
CS5248: Systems Support for Continuous Media

Roger Zimmermann

Project, Fall 2019
5-Sep-2019

 1

CS 5248: Systems Support for Continuous Media
Fall 2019

Project Assignment

Due: Report Draft – 11 Nov 2019 (11:59:59 pm)
Due: Code & Report – 14 Nov 2019 (11:59:59 pm)

Due: Presentation & Demo – 15 Nov 2019 (in class, 6:30 to 8:30 pm)

THIS IS A TEAM-OF-3-or-4 PROJECT WORK

REMEMBER TO CHECK FOR ANNOUNCEMENTS ON THE CLASS WEB SITE:

http://www.comp.nus.edu.sg/~cs5248/

TA: Abdelhak Bentaleb bentaleb@comp.nus.edu.sg

Lecturer: Roger Zimmermann rogerz@comp.nus.edu.sg

Project Assignment Description
In this project, your task is to build a DASH-compliant (Dynamic Adaptive Streaming over

HTTP ─ that is, compatible with MPEG DASH standard) client-server-based live video

streaming system on top of a LAMP stack (Linux, Apache, MySQL, PHP) or your own server

framework.

The DASH approach of streaming is becoming very popular. It is basically a replacement for

the RTSP/RTP/RTCP based approach to streaming, especially with Video on Demand (VoD).

With DASH, the server is a simple HTTP web server (e.g., Apache). The media (video) is

divided into small individually playable video segments which are, for example, 10 seconds

long. These segments are also called streamlets. The client media player retrieves the streamlets

from the web server, one at a time, and plays them without interruption. For the client to know

the streamlet files that belong to a complete video, the server provides a playlist file (also called

a Media Presentation Description (MPD)). The playlist file has a special format; it is basically

an XML file for the MPEG DASH standard. To start streaming, the client player loads the

playlist file and then starts to download the streamlets that are listed in this file. Your task is to

generate such a playlist file onto the server from a media file and support VoD playback of

those streamlets onto another client device (e.g., your laptop).

You will be given a number of utilities that will help you to get the project done. Additional

information has been given during the Lecture 4 on 6 September 2019 and can be found in the

slides for that lecture.

The project work is divided into three tasks: (1) create a mobile application that captures a live

video and upload its streamlets to a server as they become available, (2) create server-side

utilities that prepare incoming media files into streamlets serviceable via DASH playlist, and

(3) create a media player application based on dash.js that plays a stored (VoD) DASH playlist,

while adaptively switching and playing video streamlets.

http://www.comp.nus.edu.sg/~cs5248/
mailto:bentaleb@comp.nus.edu.sg
mailto:rogerz@comp.nus.edu.sg

CS5248: Systems Support for Continuous Media

Roger Zimmermann

Project, Fall 2019
5-Sep-2019

 2

Task 1 (Mobile Video Capture and Uploader): The mobile application, running on a

Samsung tablet computer, is required to provide the following sub-tasks:

1) Capture a live video feed of 720p resolution at 30 fps from the device camera. You

can use MediaCodec API from Android to encode frames with h.264 encoding with

5 Mbps bitrate.

2) Upload the captured frames to a web server reliably on-the-fly.

a. Segment the original live feed into a number of self-contained 3-second-

long MP4 segments before uploading on-the-fly. Segmentation can either

be done first, before the upload, or in parallel, together with the upload.

b. Use the HTTP POST method to deliver the segmented MP4 video feed to

the server.

For you to understand the internal structure of the MP4 format, we intentionally ask you to

segment the video at the mobile client (i.e., at the tablet computer), not at the server. To segment

the video, you may use third-party libraries such as MP4Parser.

To upload the segmented video chunks reliably, you are required to design a simple protocol

on top of HTTP, such as checking the current upload status or providing segments with a

sequence number.

The following are additional functionalities that the mobile app can provide, which will receive

extra credits:

3) Provide a resumed upload when the network connection is interrupted.

4) Retrieve the list of the uploaded videos available from the web server.

5) Videos should be playable live onto the client device during a session as well as

stored on the server for on-demand playback.

Task 2 (Server-side DASH Preparation): The server-side utilities may be written in PHP

(default setup) or any other web-framework of your choice (Django, Rails, Node.js, etc.)1.

There is no restriction on the use of any other third-party software packages as long as such

usage doesn’t make your effort trivial. The minimum requirements for the server functionality

are:

1) Receive segmented MP4 videos from a mobile client via HTTP POST and store

them in a video repository location (i.e., directory) which you define. To keep

track of the uploading status, you may use a MySQL database.

a. You can use any segmentation tool such as ffmpeg, MP4Box, etc.

1 For custom server-side setup, please contact the TA

CS5248: Systems Support for Continuous Media

Roger Zimmermann

Project, Fall 2019
5-Sep-2019

 3

b. Generate a playlist (i.e., generate an MPD file) and deliver it to a client

(dash.js reference player) during a live DASH streaming session.

