
Administration
Efficiency in TTS

Preliminaries to Model Checking

Verification of Real Time Systems - CS5270
8th lecture

Hugh Anderson

National University of Singapore
School of Computing

March, 2007

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 1

Duckburg...

Administration
Efficiency in TTS

Preliminaries to Model Checking

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 3

Administration
Efficiency in TTS

Preliminaries to Model Checking

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 3

Administration
Efficiency in TTS

Preliminaries to Model Checking

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 3

Administration
Efficiency in TTS

Preliminaries to Model Checking

Assignment 2
The road map...

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 3

Administration
Efficiency in TTS

Preliminaries to Model Checking

Assignment 2
The road map...

Assignment 2

A reminder... Assignment number 2:

On the web site

Due on 22nd March ...

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 4

Administration
Efficiency in TTS

Preliminaries to Model Checking

Assignment 2
The road map...

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 4

Administration
Efficiency in TTS

Preliminaries to Model Checking

Assignment 2
The road map...

The reduction...

What we did...

TTS TS TA

(s) (s,V) (s,V) (s,[])

g
a;x aδ

a

a

QTS

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 5

Administration
Efficiency in TTS

Preliminaries to Model Checking

Assignment 2
The road map...

The immediate road map

The topics:

TTS: Timed transition systems

Reduction: TTS→ TSTTS → TATTS → RTS (by quotienting)

Efficiency in TTS

Regions

Zones

Notation
Operations
Optimizations

Preliminaries for Model Checking

Behaviour, safety, liveness, automata, reachability
Temporal logic

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 6

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 6

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

What is wrong with regions?

Unwieldy:

The number of regions can be very large:

It is exponential in the number of clocks, and in the size of
the maximal constraints appearing in the clock constraints.
As a result, practical verification of transition systems based
on regional transition systems becomes infeasible.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 7

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

What is a zone?

A more compact representation:

...of equivalence classes of valuations....

Can be efficiently represented as Difference Bounded
Matrices (edge weighted directed graphs).
DBMs admit a canonical representation.
DBMs can be manipulated efficiently.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 8

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Regions versus zones

47 regions versus 1 zone!

x

y

47 regions in zone (2 ≤ x ≤ 5) ∧ (2 ≤ y ≤ 4)

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 9

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Formally:

Definition of zone:

A zone Z is a clock constraint of the “two-variable
difference” form

Z ::= x opc | x − y opc | z1 ∧ z2

where op∈ {<,≤, >,≥}, and c ∈ N.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 10

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Zone is a convex hull

What is this?

A zone Z is a convex union (or hull) of all the regions R:
Z =

⋃
i Ri .

To encode zones in a DBM, we

construct a new clock variable x0 which will always have the
value 0, and then encode all constraints as xi − xj < m or
xi − xj ≤ m where m ∈ Z.
For example the following terms on the left are translated to
those on the right:

x2 < 3 =⇒ x2 − x0 < 3
x5 ≥ 7 =⇒ x0 − x5 ≤ −7

x2 − x5 > 8 =⇒ x5 − x2 < −8

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 11

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Finiteness and hence termination

Ignore constraints bigger than Cx :

To ensure termination:

Remove constraints of the form x < m, x ≤ m, x − y < m
and x − y ≤ m if m > Cx .
Replace x > m, x ≥ m with x > Cx if m > Cx .
Replace y − x > m, y − x ≥ m with y − x > Cx and
y − x ≥ Cx if m > Cx .

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 12

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 12

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Matrix notation

Compact notation:

For n − 1 clock variables, we then write out an n × n matrix M,
with elements drawn from (Z× {<,≤}) ∪∞ according to the
following rules:

For constraints like xi − xj < c, set Mi,j = (c, <)

For constraints like xi − xj ≤ c, set Mi,j = (c,≤)

Otherwise set Mi,j = ∞

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 13

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Matrix notation

Consider this clock zone:

(0 ≤ x1 < 1) ∧ (0 < x2 < 3) ∧ (x2 − x1 ≥ 1)

then the DBM is

x0 x1 x2

x0 (0,≤) (0,≤) (0, <)

x1 (1, <) (0,≤) (−1,≤)

x2 (3, <) ∞ (0,≤)

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 14

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Tightening constraints

The canonical DBM:

Obtained by strengthening/tightening all the constraints:

x0 x1 x2

x0 (0,≤) (0,≤) (−1,≤)

x1 (1, <) (0,≤) (−1,≤)

x2 (3, <) (3, <) (0,≤)

