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Probabilistic Graphlet Transfer
for Photo Cropping

Luming Zhang, Mingli Song, Member, IEEE, Qi Zhao, Xiao Liu,
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Abstract— As one of the most basic photo manipulation
processes, photo cropping is widely used in the printing, graphic
design, and photography industries. In this paper, we introduce
graphlets (i.e., small connected subgraphs) to represent a photo’s
aesthetic features, and propose a probabilistic model to transfer
aesthetic features from the training photo onto the cropped photo.
In particular, by segmenting each photo into a set of regions, we
construct a region adjacency graph (RAG) to represent the global
aesthetic feature of each photo. Graphlets are then extracted from
the RAGs, and these graphlets capture the local aesthetic features
of the photos. Finally, we cast photo cropping as a candidate-
searching procedure on the basis of a probabilistic model, and
infer the parameters of the cropped photos using Gibbs sampling.
The proposed method is fully automatic. Subjective evaluations
have shown that it is preferred over a number of existing
approaches.

Index Terms— Gibbs sampling, graphlet, probabilistic model,
region adjacency graph.

I. INTRODUCTION

PHOTO cropping refers to the removal of an unwanted
subject or irrelevant details from a photo, changing its

aspect ratio, or the improvement of its overall composition.
Conventional photo cropping has been widely used. For
example, in the printing industry, a photo is cropped from
a panoramic view to enhance its visual aesthetic effects; in
telephoto photography, a photo is cropped to enhance the
primary subject. However, photo cropping is challenging due
to the following three problems. First, the aesthetic features
are not well defined, so it is unclear how to preserve the
important visual features in the cropped photo. Second, photo
assessment is a subjective task, and thus, it is difficult to
develop a computational model that automatically measures
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the quality of each candidate cropped photo. Third, some
existing methods require human-computer interaction to obtain
an ideal cropped photo.

Photo cropping closely relates to the topic of photo
quality assessment. In recent years, several photo cropping
and photo quality assessment approaches have been pro-
posed by both perception researchers and computer vision
researchers.

Perception researchers utilize visual attention theories and
models for evaluating the quality of each region within a
photo, and the most visually salient region is recommended
as the cropped photo. In particular, researchers on visual
attention have developed neuromorphic models that simulate
which elements of a visual scene are likely to attract human
attention. Given an image, the neuromorphic models compute
its saliency map, which topographically encodes the saliency
at every location in the visual input by convolving the image
with a series of special filters and encoding the response at
each pixel location. Then, the image region with the maxi-
mum saliency value is recommended as the cropped photo.
In [1], Sun et al. have proposed a biologically inspired face-
sensitive saliency detector to predict visual attention when
looking at photos. The difference between the saliency map
and the subject mask, i.e., ground truth data obtained from
eye-tracking experiments, is used to evaluate the quality of
a photo. A top-down personalized photo assessment is then
achieved by adjusting the weights of features used in the
saliency detection process. You et al. [2] have proposed a
photo quality assessment approach that is also based on visual
attention analysis. The visually salient regions are extracted
based on a combination of a bottom-up saliency model and
semantic image analysis. Two metrics, peak signal-to-noise
ratio and structural similarity, are then computed in the salient
regions. Based on the two metrics, a novel photo quality
metric is proposed, which adequately exploits the attributes of
visual attention information. In [3], Mei et al. have extended
the visual-attention-based photo quality assessment to a video
sequence, and built a comprehensive scheme to model and
mine the captured attention of camcorder users. Liu et al. [4]
have presented a visual attention model to detect the salient
regions and prominent lines of each photo. Three measures
are defined by the degree of the salient regions, and the
prominent lines conform to the basic aesthetic guidelines, such
as the rule of the thirds. The three measures are then linearly
combined to evaluate the quality of the photo. She et al. [5]
have proposed the sparse coding [6] of saliency maps to
represent each photo. Photos with different semantic context or
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Fig. 1. Graphical illustration of spatial interaction among atomic regions
captured by graphlets i-graphlet means a graphlet with i atomic regions
and it captures the co-occurrence properties of i atomic regions. When the
co-occurrence properties of only two atomic regions are considered, our
graphlet-based atomic region’s spatial interaction reduces to the omni-range
context proposed by Cheng et al. [14].

structural information are cropped separately. They firstly used
spatial envelop [7] to classify photos into different categories
and extracted their saliency maps accordingly. Then for photos
in each category, a dictionary is learned by sparse coding of
their saliency maps. Given a new photo, the cropped region is
selected as the one that can be decoded by the dictionary with
the minimum error. Although satisfactory cropping results are
empirically observed, visual-attention-based photo cropping
methods have three main weaknesses. First, the saliency
map used in visual-attention-based photo cropping methods
cannot effectively capture the photo aesthetics. As shown in
Fig. 1, the spatial interactions of the sky, sailboat, and sea
are important visual features that should be preserved in the
cropped photo; however, visual-attention-based photo cropping
methods fail to capture them. Second, when the photo has little
or spurious texture regions, the visual-attention-based model
fails to work. Third, there is a semantic gap between the
ground truth human data and the existing attention models
that are commonly based on low-level features only; in this
sense, current attention models have limited predictability of
human attention and aesthetic regions.

Computer vision researchers use both low-level and high-
level image features1 for measuring the quality of candidate
cropped photos. In [8], Sheikh et al. have presented an
information fidelity criterion for photo quality assessment by
modelling the statistics of natural scenes. Ke et al. [9] have
designed a group of high-level image features, such as the
image simplicity based on the spatial distribution of edges, to
imitate people’s perception of photo quality. These high-level
semantic features are integrated using a probabilistic model
for measuring photo quality. Luo et al. [10] have proposed
a novel photo quality assessment method. Their method first
extracts subject regions from a photo, and then formulates a
number of high-level semantic features based on the division
of the subjects and background. In [11], Yeh et al. have
proposed a personalized photo ranking system. The system
extracts low-level features from professional photos, and then,
the weight of each feature is learned based on ListNet [12].

1The low-level features we mention here are those irrelevant to the image
semantics, such as the histogram of gradient [13], while the high-level features
we mention here convey some semantic cues, e.g., the “simplicity” of the
image, whether the sky is clear, etc.

Once the optimal weights are found, photographs can be
ranked according to their scores. In addition, to satisfy users’
preference, an example-based user interface is developed so
that the users can emphasize some features over others by
manually adjusting the weights of features. It is noticeable
that, the image features used in the above four approaches are
designed heuristically, and there is short of evidence that the
above features capture the photo aesthetics, such as the spatial
interaction of image components in Fig. 1. Besides, Luo et al.’s
approach relies heavily on a blur detection technique to
identify the foreground object’s boundary within the frame.
This technique works well only with photographs captured
by professional single-lens reflex (SLR) cameras that have
mechanisms to induce depth-of-field effects and precludes
its use with photographs taken using popular point-and-shoot
cameras.

Human-computer interaction has been demonstrated to be
helpful to further improve the performance of photo cropping
by allowing parameters to be tuned for a given photo towards a
visually reasonable cropping result. In [15], Bhattacharya et al.
proposed an interactive framework that improves the visual
aesthetics of photos by using spatial recomposition. Users
can interactively select a foreground object and the system
presents recommendations for where it can be moved in a
manner that optimizes a learned aesthetic metric while obeying
some semantic constraints. In [16], Santella et al. proposed an
interactive photo cropping system. The system enables users
to look at each photo for a few seconds and records their
eye movements accordingly. Then these eye movement data
are used to identify the important photo content and further
generate cropped photos with any size or aspect ratio. Unfor-
tunately, the human-computer interactive operation of [15]
and [16] makes these approaches fail to handle large-scale data
sets. Furthermore, the candidate cropped photos are evaluated
subjectively so it is difficult to obtain a consistent cropping
result for different users.