2) Transcode every received MP4 video segment into the following four encoded

media versions:

a. 720p: 1280x720 4000 kbps H.264/AVC and 128 kbps AAC audio (Very

High)

b. 480p: 854x480 2000 kbps H.264/AVC and 128 kbps AAC audio (High)

c. 360p: 640x360 1000 kbps H.264/AVC and 128 kbps AAC audio (Medium)

d. 240p: 426x240 700 kbps H.264/AVC and 64 kbps AAC audio (Low)

3) Convert every version into an MPEG-2 Transport Stream.

4) Provide MPD XML of DASH playlists. The MPD XML playlist should be

playable from your dash.js MPEG-DASH player (see Task 3 below).

Task 3 (MPEG-DASH Player): The web-based media player application, based on dash.js

(v.2.9.3: https://github.com/Dash-Industry-Forum/dash.js/archive/v2.9.3.zip), should retrieve

the list of the uploaded videos available on your web server. Your player should allow on-

demand playback of previously uploaded videos. It should support adaptive stream switching

(termed Adaptive BitRate logic, i.e., ABR) ─ that means it adaptively chooses the most suitable

quality for the next video streamlet to be downloaded based on your bandwidth estimation

algorithm, while playing the current streamlet. The minimum subtasks for this task are:

1) Retrieve a list of videos available on your server and download the MPEG-DASH

XML-formatted playlist file for the selected video (on-demand).

2) Read the playlist file and schedule retrieval of individual streamlets on-the-fly.

3) Implement and add your ABR algorithm (BBA, ELASTIC, FESTIVE, QDASH) to

the dash.js.

a. BBA algorithm:

i. http://yuba.stanford.edu/~nickm/papers/sigcomm2014-video.pdf

b. ELASTIC algorithm:

i. https://c3lab.poliba.it/images/a/a1/Elastic-pv2013.pdf

c. FESTIVE algorithm:

i. https://conferences.sigcomm.org/co-

next/2012/eproceedings/conext/p97.pdf

https://github.com/Dash-Industry-Forum/dash.js/archive/v2.9.3.zip
http://yuba.stanford.edu/~nickm/papers/sigcomm2014-video.pdf
https://c3lab.poliba.it/images/a/a1/Elastic-pv2013.pdf
https://conferences.sigcomm.org/co-next/2012/eproceedings/conext/p97.pdf
https://conferences.sigcomm.org/co-next/2012/eproceedings/conext/p97.pdf

CS5248: Systems Support for Continuous Media

Roger Zimmermann

Project, Fall 2019
5-Sep-2019

 4

d. QDASH algorithm:

i. http://www4.comp.polyu.edu.hk/~csrchang/mms12-qdash.pdf

e. To add your algorithm, you have to follow the same structure of how BOLA

is added.

4) Switch the rendering of one video streamlet to another based on your ABR

algorithm.

Note that this player does not have to support HLS. The suggested format of video streamlets

is MP4 or m4s (very common).

The following additions are given extra credits.

1) Display the player status: show the bitrate selected and current network bandwidth

estimation results visually.

2) Compare your ABR to the conventional, already built-in ABRs of dash.js (BOLA,

throughput-based, and Dynamic).

All the above functionalities are required to run automatically, meaning that there is no manual

work other than a user’s upload request of a recorded video via the mobile app.

Reference and Software Information
All the students taking the CS5248 module will receive a user account on our server

monterosa.d2.comp.nus.edu.sg. There would be one user account per team. The

server is running the Ubuntu 18.04.2 LTS distribution of Linux. You will need to use ssh to

connect to the machine. If you are using the default LAMP setup provided by us, your PHP

scripts would be executed by the webserver from your_home_dir/public_html directory.

For example, if team0 wants to serve the file info.php it will be placed at

/home/team0/public_html/info.php and would be available over the web at

http://monterosa.d2.comp.nus.edu.sg/~team0/info.php. The server also

has SSL enabled. So, teams can optionally use https in their GET and POST request URLs.

It is however recommended to avoid SSL for requests involving file transfers such as the

streamlets.

When segmenting the video with the mobile application, you may use the MP4Parser

package. When developing server utilities, you are allowed to use any useful MPEG-4 parsing

and transcoding utilities such as MP4Box or ffmpeg. For your convenience, you can use

ffmpeg, MP4Box, and mp4info, etc., commands from /usr/local/bin on the monterosa

server. If you need any further enhancements/additions to the provided default setup or you

prefer to use a custom server-side setup other than the default LAMP stack, please contact the

TA.