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 15

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Tightening constraints

Halfspace view:

(0<x <1) (0<x <3) (x −x >1)1 2 2

x

x1

2

x >0

x >0

x <3

x <1

x −x >122

1

2

1

1

1

ZONE

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 16

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Tightening constraints

Halfspace view:

(Normalised)
(0<x <1) (0<x <3) (x −x >1)1 2 2

x

x1

2

x <3

x <11

2

1

1−x <0

−x <0

2

1

x −x <−12

ZONE

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 17

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Tightening constraints

Halfspace view:

(Strengthened)

−x <01

(0<x <1) (0<x <3) (x −x >1)1 2 2

x

x1

2

x <32

1

1x −x <−12

2 1x −x <3
x <11

−x <−12

ZONE

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 18

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Operations on zones

The intersection:

x

y

D

D

D

1

2

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 19

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Operations on zones

Time elapses:

x

y

D

D

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 20

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Operations on zones

A clock is reset:

x

y

R Dy

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 21

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Operations on zones

The PAST operation?

x

y

D

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 22

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Constructing regional/zone transition systems

Practice versus mathematics:

In the mathematics, en-route to the finite RTS or ZTS, we
construct (infinite) transition systems.

This is fine, but not actually possible (obviously).

Instead we generate the transition systems in one step
from the TTS.

The following slides attempt to show the flavour of the
algorithm in pictures...

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 23

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: Original state

s1

s1 s2

x

x<=1 y>0

A; {x}

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 24

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: Time passing

s1

x

s1 s2

x

δ 1s’

x<=1 y>0

A; {x}

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 25

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: Action move

s1

x

s1 s2

x

δ 1s’

2s’

x

A

x<=1 y>0

A; {x}

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 26

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: Carry on time...

s1

x

s1 s2

x

δ 1s’

2s’

x

A

δ

x<=1 y>0

A; {x}

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 27

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: Time passing move

s1

x x

s1 s2

x

δ 1 1s’ s’’

2s’

x

A

δ

δ

x<=1 y>0

A; {x}

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 28

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: Another action...

s1

x x

s1 s2

x

δ 1 1s’ s’’

2 2s’ s’’

x

A A

δ

δ

x<=1 y>0

A; {x}

x

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 29

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: and so on...

s1

x x

s1 s2

x

δ 1 1s’ s’’

2 2s’ s’’

x

A A

δ

δ xδ

x<=1 y>0

A; {x}

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 30

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (regions)

Show the regions in a diagram: TIME ABSTRACTED

s1 s2

s1
x

x

2 2s’ s’’

x

x<=1 y>0

A; {x}

A A

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 31

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (zones)

Show the regions in a diagram: from before...

s1

x x

s1 s2

x

δ 1 1s’ s’’

2 2s’ s’’

x

A A

δ

δ xδ

x<=1 y>0

A; {x}

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 32

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (zones)

Show the zones in a diagram: smaller

s1

s1 s2

x

δ 1s’

2s’

A

x<=1 y>0

A; {x}

x

δ

xx

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 33

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Drawing the operations (zones)

Show the zones in a diagram: TIME ABSTRACTED

s1

s1 s2

x

2s’

x<=1 y>0

A; {x}

x

A

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 34

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Operations on zones

Zones are relatively easily manipulated:

Following three operations are needed for use in evaluating
zone transitions:

If D1 and D2 are two clock zones, then the intersection of
the zones is a new clock zone D1 ∧ D2.
D ⇑ is the time-elapsed zone defined by
D ⇑= {V + δ | V ∈ D} with δ ∈ R≥0.
The clock-reset zone RXD is defined by
RXD = {RX (V) | V ∈ D} where RX (V)(λ) = 0 if λ ∈ X or
RX (V)(λ) = V (λ) otherwise.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 35

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 35

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Want a canonical representation

Equivalence of zones:

We do not want two different zones to represent the same
set of valuations (i.e. (y − x ≤ 3, x = 2, y = 4) the same as
(y − x = 2, x = 2, y = 4).