To avoid the inconvenience brought by those interactive
photo cropping methods, Cheng et al. [14] have proposed an
automatic cropped photo recommendation method by intro-
ducing a so-called omni-range context, i.e., the spatial corre-
lation distributions of two arbitrary image patches within an
image. To measure the quality of a candidate cropped photo,
these omni-context priors are used together with other cues,
such as the patch number, to form a posterior probability
formulation as a photo quality measure. It is noticeable that the
omni-range context only captures the binary spatial interaction
of image patches. Higher-order spatial interactions, such as the
relative location among the sky, sailboat, and sea described in
Fig. 1, fail to be captured. In [17], Nishiyama et al. have
presented an automatic photo cropping method by training
a quality classifier from a large number of photos crawled
from the Internet. Their approach first detects multiple subject
regions in an image. Each subject region is a bounding rectan-
gle containing the salient part of each subject, such as a treetop
and ridge. Then an SVM [18] classifier is trained for each
subject region. Finally, the quality of each candidate cropped
photo is computed by probabilistically combining the scores
of the SVM classifier corresponding to its internal regions.
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Fig. 2. Pipeline of our approach. First row: the process of extracting graphlets from training aesthetic photos. Second row: the process of evaluating the
quality of each candidate cropped photo using a probabilistic model.

Although multiple subjects are considered in [17], their spatial
interactions, e.g., whether the sky is below or above the sea,
are ignored. To semantically represent the essential features
for photo cropping, Dhar et al. [19] have proposed a set of
high-level attribute-based predictors for evaluating the photo
aesthetics. Three types of attribute-based predictors are pro-
posed, i.e., compositional attributes, content attributes, and sky
illumination attributes. Experimental results demonstrate that
the aesthetic classifier learned from these attributes achieves
much better performance compared with those trained solely
from low-level image features. The main weakness of [19]
is that the attributes are designed manually and are data set
dependent. Thus, they cannot be generalized to different data
sets.

To solve or at least alleviate the aforementioned problems,
we propose graphlets to represent the aesthetic feature of pho-
tos and transfer the graphlets from the training aesthetic photos
into the cropped photos based on a probabilistic model. As
shown in Fig. 2, by segmenting each training photo into a set
of atomic regions, we construct a so-called region adjacency
graph (RAG) to represent the global aesthetic feature of these
atomic regions. To represent the local aesthetic features of the
training photos, we extract the graphlets from the RAGs using
depth-first-search [20]. Because an RAG can be regarded
as a special type of graphlet, the aesthetic similarity of two
photos can be formulated as graphlet-to-graphlet matching.
To measure the similarity between graphlets, which may have
different numbers of vertices, and to obtain a fixed-length
feature vector representation for each graphlet, we represent
the vertices as well as their spatial interactions using a matrix,
compute the kernel between matrices, and further use a Kernel
LDA [21] to represent each graphlet by a (C −1)-dimensional
feature vector, where C is the number of categories of training
photos. To evaluate the quality of each candidate cropped
photo, we extract the graphlets within the candidate cropped
photo and form a posterior probability to measure its quality.
Based on the posterior probability formulation, we cast photo
cropping as seeking the parameter of a candidate cropped

photo with the maximum posterior probability, and Gibbs
sampling [22] is applied for parameter inference. Extensive
experimental results demonstrate the effectiveness of our
approach.

II. AESTHETIC FEATURE EXTRACTION

A. Region Adjacency Graph

A photo usually contains millions of pixels. If we treat each
pixel independently, the high computational cost will make
photo cropping intractable. Fortunately, pixels are usually
highly correlated with their spatially neighboring ones. Thus
for each photo, we cluster its pixels into a set of atomic
regions, and this photo can be regarded as a set of atomic
regions associated with their spatial interactions. A graph is
a powerful tool to describe the relationships between objects,
and in this work, we propose a region adjacency graph (RAG)
to model the global aesthetics of each photo. The RAG
construction process is detailed as follows. Given a photo I ,
we cluster its pixels into a set of atomic regions using an
image segmentation algorithm, and an RAG G is constructed
to model I , i.e.,

G = (V , E) (1)

where V denotes a finite set of vertices, each representing an
atomic region; E denotes a set of edges, each connecting a
pair of spatially adjacent atomic regions. To make the image
segmentation step more stable, we adopt two schemes. First,
we use unsupervised fuzzy clustering (UFC) [23] for photo
segmentation. One advantage of UFC is that, prior knowledge
of the number of segmented atomic regions is not required,
and its tolerance bound is flexible to tune. Second, each photo
is segmented five times under different tolerance bounds of
UFC, i.e., the tolerance bound is tuned from 0.1 to 0.5 with a
step of 0.1.

In this work, we use both color and texture informa-
tion to characterize each atomic region as color and texture
are generally complementary to each other in measuring
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the region’s properties. We detail the feature extraction as
follows.

For the color descriptor, we use color moment [24] to
represent the three central moments of an atomic region’s color
distribution in each RGB channel. The three central moments
are mean, standard deviation, and skewness. Thus, each atomic
region is represented by a 9-dimensional feature vector in RGB
channel. For the texture descriptor, we use the well-known
histogram of gradient (HOG) [13] to model the texture of
each atomic region. The HOG descriptor has the advantage
of invariance to local geometric changes, i.e., rotations and
photometric transformations. Firstly, we use a finite difference
filter, [−1; 0; + 1], and its transpose, to compute the gradient
of each pixel. Then, each gradient orientation is discretized
according to a vector quantization (VQ) codebook, and we
obtain a feature map representing both the gradient orientation
and intensity of each pixel. This feature map is further divided
into 4 × 4 sub-regions, where the feature map in each sub-
region is quantized into an 8-dimensional feature vector. By
concatenating the 8-dimensional feature vectors from all the
4 × 4 sub-regions, we represent each atomic region by a
128-dimensional HOG feature vector in the texture channel.

After extracting the color and texture feature, we have a
9 + 128 = 137-dimensional feature vector to describe each
atomic region, i.e.,

F(R) = [FC M(R), FH OG (R)] (2)

where FC M (R) and FH OG (R) respectively denote the color
moment and the HOG feature vector computed from atomic
region R.

B. Graphlets as Aesthetic Features

Given a photo, its RAG represents the photo’s global
aesthetic feature, i.e., all the components within this photo
as well as their spatial interactions. To represent the photo’s
local aesthetic features, it is useful to extract its RAG’s
graphlets (i.e., connected subgraphs), which capture a subset
of components and their spatial interactions. Formally, we
define graphlet as a connected subgraph of an RAG. The
size of a graphlet is defined as the number of vertices in
this grahplet. And we call an i -sized graphlet i -graphlet. As
shown in Fig. 3, the 3-graphlet encodes the spatial interactions
among the sailboat, waterman, and water, which are important
local aesthetic features that should be preserved in the cropped
photo.