Additional information and links:

http://www4.comp.polyu.edu.hk/~csrchang/mms12-qdash.pdf

CS5248: Systems Support for Continuous Media

Roger Zimmermann

Project, Fall 2019
5-Sep-2019

 5

● Apple Live Streaming Internet Draft (http://tools.ietf.org/html/draft-pantos-http-live-

streaming-23)

● Microsoft Smooth Streaming (http://www.iis.net/downloads/microsoft/smooth-

streaming)

● Sample instruction how to build iPhone HTTP Streaming

(http://www.ioncannon.net/programming/452/iphone-http-streaming-with-ffmpeg-

and-an-open-source-segmenter/)

● MP4Parser https://github.com/sannies/mp4parser

● FFmpeg http://ffmpeg.org

● Bento4 package http://www.bento4.com/

● MP4Box http://www.videohelp.com/tools/mp4box

● Python Django https://www.djangoproject.com/

● dash.js https://github.com/Dash-Industry-Forum/dash.js

If you have any questions, email either the TA or the professor!

Submission Guidelines

1. Materials which you need to submit

(1) Your Android app source code and installable package (.apk file); your compiled/built

dash.js file (dash.all.min.js file); your ABR algorithm file (ABR.js); your modified

dash.js files; your PHP, Python or other framework’s server-side code. Create a tarball

(i.e., a tar file) or ZIP file of all your sources (please exclude sample videos, object

files, etc.).

(2) A detailed README.txt file, that includes

 a) Your name(s) and your username(s) on the host monterosa.

 b) A brief description of each source file, how it works and is related to your project.

Please create a tarball (i.e., an archive created with the tar utility or the zip utility)

that collects all your files into a package with your matriculation number. Then

compress it (with gzip, in case you are using tar) before you submit the file. Make

sure that your code compiles without ANY errors!

(3) Submit your report, presentation, and compressed source code package into the

module’s LumiNUS Workbin folder called ‘Student Submissions’ by 23:59 on 14

Nov 2019.

Note that the project demonstrations will be held on 15 Nov 2019 during the last

CS5248 class (6:30 pm to 8:30 pm) and cannot be done later.

http://tools.ietf.org/html/draft-pantos-http-live-streaming-23
http://tools.ietf.org/html/draft-pantos-http-live-streaming-23
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.ioncannon.net/programming/452/iphone-http-streaming-with-ffmpeg-and-an-open-source-segmenter/
http://www.ioncannon.net/programming/452/iphone-http-streaming-with-ffmpeg-and-an-open-source-segmenter/
https://github.com/sannies/mp4parser
http://ffmpeg.org/
http://www.bento4.com/
http://www.videohelp.com/tools/mp4box
https://www.djangoproject.com/
https://github.com/Dash-Industry-Forum/dash.js

CS5248: Systems Support for Continuous Media

Roger Zimmermann

Project, Fall 2019
5-Sep-2019

 6

Grading Policy (40 full marks)

1. Project Demonstration (25 marks). You will present your project in class on the last

module day (15 November 2019). You will have approximately 25 minutes to demo your

project. The demo should include (1) segmenting the source video (5 marks), (2) playing

the uploaded video from desktop browser (5 marks), and (3) displaying the playlist and

playing a video from it on your dash.js player while dynamically adapting to network

conditions (10 marks). Note that we will have a setup whereby we will synthetically vary

the network bandwidth available to your DASH client. (4) demonstrating a VoD streaming

session over DASH (5 marks).

2. Project Source Code (5 marks). We will examine your code. Criteria are, for example,

how well it is documented, how well it is understandable, how robust it is (i.e., can it

process all relevant input files), etc. We will also check whether your MPD can pass the

MPEG-DASH MPD validator (see https://conformance.dashif.org/).

3. Project Report (10 marks). Your write-up should be similar to a standard research survey

paper. Please use a research paper template such as the ones from ACM or IEEE. For

equations, please use math notations, not source code variables. Please include (at least)

the following sections:

a) Abstract (an overview of what the project includes)

b) Introduction and motivation for your project work (your specific design and

implementation choices)

c) Describe some of the work that your implementation is related to. This does not

have to be a complete survey of related work, just the most relevant techniques to

your project. Include some references. Avoid using web links as references.

d) Description of your implementation, i.e., details on what you did, any difficulties

encountered, any special features or functionalities that you implemented, etc.

e) Results, comparison and discussion, i.e., what should we learn from this and what

could possibly be further improved. Do you have some experimental results? i.e.,

did you measure the latency or bandwidth adaptation?

f) Other research directions regarding lowering end-to-end delays for MPEG-DASH

streaming

g) Conclusions

h) References

Most of the marks will be given for sections b), d), and e).

Additional Notes

No plagiarism is tolerated. You are encouraged to use the LumiNUS Forum and/or other

channels made available by the teaching staff. While you can talk to other teams, you cannot

copy source code and/or text in your report. If you are not sure whether something is

permissible, either talk to the instructor or consult the university policy at

http://www.usp.nus.edu.sg/curriculum/plagiarism.

https://conformance.dashif.org/
http://www.usp.nus.edu.sg/curriculum/plagiarism