Definition: A zone is closed if no constraint can be
strengthened without reducing the set of associated valuations.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 36

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Closed zones are equivalent iff identical

Graph representations (simplified)...

x x

x x0

1 2

3

10

−4

2

5

3 2

x x

x x0

1 2

3

2 2

−4

3

3

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 37

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Closed zones are equivalent iff identical

Graph shortest path reduction:

x x

x x0

1 2

3

10

−4

2

5

3 2

x x

x x0

1 2

3

2 2

−4

3

3

A shortest path reduction is performed on the graph (computed
in O(n3) time), where redundant edges are removed when they
can be.
For example x1

10−→ x2 is replaced by x1
2−→ x3

2−→ x2.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 38

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

Closed zones are equivalent iff identical

Graph shortest path reduction:

x x

x x0

1 2

3

10

−4

2

5

3 2

x x

x x0

1 2

3

2 2

−4

3

3

If D is closed then D is a subset of D′ iff for every constraint
x − y ≤ m′ in D′ there is x − y ≤ m in D with m ≤ m′.
If D is closed then D is non-empty iff there are no negative
weight cycles in the graph.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 39

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

DBM example repeated

Graphs for DBMs: graph reduction...

(0<x <1) (0<x <3) (x −x >1)1 2 2 1

x0

(0,<)

(0,<) (0,<)

(0,<)

x x1 2

(3,<)

(0,<)

(1,<)

(−1,<)

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 40

Administration
Efficiency in TTS

Preliminaries to Model Checking

From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

DBM example repeated

Graphs for DBMs: graph reduction...

(0<x <1) (0<x <3) (x −x >1)1 2 2 1

x0

(0,<)

(0,<) (0,<)

(0,<)

x x1 2

(3,<)(1,<)

(−1,<)

(3,<)

(−1,<)

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 41

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 41

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Behaviours

The behaviour of a TS...

...is its set of runs, or its set of computations.

To verify behaviours against a property, we can consider
questions like:

Does every computation (run) of the transition system have
a desired property X ? or
Is it true that in no computation, C is immediately followed
by on-ac?.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 42

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Safety and Liveness

Two types of behaviours:

In handouts, the ideas of safety and liveness were
introduced, identifying two types of behaviours that require
different analysis methods.

A safety property is like “something bad doesn’t happen”,
whereas
liveness is like “something bad (or good) must eventually
happen".

We can often formulate safety properties in terms of the
reachability of a state.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 43

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Checking TS

What is an automata?

An automata is a state transition system with some set of
accepting states, which may be used to distinguish
between good and bad computations.

We can use automata matching a particular transition
system to specify desired behaviour of the system, in a
form like “Is there a run of the automaton that leads to the
(desired) accepting state?”, or “Is there a run of the
automaton that leads to an accepting state in which
property P holds?”.

These are examples of a reachability problem.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 44

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Finite automaton

Definition:

A finite automaton is a 5-tuple (Q,Σ,∆,q0,F), where

Q is a finite set called the states

Σ is a finite set called the alphabet

∆ : Q × Σ → Q is the transition function

q0 is the start state

F ⊆ Q is the set of accepting states

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 45

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Checking TS

Automata theory...

These sort of problems have clear links to automata
theory, and

we could easily cast a lot of this discussion in terms of the
languages accepted by (finite) automata.

To reason about liveness properties, we need to consider
infinite sequences.

A Büchi automaton is an extension of a finite state
automaton to one which accepts an infinite input sequence
if, and only if, there is a run of the automaton which has
infinitely many states in the set of final states.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 46

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Büchi automata

Definition:

A Büchi automaton is a 5-tuple (Q,Σ,∆,q0,F), as for a regular
automaton, but with F interpreted differently. In particular
s0 a0 s1 a1 s2 . . . is an accepting infinite trace if

s0 ∈ Q

(si ,ai , si+1) ∈ ∆ for all i

For infinitely many j , the state sj is in F

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 47

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Büchi automata

What are they good for?

They are useful for specifying behavior of nonterminating
systems, such as

hardware (electronic circuits) or
operating systems.

For example, you may want to specify a property like

“for every measurement, a recording eventually follows”, or
the reverse “there is a measurement which is not followed
by a recording".

For the second example, an argument limited to finite
sequences cannot satisfy this property.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 48

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Properties: Reachability and deadlock

Are related...

For example, is there a run leading to deadlock?

A deadlocked system can do no more computation, more
formally:

Definition : The run s0
∗

=⇒ sk with s0 ∈ Sin is in deadlock if no
action is enabled at sk .

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 49

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Properties: qualitative

Questions such as...
Every request is eventually served.