Given an RAG, a number of its graphlets can be extracted.
To measure the similarity between graphlets, a straightforward
approach is to concatenate the 137-dimensional feature vector
corresponding to the atomic regions from each graphlet into
a long feature vector. However, there are two disadvantages
of this straightforward strategy. First, different graphlets may
have different numbers of vertices, which result in a different
dimensional concatenated feature vector. Second, the spatial
interactions between atomic regions are totally ignored. As dis-
cussed above, the spatial interaction is an essential cue for
photo cropping. To solve these two problems, we uniformly
represent any sized graphlet by a fixed-length feature vector,

Fig. 3. Local aesthetic features represented by {2, 3, 4}-graphlet.

and the feature vector encodes the spatial interaction of atomic
regions. In particular, we first represent each graphlet by a
matrix, which captures the color and texture information of
each atomic region, as well as the spatial interaction between
atomic regions. Because it is infeasible to measure different
sized matrices, we derive the kernel between the same sized
graphlets; the kernel can be proved to be positive definite.
Thus, all kernel-based algorithms in Hilbert space can be
adopted. Finally, we adopt Kernel LDA to represent each
graphlet by a (C − 1)-dimensional feature vector, where C
denotes the number of categories. Kernel LDA encourages
highly discriminative graphlet transfer into the cropped photo.
We detail the above steps in the following part of this section.

Given a t-sized graphlet, we characterize all its atomic
regions as a matrix MR ∈ 

t×137, where each row of MR

denotes a 137-dimensional feature vector representing the
color and texture of an atomic region. To represent the spatial
interactions of atomic regions in this graphlet, we adopt a t ×t
adjacency matrix, i.e.,

MS(i, j) =
{

1, if Ri and R j are spatially adjacent

0, otherwise.
(3)

Based on MR and MS , we represent t-sized graphlets by a
t × (137 + t) matrix, i.e.,

M = [MR, MS ]. (4)

To measure the similarity of a pair of t-sized graphlets Mi

and M j , their kernel is defined as follows:

k(Mi , M j ) = ||MT
i M j ||2F . (5)

Here, we prove that the above kernel function is positive
definite. Following [25], a real-valued function k(xi , x j ) on
X×X is positive definite (resp. conditional positive definite) if
and only if k(xi , x j ) is symmetric and

∑
i j γiγ j k(xi , x j ) ≥ 0,

for all x1, x2, . . . , xN (xi ∈ X ) and γ1, γ2, . . . , γN (γi ∈  )
(resp. for all γ1, γ2, . . . , γN such that

∑
γi = 0). Follow-

ing [26] and [27], each matrix can be deemed as a point on the
Grassmann manifold. The positive definiteness follows from
the properties of the Frobenius norm. For all M1, M2, . . . , Mn
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and γ1, γ2, . . . , γn(γi ∈  ), for any n ∈  , we have∑
i j

γiγ j ||MT
i M j ||2F =

∑
i j

γiγ j tr(Mi MT
i M j MT

j )

= tr
(∑

i

γi Mi MT
i

)2

=
∣∣∣∣∣
∑

i

γi Mi MT
i

∣∣∣∣∣
2

F

≥ 0. (6)

Thus the kernel function k(Mi , M j ) is positive definite.
Due to the large variation in the training photos, con-

ventional photo cropping methods, such as She et al.’s [5]
and Cheng et al.’s [14] approaches, usually employ multiple
cropping models. Each cropping model is trained using photos
from one category. Given a test photo, they first classified
it into a category and then cropped this photo using the
cropping model corresponding to this category. This strategy is
probably effective for achieving a good cropping result since
each cropping model deals only with a subset of photos with
small variations. There are two limitations though. First, only
the weak global features are used to train the classifier, such
as the spatial-envelop [7] and the bag of visual words [28].
When the training photos contain complex structures, the
classifiers may fail to accurately predict the class label of
a test photo. In this case, the test photo will be cropped
under a mismatched cropping model, yielding unsatisfactory
cropping results. Second, even if the test photo is classified
correctly, in the cropping stage, the local image features,
such as the omni-range context in [14], are transferred from
the training photos into the cropped photo with identical
weights. In practice, however, preferred cropping results will
be observed if we assign a larger weight to some “important”
local features. For instance, as shown in Fig. 4, there are
three training photos from the “sailing” category and one
training photo from the “surfing” category. Given a test photo
from the “sailboat” category, based on the conventional photo
cropping methods, all the image components, such as sky,
water and sailboat, will be assigned with identical weights.
Thus, all the eight candidate cropped photos will have similar
chances of being recommended as the final cropped photo.
Suppose we additionally consider the training photo from
the “surfing” category and assign a larger weight to some
discriminative image components, such as the “sailboat”,
while assigning a smaller weight to non-discriminative image
components, such as the “sky” and “water”, the candidate
cropped photo from the top row of Fig. 4 will be assigned with
higher quality scores, and preferred cropping results will be
observed.

To implement the weighting mechanism, we employ a
supervised discrimination analysis method to assign a weight
to each graphlet, where the weight reflects the discrimina-
tion of this graphlet. Besides, to avoid the negative effects
brought by the classifier, our approach transfers the weighted
graphlets extracted from all training photos into the cropped
photo.

As discussed above, each graphlet is represented by a
matrix. Thus, it is impossible to use Fisher’s LDA [21] to

Fig. 4. Example of adding a weighting mechanism to the cropping model.

explicitly assign a weight to each graphlet. Instead, we use
Kernel LDA to implicitly assign a weight to each graphlet.
The weight is a (C−1)-dimensional feature vector representing
the discrimination of each graphlet, where C denotes the
number of categories. We detail the weight-assigning process
in the following.

For the t-sized graphlets, let φ be a nonlinear function to
map matrix M onto some feature space F . Kernel LDA finds
a projection direction w as follows:

w = max
w

wT Sφ
Bw

wT Sφ
W w

(7)

where w denotes the projection matrix; Sφ
B and Sφ

W denote the
between and within class scatter matrices respectively:

Sφ
B =

∑
i

Ni (m
φ
i − mφ)(mφ

i − mφ)T (8)

Sφ
W =

∑
i=1,2,...,C

∑
M∈  i

(φ(M) − mφ
i )(φ(M) − mφ

i )T (9)

where mφ
i = 1

Ni

∑Ni
j=1 φ(Mi

j ) and mφ = 1
N

∑N
i=1 φ(Mi ).

Here Mi
j denotes the j -th matrix from the i -th category, and

Ni denotes the number of matrices from the i -th category;
Mi denotes all the matrices from the i -th category.

