whenT ∈ [6, 10]. This observation implies that
5-sized graphlets are sufficient for capturing the local composition
of photos in the CUHK data set. In the bottom graph of Fig. 13, we
present the performance when the number of graphlet in an AVP
(K) is tuned from 1 to 10. As can be seen, the prediction accu-
racy increases quickly whenK ∈ [1, 4] but remains stable when
K ∈ [5, 10].

7. CONCLUSIONS
Image/video aesthetics quality assessment is a useful technique

in multimedia field [?, ?, ?]. In this paper, a new model is proposed
to evaluate the aesthetics of a photo by simulating the process of hu-
mans sequentially perceiving semantics of a photo. By discovering
visually/semantically salient graphlets using a sparsity-constrained
ranking paradigm, an active viewing path is constructed to mimic
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Figure 13: Photo aesthetics evaluation performance under dif-
ferent parameters.

the process where humans actively look at important components
in a photo. Thereafter, we develop a probabilistic model that quan-
tifies photo aesthetics as the amount of AVPs that can be transferred
from a set of aesthetically pleasing training photos into the test im-
age. Extensive experiments demonstrate the effectiveness of our
model.

In the future, we will apply our model to video aesthetics evalu-
ation. The aesthetics of a video clip is determined by accumulating
the aesthetic scores of all its constituent frames, using a probabilis-
tic model.

8. APPENDIX
Problem (11) is convex and can be optimized efficiently. We first

convert it into the following equivalent problem:

minJi,Zi,Ei

3∑
i=1

||Ji||∗ + λ||E||2,1,

s.t. Xi = XiZi + Ei,Zi = Ji, (20)

This problem can be solved with the ALM method which mini-
mizes the following augmented Lagrange function:

L = λ||E||2,1 +

3∑
i=1

(||Ji||∗ + 〈Yi,Xi −XiZi −Ei〉

+〈Wi,Zi − Ji〉+
µ

2
||Xi −XiZi −Ei||2F +

µ

2
||Zi − Ji||2F ),(21)

whereY1,Y2,Y3 and W1,W2,W3 are Lagrange multipliers
andµ > 0 is a penalty parameter. The inexact ALM method, which
is also called the alternating direction method, is illustrated in Al-
gorithm 3. Note that the subproblems of the algorithm are convex



Algorithm 3 Inextact ALM-based solution of (11)
input: Data matrices{Xi}, parameterλ;
output: The optimal solutionE∗;
while not convergeddo
1) Fix the others and updateJ1,J2,J3 by:
Ji = arg minJ

1
µ
||J||∗ + 1

2
||Ji − (Zi + Wi

µ
)||2F .

2) Fix the others and updateZ1,Z2,Z3 by:

Zi = M(XT
i (Xi −Ei) + Ji +

XT
i Yi−Wi

µ
)

whereM = (I +
∑3

i=1 XT
i Xi)

−1.
3) Fix the others and updateE = [E1;E2;E3] by
E = arg minE

λ
µ
||E||2,1 + 1

2
||E−G||2F ,

whereG is formed by vertically concatenating the matrices
Xi −XiZi + (Yi/µ), i = 1, 2, 3 together along column.
4) Update the multipliers
Yi = Yi + µ(Xi −XiZi −Ei); Wi = Wi + µ(Zi − Ji);
5) Update the parameterµ by
µ = min(ρµ, 1010)
where the parameterρ controls the convergence speed. It is
set asρ = 1.1 in all experiments.
6) Check the convergence condition:Xi −XiZi −Ei → 0 and
Z− Ji → 0, i = 1, 2, 3;
end while

andthey have closed-form solution. Step 1 is solved via the singu-
lar value thresholding operator [?], whereas Step 3 is solved via [?].
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