The sensor signal x11 is sensed infinitely often.

From any stage of the computation the all clear state can
be reached within 3 steps

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 50

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Properties: quantitative

Questions such as...
Every request is served within 3 microseconds.

The sensor signal x11 is sensed every 10 milliseconds for
ever.

From any stage of the computation the all clear state can
be reached within 1 second.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 51

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 51

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

The universe is not black and white

Consider...

Please answer YES or NO: Will the next answer you give me be
NO?

You are either going to die in a bomb raid or you are not...

Extensional logic means that you can determine the truth
of a formula from the truth values of its parts.

Intensional/modal logic refers to QUALIFIED truth (words
like could, eventually, possibly and so on).

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 52

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Modal logic

QUALIFIED truth
The basic modal operators are

� which represents necessity and
its dual ♦ which represents possibility (♦A = ¬�¬A).

The language of modal logic consists of

propositional variables,
a set of Boolean connectives such as {∧,∨,¬}, and
the modal operators.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 53

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Temporal logic (a modal logic)

Consider...

“The engine is too hot."

The meaning is clear, it does not vary with time, but ...

the truth value of the assertion can vary in time.

Sometimes it is true, and sometimes it is false, and
it is never true and false simultaneously.

Temporal logics are a good mechanism for expressing
qualitative temporal properties of reactive systems.

Operators related to TIME, so that (for example) �φ means
that propositional variable φ must hold in all the following
(later) states.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 54

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Temporal operators

Common to use mnemonic letters X,G,F,U,R...

Operators:

X φ indicating that φ must hold in the next state.
Gφ (or �φ) indicating that φ must hold in all the following
states.
Fφ (or ♦φ) indicating that eventually (finally) φ must hold
somewhere.
φUψ indicating that φ has to hold until ψ holds at the
current or a future position.
φRψ The dual of U, ψ holds until the first state where φ
holds.

Quantification

A for all paths
E there exists a path...

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 55

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Outline

1 Administration
Assignment 2
The road map...

2 Efficiency in TTS
From regions to zones
Matrix notation and zone operations
Closed zones and graph representation

3 Preliminaries to Model Checking
Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 55

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

LTL: Linear time view

The set of runs...

0

2

3

1

{0 1 0 1 0 1 0 1 . . . , 0 1 0 2 3 2 3 2 . . . ,

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 56

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

CTL: Branching time view

Branches into the future...

0

2

3

1

0

3

2

21

0

0

3

21

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 57

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

LTL versus CTL

Linear Temporal Logic, Computation Tree Logic

In LTL, one can encode formulæ about events along a
single computation path.

By contrast, CTL is a modal branching-time temporal logic.
The operators quantify over all possible future paths from a
given state.

CTL and LTL are both subsets of a more general temporal
logic CTL*.

There are expressions in CTL that cannot be expressed in
LTL and vice versa.

In CTL formulæ each of the temporal operators must be
preceded by a path quantifier: A, or E.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 58

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

LTL6=CTL

Consider this TS:

p p

uts

A(FGp), is an LTL formula representing: for all paths,
eventually p holds globally (i.e. from then on).

AF(AG p) is CTL for: for all paths, eventually you get to a
state where for all paths p holds globally (i.e. from then on).

LTL formula is not the same thing as CTL formula.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 59

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

LTL6=CTL

LTL: All runs that start in s have p holding eventually:

p p

uts

The possible (infinite) runs from s are

sssssssss . . .
}

i .e. s∞

or...
stuuuuuu . . .
sstuuuuu . . .
ssstuuuu . . .
. . .

 i .e. ss∗tu∞

so in the linear time view, for state s, A(FGp).

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 60

Administration
Efficiency in TTS

Preliminaries to Model Checking

Behaviour, safety, liveness, automata, reachability...
Extensional and intensional logic
Linear and branching time

LTL6=CTL

CTL: Eventually you get to where p holds from then on:

p p

uts

The CTL counterexample for AF(AG p) is

p

p

p

p

p

p

p

p

p

p

p

p

p

p

so in the CTL view, for state s, AF(AG p) is not true.

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 61

	Administration
	Assignment 2
	The road map...

	Efficiency in TTS
	From regions to zones
	Matrix notation and zone operations
	Closed zones and graph representation

	Preliminaries to Model Checking
	Behaviour, safety, liveness, automata, reachability...
	Extensional and intensional logic
	Linear and branching time