Using the definition of mφ
i we can write:

wT mφ
i =

N∑
i=1

αiφ(Mi )m
φ
i

= 1

Ni

N∑
j=1

Ni∑
k=1

α j k(M j , Mi
k) = αT Pi (10)

where (Pi ) j = 1
Ni

∑Ni
k=1 k(M j , Mi

k ); k(Mi , M j ) = 〈φ(Mi ),

φ(M j )〉 = ||MT
i M j ||2F is the positive semi-definite kernel

function defined in (5).
By using the definition of Sφ

B in (8) we can write:

wT Sφ
Bw = αT Pα (11)

where P = ∑
i j (Pi − Pj )(Pi − Pj )

T .
Similarly, we can derive

wT Sφ
W w = αT Qα (12)
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Fig. 5. Illustration of the cropping parameter. Blue rectangle: the candidate-
cropped photo.

where Q = ∑
j=1,2,...,C K j (I − 1N j )K T

j , K j is an N × N j

matrix with (K j )nm = k(Mn , M j
m ), I is an identity matrix and

1N j is a matrix with all entries 1/N j .
Combining (11) and (12), we can rewrite (7) as

α = max
α

αT Pα

αT Qα
. (13)

Thus, the problem of calculating α can be solved by finding
the leading eigenvector of Q−1 P . It is noticeable that, the
above Kernel LDA training process is carried out T times,
where T denotes the maximum size of graphlets. And a set
of parameters {α(1), α(2), . . . , α(T )} is obtained in the training
stage. Given a matrix obtained from a new t-sized matrix M ,
its weight is calculated by an implicit projection, i.e.,

w · φ(M) =
N∑

i=1

α
(t)
i k(Mi , M). (14)

III. PROBABILISTIC MODEL FOR PHOTO CROPPING

Given a photo, its weighted graphlets capture both the
local and global aesthetics of training photos (graphlets are
connected subgraphs of an RAG; thus, RAG, which captures
the global aesthetic features can be deemed as a special type
of graphlet), with the weight indicating the importance of each
graphlet. To effectively integrate these weighted graphlets for
photo cropping, we propose a probabilistic model to measure
the quality of each candidate cropped photo.

A. Probabilistic Model

Given a test photo I , we define its cropped photo as I (η).
η = (ηs , ηθ , ηt ) is a 5-dimensional cropping parameter. As
illustrated in Fig. 5, ηs is a 2-dimensional variable denoting
the XY coordinate scale of the cropped photo. ηθ ∈ [0, 2π]
is a 1-dimensional variable denoting the rotation angle of the
cropped photo. ηt is a 2-dimensional variable denoting the
translation from the center of the test photo to that of the
cropped photo.

Given a set of training photos I 1, I 2, . . . , I H and a test
photo I , the cropped photo I (η) should maximally preserves
the training aesthetic features, i.e., weighted graphlets. Let G

Fig. 6. Undirected graphical model representing the probabilistic model of
our photo-cropping process.

denote all the training weighted graphlets and G(η) denote
all the weighted graphlets from the cropped photo. The
training photos and the cropped photo are highly correlated
through their respective weighted graphlets. In particular, there
are strong correlations between the following three pairs of
variables: 1) I 1, I 2, . . . , I H and G; 2) G and G(η); and
3) G(η) and I (η). Thus, we propose a probabilistic graphical
model [29], [30] to make use of this prior knowledge, as
shown in Fig. 6. The undirected graphical model illustrates the
process of photo cropping, where I 1, I 2, . . . , I H denotes the
state of each training photo and I (η) the state of the cropped
photo; G denotes the state of all training weighted graphlets
and G(η) the state of weighted graphlets from I (η). Our
probabilistic model contains two types of nodes: observable
nodes (colored blue) and hidden nodes (colored gray). Edges
are used to describe the relationships between nodes. These
two types of nodes form four layers. The first layer corre-
sponds to all the training photos I 1, I 2, . . . , I H . The second
layer denotes all the training weighted graphlets G. The third
layer represents all the weighted graphlets from the cropped
photo G(η), and the fourth layer denotes the cropped photo
I (η). The relationship between the first layer and the second
layer is formulated as p(G|I 1, I 2, . . . , I H ). The relationship
between the second and the third layer is p(G(η)|G) and
the relationship between the third and the fourth layer is
p(I (η)|G(η)).

The photo cropping model can be regarded as a process
that maximally transfers the extracted weighted graphlets from
the training photos to the cropped photo. This process can be
formulated into the following maximum a posterior (MAP)
framework:

η = max
η

p(I (η)|I 1, I 2, . . . , I H )

= max
η

p(I (η)|G(η)) ∗ p(G(η)|G) ∗ p(G|I 1, I 2, . . . , I H ).

(15)

For ease of expression, we rearrange the three probabilities in
(15) as:

p(I (η)|G(η))

= p(I (η)|G1(η), G2(η), . . . , GT (η))

= p(G1(η), G2(η), . . . , GT (η)|I (η))p(I (η))

p(G1(η), G2(η), . . . , GT (η))
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∝ p(G1(η), G2(η), . . . , GT (η)|I (η))p(I (η))

=
∏T

i=1
p(Gi (η)|I (η))p(I (η))

=
∏T

i=1

∏Yi

j=1
p(Gi

j (η)|I (η))p(I (η)) (16)

p(G(η)|G)

= p(G1(η), G2(η), . . . GT (η)|G1, G2, . . . GT )

∝
∏T

i=1
p(Gi (η)|G1, G2, . . . GT )

=
∏T

i=1

∏Yi (η)

j=1
p(Gi

j (η)|G1, G2, . . . , GT ) (17)

p(G|I 1, I 2, . . . , I H )

= p(G1, G2, . . . , GT |I 1, I 2, . . . , I H )

=
∏T

i=1
p(Gi |I 1, I 2, . . . , I H )

=
∏T

i=1

∏Yi

j=1
p(Gi

j |I 1, I 2, . . . , I H ) (18)

where Gi denotes all the training weighted i -graphlets (i -
graphlet represents a graphlet with i vertices) and represents
the aesthetic features described by the i -sized training
graphlets, Gi

j denotes the j -th weighted graphlet from all
the training weighted i -graphlets and is the basic element
representing the photo aesthetics, Gi (η) denotes all the
weighted i -graphlets from the cropped photo and represents
the aesthetic features captured by the i -sized graphlets from
the cropped photo, Gi

j (η) denotes the j -th weighted graphlet
from all the weighted i -graphlets in the cropped photo, Yi

denotes the number of i -sized graphlets obtained from the
training photos, and Yi (η) is the number of i -sized graphlets
obtained from the cropped photo.

To calculate the three probabilities p(I (η)|G(η)),
p(G(η)|G) and p(G|I 1, I 2, . . . , I H ), we define several
probabilities as follows.

p(Gi
j |I ) is the probability of extracting weighted graphlet

Gi
j from photo I . As shown in Fig. 7, the procedure of

graphlet extraction can be deemed as traversing the vertices
on an RAG. We first choose a starting vertex in an RAG with
probability p(Y ) 1

Y , where Y is the number of atomic regions
in photo I and P(Y ) is the probability of Y atomic regions
in image I . We then visit the spatially adjacent vertices one
by one, and the probability of visiting a spatially adjacent
vertex is decided by the degree of the current vertex, i.e.,

1∑
d pd (Rl )d(Rl)

where pd(Rl) denotes the probability of the
degree of the current atomic region Rl . The visiting process
stops when the maximum size of the graphlet is reached.
Based on the above graphlet extraction procedure, we define
p(Gi

j |I ) as follows:

p(Gi
j |I ) ∝ p(Y )

1

Y

∏i−1

l=1

1∑
d pd(Rl )d(Rl)

(19)

where pd(Rl) and P(Y ) are defined as Gaussian kernels,
i.e., pd(Rl) ∝ exp(−||R−R̄||2

σ 2
d

) ; and p(Y ) ∝ exp(−||Y−Ȳ ||2
σ 2

Y
).

Here R̄ and Ȳ respectively denotes the Gaussian centers of
pd(Rl) and p(Y ); σd and σY respectively denotes the Gaussian
covariance of pd(Rl) and p(Y ). The four parameters R̄, Ȳ , σd

and σY are set by the empirical values from the training photos.

(a) (b)

Fig. 7. (a) Graphical illustration of graphlet. (b) Extraction from an RAG.
Dashed line arrows: traverse procedure.

Let p(Gi
j |I 1, I 2, . . . , I H ) be the probability of weighted

graphlet Gi
j coming from all training photos I 1, I 2, . . . , I H ;

it is defined as:

p(Gi
j |I 1, I 2, . . . , I H ) = 1 −

∏H

k=1

(
1 − p(Gi

j |I k)
)

. (20)

Let p(I (η)) denote the probability of a photo I cropped
using the parameter η; it is defined as:

p(I (η)) ∝ exp

(
||η − η̄||2

σ 2
η

)
. (21)

Lastly, let p(Gi
j (η)|G1, G2, . . . , GT ) be the probability of

graphlet Gi
j (η) existing in G1, G2, . . . , GT ; it is defined as:

p(Gi
j (η)|G1, G2, . . . , GT )

∝ exp

(
−

∑
G∈G1,G2,...,GT ||Gi

j − G||
|G1, G2, . . . , GT |

)
. (22)

B. Parameter Inference

We can see that the posterior probability in (15) is com-
plicated and has no explicit analytical solution. Therefore, to
derive the optimal cropping parameter, we adopt the com-
monly used Gibbs sampling [22]. One advantage of Gibbs
sampling is that one only considers univariate conditional
distributions, i.e., the distribution when all the random vari-
ables but one are assigned fixed values. Such conditional
distributions are far easier to simulate than complex joint
distributions and usually have simple forms.

Based on the concept of Gibbs sampling, we start by select-
ing an initial value of η(1)

t and η
(1)
θ based on the distribution

given as follows:

p(ηt ) ∝ exp

(
− 1

σ 2
t

||ηt − η̄t ||2
)

(23)

p(ηθ ) = 1

2π
ηθ (24)

where ηt denotes the translation from the center of the test
photo to that of the cropped photo and η̄t is the Gaussian
center; ηθ ∈ [0, 2π] is the rotation angle of the cropped photo.

We give a graphical illustration of (23) and (24) in Fig. 8.
The term ||ηt −η̄t ||2 in (23) reflects that the closer the distance
between the center of the cropped photo and η̄t , the more
probability of this center will be accepted. The term 1

2π ηθ

reflects that the cropped photo can be evenly rotated to any
angle in the ranges between 0 and 2π .
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Fig. 8. Graphical illustration of (23)–(25). Green, blue, and red points:
centers of three candidate cropped photos. Green, blue, and red rectangles:
maximum size of the candidate-cropped photos.

Based on η
(1)
t and η

(1)
θ , we then generate a new value of

η
(1)
s based on the conditional probability as follows:

p(ηs |ηt , ηθ ) ∝ exp
(

− ||ηs −η̄s ||2
σ 2

S

∗ 1

||ηt || ∗ 1

ηθmodπ/2

)
(25)

where ηs denotes the XY coordinate scale of the cropped
photo. As shown in Fig. 8, the term 1

||ηt || reflects that, the
further the distance between the center of the cropped photo
and that of the test photo, the higher is the probability of
obtaining a smaller sized cropped photo. The term 1

ηθmodπ/2
reflects that the closer the rotation angle of the cropped photo
ηθ between {0, π/2, π, 3/2π, 2π}, the more likely of obtaining
a larger sized cropped photo.

Based on the three probabilities above, we update η itera-
tively until the convergence criteria is met, i.e., the posterior
probabilistic in (15), which computes based on η, becomes
stable. Given that the cropping parameter space is only
5-dimensional, the convergence of the sampling procedure is
quite fast. Finally, the cropping parameter that yields the high-
est value in (15) represents the optimal cropping parameter,
and the corresponding cropped photo will be our solution.

C. Probabilistic Graphlet Model for Photo Cropping

We present the procedure of the proposed probabilistic
model for photo cropping in Algorithm I. Firstly, we use
unsupervised fuzzy clustering to decompose each photo into
a set of atomic regions, and extract all graphlets with size
t ∈ {1, 2, . . . , T }. For each atomic region, we extract a 137-
dimensional feature vector to represent the color and texture
information. Secondly, for each graphlet, we represent it by
a t × (t + 137) matrix, and use Kernel LDA to transfer the
matrix into a (C − 1)-dimensional feature vector that captures
the discriminative aesthetic features. Thirdly, we compute
the optimal parameter of the cropped photo based on Gibbs
sampling, and output the cropped photo based on the optimal
cropping parameter.

Algorithm 1 Probabilistic Graphlet Model for Photo Cropping

input: a set of labeled training photos I 1, I 2, . . . , I H ;
a test photo I and the maximum graphlet size T .
output: a cropped photo I (η)

begin:

1) Apply unsupervised fuzzy clustering to segment
each photo; extract the {1, 2, . . . , T }-sized graphlets
from the training photos; for each segmented
atomic region, extract the 137-dimensional feature
vector from (2).

2) Compute the matrix of each graphlet from (4); use
Kernel LDA to transfer each graphlet into a
(C − 1)-dimensional feature vector according to
(14).

3) Use Gibbs sampling to select an optimal cropping
parameter η based on (15); output the cropped
photo I (η).

end

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we justify the effectiveness of the pro-
posed probabilistic model for photo cropping. The first set
of experiments show the effectiveness of our discriminative
graphlets in capturing the aesthetic feature of training photos.
The second set of experiments evaluate the proposed method in
comparison with representative photo cropping methods. The
third set of experiments discuss the influence of the maximum
size of graphlets T and the number of training photos H on
the output cropped photo. Additional comparisons of cropping
results with interactive photo cropping methods are also given
to further validate the proposed photo cropping model.

A. Data Collection and Preprocessing

As far as we know, there are still no public available
standard data sets for evaluating the performance of photo
cropping. Thus we firstly use text queries to crawl massive
photos from two online photo sharing websites: PhotoSig2

and Flicker.3 The total training data set contains more than
12,000 photos, i.e., 6,000 highly ranked photos and 6,000 low
ranked photos. It is noticeable that, for those cropping mod-
els that evaluate the photo quality using a classifier, such
as sensation-based photo cropping proposed by Nishiyama
et al. [17], both the highly ranked and low ranked photos are
used to train the classifier, i.e., the highly ranked photos are
used as positive samples and the low ranked photos as negative
samples. For other cropping methods, such as omni-range
context based cropping proposed by Cheng et al. [14] and
our approach, the cropping model only transfers the aesthetic
features from the training photos into the cropped photo, and
thus, we only use the highly ranked photos for training.

As discussed above, some cropping methods need a
prepressing step to group the training photos into several

2http://www.photosig.com.
3http://www.flicker.com.
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categories, such as the omni-range context-based cropping
proposed by Cheng et al. and our approach. However,
since the categories of our crawled photos are not assigned,
we conduct a rough photo classification to assign each
training photo with a class label. In particular, we use the
well-known spatial envelop [7] as the descriptor of each
training photo. The spatial envelop is a set of perceptual
dimensions (naturalness, openness, roughness, ruggedness and
expansion) that are related to the shape of space. We extract
the spatial envelop from the scene data set published by
Feifei et al. [31] and train a 13-class SVM to predict the class
label of each training photo. As described in Feifei et al.’s
publication, the 13 classes are respectively highway, inside of
cities, tall buildings, streets, suburb residence, forest, coast,
mountain, open country, bedroom, kitchen, living room, and
office.

To evaluate the performance of the proposed approach, we
notice that previous photo cropping experiments employ either
4:3 aspect ratio photos or panoramic photos for testing. For
example, the test photos used in Liu et al.’s and Bhattacharya
et al.’s experiments are with an aspect ratio of 4:3; while
Cheng et al.’s experiment uses all panoramic photos. In our
experiment, we construct two groups of test photos. The
first group contains 314 badly composed photos. All these
photos are with an aspect ratio of 4:3. We intend obtaining
a well-composed photo by cropping a sub-region from the
original photo. The second group contains 313 panoramic
photos crawled from the Internet, and most of these photos
are well composed. We intend maximally preserving the
aesthetic features from the panoramic photo into the cropped
normal 4:3 aspect ratio photo. Due to space limitation, only
13 sets of comparative cropping results obtained from the
first group of test photos are presented and evaluated in this
paper. In addition, we present 22 sets of comparative cropping
results obtained from the second group of test photos in the
supplementary video.

It is worth emphasizing the following three points. First,
cropping panoramic photos is more challenging compared
with cropping those normal aspect ratio photos. This is
because when cropping panoramic photos, the cropping
parameter searching space is much larger, i.e., much more
candidate cropped photos will be generated from a panoramic
photo. Second, we notice that the photos (both 4:3 aspect
ratio and panoramic) we collect from the Internet are always
well aligned horizontally.This is because unaligned photos
severely affect the photo aesthetics and users seldom upload
them to a photo-sharing website. But in practice, users may
obtain a large number of unaligned photos, especially when
taking photos using a cell-phone camera. Therefore, it is
meaningful to test the effectiveness of the rotation variable
ηθ of the cropping parameter. Conventional photo cropping
experiments, such as Cheng et al.’s, usually ignore the
rotation variable. In our experiment, we use Photoshop to
rotate the test photos and then use the rotated photos as the
input photo for cropping. Third, towards a pair comparison
of our approach with the previous cropping methods, we
restrict the aspect ratio of the cropped photo output from all
the compared cropping methods to 4:3.

B. Aesthetic Features Represented by Graphlets

In this experiment, we evaluate the effectiveness of our
discriminative graphlets in capturing the aesthetic features. In
particular, we experiment on the Stanford event data set [32]
associated with the annotation provided by Lotus Hill Institute
(LHI) [33]. This data set contains 10 sports event categories
collected from the Internet. In each category, we use half
the photos for training and leave the rest for testing. We
set the maximum size of graphlet T to 5. In each category,
we calculate the discrimination of a graphlet by adding a
normalization factor 1

N to (14):

g(M) = 1

N

∑N

i=1
αk(Mi , M) (26)

where M denotes the matrix obtained from the graphlet
and N the number of training graphlets. In Fig. 9, we
present the top four discriminative graphlets from each training
photo (one photo from each category is given). To compare
our approach with conventional visual-attention-based photo
cropping, we further compute the saliency map based on
the well-known algorithm proposed by Itti et al. [34]. In
conclusion, our approach shows the following advantages.
First, graphlets capture the spatial interactions among image
components, which is essential for photo cropping. As shown
in the “rowing” and “ice-skate” categories, the girls form
a line and this spatial interaction captures the aesthetics of
training photos and should be preserved in the cropped photo;
while using conventional visual-attention-based models, these
essential features are ignored. Second, visual-attention-model-
based photo cropping methods select the most salient region
as the cropped photo, yet sometimes salient regions are not
consistent with the image regions that should be preserved in
the cropped photo. For instance, in the “rowing” category, the
visual attention model selects the trees as the most important
cues that should be preserved in the cropped photo. However,
compared with the waterman and the sailboat which are more
relevant cues to the “rowing” category, trees are less represen-
tative cues for photo cropping. Third, in most categories, the
background captures important cues for cropping, such as the
white snowfield in the “snowboarding” category and the red
track in the “hurdles” category, yet the visual-attention-based
model generally does not consider background information.

To further demonstrate the advantages of our approach
over the features used for photo cropping or photo quality
evaluation proposed by computer vision researchers, we com-
pare our discriminative graphlet with three features proposed
by Luo et al. [10], Ke et al. [9] and Yeh et al. [11],
and the saliency model proposed by Itti et al. [34] is also
employed for comparison. In particular, we experiment on
the data set collected by Yeh et al., which contains 6000
highly aesthetic as well as 6000 low aesthetic photos collected
from DPChallenge.4 In Table I, we detail the five compared
features for photo cropping or photo quality evaluation. To
compare the effectiveness of the five features, we use each
feature to predict whether a test photo is highly aesthetic
or low aesthetic. We use the same split of training and test

4http://www.dpchallenge.com.



ZHANG et al.: PROBABILISTIC GRAPHLET TRANSFER FOR PHOTO CROPPING 811

TABLE I

DETAILS OF THE FIVE COMPARED FEATURES

Luo et al. Composition+clarity+simplicity5 +color distribution+lighting

Ke et al. Spatial distribution of edges+color distribution+hue count+blur+contrast level+brightness

Yeh et al. Simplicity6+texture+contrast+intensity average+region blur

Itti et al. Saliency map based on color, intensity and orientation of local patch

Ours Graphlet based on color and texture of segmented region

0.7651

0.6951

0.6741

0.6678

0.8224

0.7217

0.6503

0.6437

0.8443

0.7685

0.7552

0.7324

0.7232

0.6634

0.4232

0.3632

0.8766

0.7978

0.7754

0.6657

Badmi-
nton

0.9312

0.8732

0.8564

0.8391 0.5112

0.7781

0.7453

0.8712

0.9325

0.9442

0.9278

0.9311

0.8542

0.7842

0.7512

0.6812 0.8710

0.9651

0.8721

0.9112

Ice-skate

Sailing Rowing Climbing Polo

Hurdles Croquet Bocce

Fig. 9. Aesthetics captured by four top-ranked discriminative graphlets
(i.e., the discrimination is marked below each graphlet) and the saliency map
proposed by Itti et al. [34].

sets as in the program provided by Yeh et al., and then
train a binary SVM classifier based on the five features.
Note that the discriminative graphlets in our approach cannot
be used for classification directly because different photos
may contain different numbers of graphlets. To address this
problem, inspired by the graph kernel [35] that measures the
similarity of two graphs by comparing all their respective
subgraphs, we construct a kernel to measure the aesthetic
similarity of two photos I and I ′, i.e.,

k(I, I ′) = 1

NI ∗ NI ′

∑
G∈I,G ′∈I ′ k(F(G), F(G′)) (27)

where NI and NI ′ respectively denotes the number of
graphlets in photo I and I ′; F(G) and F(G′) are the (C −1)-
dimensional feature vectors corresponding to graphlet G and
G ′ respectively. In addition, to classify the saliency map
generated using the algorithm by Itti et al., we resize it to
a 22 × 32 matrix and stack this matrix to a 704-dimensional
feature vector.

5Color distribution of the background.
6Size of ROI segments associated with the simplicity feature proposed by

Luo et al. [10].

Fig. 10. Precision–recall curve of the five compared features.

As shown in Fig. 10, our graphlets outperform the four com-
pared features significantly. The reasons are given as follows.
First, the simplicity feature in Luo et al.’s and Yeh et al.’s
approaches are based on the assumption that photos are taken
by SLR cameras where the foreground and background can
easily be discriminated. However, the data set collected by
Yeh et al. contains a large number of photos taken by point-
and-shoot cameras. Second, there is short of evidence that the
concatenated global features can effectively capture the photo
aesthetics, since each global feature is defined intuitively.
Third, the worst performance is achieved by the saliency
model from Itti et al. This is because the saliency map only
tells the conspicuity of each pixel and it fails to capture
important aesthetic features of a photo, such as color or texture
information. This is consistent with the observation that the
saliency map is seldom used for photo aesthetics evaluation
or photo cropping alone.

C. Relations to Well-Known Aesthetic Rules

The proposed graphlet closely relates to three prominent
aesthetics rules. We conclude them as follows.

1) Diagonal dominance, a well-known aesthetic guideline
illustrated in Grill and Scanlon’s book [36], discovered
that viewers prefer the visually salient objects distributed
along the diagonal line in a photo. This property can be
appropriately captured by graphlets and the associated
Kernel LDA [21]-based weighting scheme, i.e., assign-
ing a large weight to graphets if they locate closely to
the diagonal line. In Fig. 11, as shown in the two left
photos in the first row, the houses locating closely to the
diagonal line are assigned with large weights and well
preserved in the cropped photo. Besides, in the second
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MPPO

MPPO

MPPO

MPPO

Fig. 11. Diagonal dominance, visual balance, and color harmony preserved
in the cropped photo. OP: original photo. PM: cropped photo produced by
our approach.

row of Fig. 11, the graphlet constructed from the boat,
the benchland, and the sky locate closely to the diagonal
line are nicely preserved in the cropped photo also.

2) Visual balance, another popular aesthetic guideline from
Grill and Scanlon’s book [36], claims that viewers prefer
the visually salient objects distributed evenly around the
photo center. Empirical results of our approach show
that, for those well-composed natural scene images,
graphlets with balanced structures, such as circle struc-
ture (an atomic region edge-connected by a collection
of surrounding ones) and linear structure, are usually
assigned with large weights. In Fig. 11, as shown in the
two right photos in the first row, these circle-structurally
distributed houses are well preserved in the cropped
photo. As shown in the second and the third rows of
Fig. 11, the linearly arranged sky, land and lake are also
aesthetically preserved in the cropped photo.

3) Color harmony, a widely used aesthetic rule illustrated
by Daniel et al. [37], measures the distribution of a
set of colors in terms of human perceived visual har-
mony. Although colors in some atomic regions may be
disharmonically distributed, colors in graphlets gener-
ated from these atomic regions are probably distributed
harmonically. Our method can generate a number of
graphlet-level color harmonic patterns, and the graphlet
weighting scheme dynamically adjusts their importance.
The importance level influences the cropping result
based on the probabilistic model. As shown in the last
three rows in Fig. 11, the harmonically distributed colors
are kept in the cropped photo.

D. Comparative Evaluations of Photo Cropping

The proposed weighted graphlets can not only capture
the photo aesthetics, but it can also be incorporated into

PMSCSM OCBCSBPCPPR DAPCOriginal Photo

OP DAPC OCBC PM PPR SBPC SCSM Score

OP -- 10 22 10 15 19 10 86

DAPC 19 -- 16 13 14 17 16 95

OP DAPC OCBC PM PPR SBPC SCSM Score

OP -- 19 13 8 21 14 17 92

DAPC 14 -- 8 6 18 10 7 63DAPC 19 16 13 14 17 16 95

OCBC 7 13 -- 11 12 14 11 68

PM 19 16 18 -- 18 18 17 106

PPR 14 15 17 11 -- 17 15 89

DAPC 14 8 6 18 10 7 63

OCBC 20 25 -- 10 11 25 15 106

PM 25 27 23 -- 17 25 18 135

PPR 12 15 22 16 -- 12 19 96

SBPC 10 12 15 11 12 -- 10 70

SCSM 19 13 18 12 14 19 -- 95

Preference matrix from the cropping results 
in the first row (filled by 29 volunteers) 

SBPC 19 23 8 8 21 -- 7 86

SCSM 16 26 18 15 14 26 -- 115

Preference matrix from the cropping results 
in the second row (filled by 33 volunteers) 

OP DAPC OCBC PM PPR SBPC SCSM Score

OP -- 16 20 12 20 21 14 103

DAPC 17 -- 5 5 14 11 18 70

OCBC 13 28 15 22 23 20 121

OP DAPC OCBC PM PPR SBPC SCSM Score

OP -- 14 18 15 13 19 21 100

DAPC 17 -- 15 14 13 19 15 93

OCBC 13 16 15 14 14 16 88OCBC 13 28 -- 15 22 23 20 121

PM 21 28 18 -- 28 28 27 150

PPR 13 19 11 5 -- 13 14 75

SBPC 12 22 10 5 20 -- 12 81

OCBC 13 16 -- 15 14 14 16 88

PM 16 17 16 -- 26 25 24 124

PPR 18 18 17 5 -- 17 17 92

SBPC 12 12 17 6 14 -- 12 73

SCSM 19 15 13 6 19 21 -- 93

Preference matrix from the cropping results 
in the third row (filled by 33 volunteers) 

SCSM 10 16 15 7 14 19 -- 81

Preference matrix from the cropping results 
in the fourth row (filled by 31 volunteers) 

Fig. 12. Comparison of our approach with well-known cropping methods
as well as the preference matrix filled by volunteers in Zhejiang University.

a probabilistic model for photo cropping. Given a set of
training photos, we extract graphlets to represent their aesthetic
features and our probabilistic model enforces these aesthetic
features to maximally transfer into the cropped photo.

Fig. 12 compares the proposed approach (PM) against
several representative approaches, including sparse cod-
ing of saliency maps (SCSM [5]), sensation based photo
cropping (SBPC [17]), omni-range context based cropping
(OCBC [14]), personalized photo ranking (PPR [11]) and
describable attribute for photo cropping (DAPC [19]). Sparse
coding of saliency maps selects the cropped region that can
be decoded by the dictionary learned from training saliency
maps with the minimum error. Sensation-based photo cropping
selects the cropped region with the maximum quality score,
which is computed by probabilistically integrating the SVM
scores corresponding to the detected subjects in a photo.
Omni-range context-based cropping integrates the prior of
spatial distribution of two arbitrary image patches into a
probabilistic model to score each candidate cropped photo,
and the candidate cropped photo with the maximum score is
selected as the cropped photo.

Because those photo quality evaluation methods, such as
personalized photo ranking proposed by Yeh et al. [11] and
the describable attribute for photo cropping proposed by Dhar
et al. [19], only output a score representing the quality of
each photo, it is impossible to compare our approach with
them directly because our approach outputs the cropped region
of each photo. Fortunately, it is easy and straightforward to
transform each of those photo quality evaluation methods into
a photo cropping method. Typically, a photo cropping method
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contains three steps: i) Candidate cropped photos sampling:
Employing size-changeable and rotatable windows to slide on
the original photo with a fixed XY-coordinate step. The region
inside the sliding window is deemed as the candidate cropped
photo. ii) Candidate cropped photo scoring: Evaluating the
quality of each candidate cropped photo based on photo
quality evaluation methods. iii) Cropped photo selection: The
highest scored candidate cropped photo is deemed as the most
qualified and will be selected. The first and the last steps
are common with most of the photo cropping algorithms,
while the second step is a technically challenging procedure.
Hence, the key contribution of a photo cropping methods is
usually a novel photo quality evaluation method, e.g., Cheng
et al.’s omni-range spatial context. Thus, it is fair to compare
a photo quality evaluation method with a cropping method
by transforming the photo evaluation method into a photo
cropping method. Particularly, equip a photo quality evaluation
method with a standard first and last cropping step.

The experimental settings of the two photo quality evalu-
ation methods are given as follows. For personalized photo
ranking, we extract low-level aesthetic features from the
photo ranking system proposed by Yeh et al. These low-level
aesthetic features are used to train a classifier for measuring
the quality of each candidate cropped photo. For a describable
attribute for photo cropping, we use the public code from
Li et al. [38] to extract the attributes from each photo. These
attributes are combined with the low-level features proposed
by Yeh et al. to train a classifier to evaluate the quality of each
candidate cropped photo.

In order to make the evaluation comprehensive, we adopt
a typical subjective evaluation method. A paired comparison-
based user study is carried out to evaluate the effectiveness of
the proposed photo cropping method. This strategy was also
used in [14] for evaluating the quality of a cropped photo.
It is worth emphasizing that both rating and ranking are not
suitable here as it would be an unnatural task for observers.
Paired comparison is to present each subject with a pair of
cropped photos from two different approaches. Participants
are then required to indicate a preference, for one of the two
cropped photos. Evaluation results are stored in the preference
matrix. For example, considering the first preference matrix
from Fig. 12, the entry in column SBPC and row DAPC
has a value of 17, indicating that 17 subjects prefer the
cropped photo produced from DAPC than that produced by
SBPC. Additionally, to evaluate whether aesthetics of these
suboptimally-composed original photos (OPs) are enhanced
after cropping, original photos are also included for the paired
comparison.

In this paper, the paired comparison was conducted by a
group of volunteers who made paired comparison that fills
the preference matrix. Most of the volunteers were from
the computer science department of Zhejiang University,
and were experienced in digital photography. We designed
active Web pages that included the evaluation criteria and
the resulting photos needed to be compared. The evaluation
criteria suggested volunteers to click a resulting photo (out
of two) that was more user-satisfied, according to their
understanding of the criteria. Each set of resulting photos was

Fig. 13. Performance of the proposed approach under different maximum
sizes of a graphlet.

evaluated by at least 29 volunteers and one preference matrix
was set up for each set of resulting photos. In Fig. 12, we
present the four preference matrices corresponding to the four
sets of resulting photos produced by the compared cropping
methods. We also show the overall scores for all evaluations,
where the overall score is the sum of the scores in each row.
The evaluation results clearly confirm the effectiveness of the
proposed method for transferring the aesthetic features from
the training photos into the cropped photo against a number
of state-of-the-art photo cropping methods.

The time consumption analysis of the proposed method is
as follows. All experiments were carried out on a personal
computer with Intel E8500 and 4 GB RAM. Our approach
was implemented on a Matlab platform. Different from
those compared methods that evaluate a large number of
candidate cropped photos, the convergence of Gibbs sampling
in our approach is fast. Given a test photo with a width of
1024 pixels, it usually takes around one minute to obtain
a cropped photo, including photo segmentation, graphlet
extraction, and Gibbs-sampling-based parameter inference.
For the compared methods, by sequentially sampling, we
usually obtain more than 1000 candidate cropped photos for
evaluation, and it usually takes more than five minutes to
select a qualified photo from those candidate cropped photos.

E. Parameter Analysis

In this experiment, we study how free parameters affect
the performance of the proposed approach and how to set
parameters to achieve a good cropping result. Particularly, we
have two free parameters to be tuned, i.e., the maximum size
of a graphlet T , and the number of training photos H .

To analyze the effects of the maximum size of graphlets
on photo cropping, we set up an experiment by varying T
continuously. In Fig. 13, we present the cropped photos cor-
responding to T ranging from 1 to 12. We do not experiment
with T larger than 12 because it becomes computationally
intractable. As shown, for the sequence of cropped photos, the
cropped photos become more aesthetic from T = 1 to T = 5.
When T is larger than 5, the cropped photos become stable.
This may be because few aesthetic features are captured by
graphlets with a size larger than 5.

For the performance of the proposed approach with different
numbers of training photos, we evaluate the performance of
our approach for different values of H by sampling 10%
training photos to 100% training photos from our data set, with
a step of 10%. In each sampling, the proportion of training
photos in each category is the same as that in the entire data
set. We present the performance of our approach for different
numbers of training photos in Fig. 14. As illustrated, more
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10% training
samples

20% training
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30% training
samples

40% training
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50% training
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80% training
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90% training
samples

100% training
samples

Fig. 14. Performance of the proposed approach under different numbers of
training photos.

Fig. 15. More examples on the comparison of our approach with several
well-known cropping methods.

training samples lead to more structural areas preserved in the
cropped photo, though more time and space costs are required
with an increasing number of training samples.

F. Further Examples for the Proposed Method

In this subsection, we present more cropping results of our
approach with the five compared cropping methods described
in Section 4.2. As shown in Fig. 15, we make the following
observations. First, our approach achieves a good balance
between the foreground objects and the background objects,
as shown in the first three rows. Second, our approach prefers
to preserve more structured objects in the cropped photo, such
as the residential quarter in the second row and the villa in the
fourth row. Third, all the compared cropping methods perform
well with rotated input photos. As shown in the last two rows,
the output cropped photos are well aligned horizontally.

Beyond the five fully-automatic cropping methods (i.e., no
human interaction is needed in the cropping process) described
in Section 4.2, we further compare our approach with two
human interactive cropping methods: gaze-based photo crop-
ping (GBPC) proposed by Santella et al. [16] and interactive
photo quality enhancement (IPQE) proposed by Bhattacharya
et al. [15]. Briefly, gaze-based photo cropping enables users to
look at each photo for a few seconds, while the system records
their eye movements, which are used to identify important
photo contents. Interactive photo quality enhancement lets
users interactively select a foreground object and the system
feedback to users for where the foreground object can be
optimally located. Both the methods need human interaction,
and different cropped photos may be produced by different
users. Towards a fair comparison, we use four experimental

Fig. 16. Comparison of our approach with two representative human-
interactive photo-cropping methods. F: fully automatic approach.
S: semiautomatic approach.

photos from the publication of [15] and [16], and a comparison
of the two human interactive methods as well as the five fully-
automatic methods is given in the first four rows of Fig. 16.
As illustrated, the cropping results produced by our approach
are competitive to the two human interactive methods.

V. CONCLUSION

Photo cropping is a widely used technique in the printing,
graphic design, and photography industries. In this paper,
we propose graphlets to capture the photo aesthetics and
further develop a probabilistic model to maximally transfer
the graphlets from the training photos to the cropped photo.
In particular, by segmenting each photo into a set of regions,
we construct a so-called region adjacency graph (RAG) to
represent the spatial relations of atomic regions. Next, we
extract graphlets from the RAGs, and these graphlets capture
the aesthetics from the training photos. Finally, we cast photo
cropping as a candidate cropped photos searching proce-
dure based on a probabilistic model and infer the cropping
parameter using Gibbs sampling. The proposed method is
fully-automatic. Thorough empirical studies demonstrate the
effectiveness of our approach in comparison with a group of
popular photo cropping and photo quality evaluation methods.

In the future, we plan to study the influence of different
image segmentation schemes on the cropping results. Besides,
we want to employ more participants in the pair comparison-
based user study.
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