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Assignment 2

A reminder... Assignment number 2:
@ On the web site

@ Due next week! ...
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Administration )
Assignment 2

The road map...

The immediate road map

@ TTS: Timed transition systems

@ Reduction: TTS — TSrts — TArts — QTS regions and
zones (zone operations, DBMSs)

@ Preliminaries for Model Checking

e Behaviour, safety, liveness, automata, reachability

e Temporal logic
e Foundations for CTL/TCTL model checking (Kripke

semantics)

@ Model Checking

e The model checking relation Us
e The model checking algorithm, with optimizations =

Hugh Anderson Verification of Real Time Systems - CS5270 9th lecture 5



Model checking setting

More preliminaries for model checking
p 9 The Kripke structure...

Outline

e More preliminaries for model checking
@ Model checking setting

NUS

Hugh Anderson Verification of Real Time Systems - CS5270 9th lecture



Model checking setting

More preliminaries for model checking
p 9 The Kripke structure...

The big picture...

Properties a avio

Model extraction TS

Property (Temporal logic
formula ¢)

In

Model
checker: Behaviour of TS Models of ¢

¢YES! ¢NO!




Model checking setting
The Kripke structure...

More preliminaries for model checking

The big picture...
Properties and behaviour:

Model extraction
R

Property (Temporal logic
formula ¢)

| Semantics

Model
checker.

D\ R - T -
Giobest : .
Behaviour of TS c Models of ¢ ‘
Y Tror

YES!

@ TSrepresents the behaviour of the system, expressed as
the allowable set of runs (or computations) of the system.

@ A model-checker checks if this behaviour of the system is a @
subset of the set of runs (or computations) induced by an | US
arbitrary property ¢, returning YES or NO.
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Model checking setting

More preliminaries for model checking
p 9 The Kripke structure...

A simple system

reql,retl
————
-
grtl
Arbiter @

req2,ret2
————>
-
grt2
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Model checking setting
The Kripke structure...

More preliminaries for model checking

A simple system

Resource arbiter:

@ Arbiter: allows one process at a time to access resource.
@ Process: requests access to resource, by req() call.

@ When resource is free, arbiter grants access by signalling |
the process using grt()  signal. @

@ Process: no longer needs resource, signals arbiter: ret()
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Model checking setting

More preliminaries for model checking
p 9 The Kripke structure...

Model behaviour of simple system

Resource arbiter transition system:
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Model checking setting

More preliminaries for model checking THite e ST

Properties for simple system

Atomic propositions for system:

@ Important to identify suitable atomic propositions relevant
to the system. Suitable propositions might be:

@ i1,i> : Processes 1 and 2 are idle. In the starting state both
processes are idle.

@ Wy, W, : Processes 1 and 2 are waiting for the resource.

@ U, Uy : Processes 1 and 2 are using the resource.
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Model checking setting

More preliminaries f del checki .
ore preliminaries for model checking Thite (e S,

Labelling the system...

Add atomic propositions, remove actions...
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Model checking setting

More preliminaries for model checking ThelKnpKelstructre

Kripke semantics and structures

A formal semantics for modal logic systems:

The [ operator cannot be formalized with an extensional
semantics. Kripke semantics is a formal semantics for modal
logic systems. It is defined over a Kripke frame/model/structure:

Definition: A Kripke structure K over a set AP of atomic
propositions is a 4-tuple (S, A, AP, L), where
@ S is a finite set of states
@ A C S x S is atransition relation that must be total
@ AP is a finite set of atomic propositions

@ [ :S — 2" is a function which labels each state with the | %
set of atomic propositions true in that state
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Model checking setting

More preliminaries for model checking ThelKnpKelstructre

Example Kripke structure

The arbiter system:

@ we have AP = {iy,wq, Uy, iz, Wp, Us}
@ Write out £(s) for each state s. The labelling function
L:S — 2AP:

L :{ (SOv{ilvi?})>
(s1, {iz, W2}),
(s2, {iz, Uz2}),
(83, {wi,i2}),
(s4,{ua,i2}),
(s, {w1,w2}),
(s6; {uz, w2}),

(s7. {wi, 1z}) } %
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Unfolding the Kripke structure

Easier to visualize UF(K):

TS (K if you ignore the actions) 7

UF(K)




Model checking setting

More preliminaries for model checking ThelKnpKelstructre

Unfolding the Kripke structure

Definition:

UF(K) is another Kripke structure.

Definition: The unfolding of a Kripke structure /C, from an
identified starting state sg, is UF(K) = (S, A, AP, L), where
@ S ={(s,n) | misapathfronsytosin =

i - %

@ A((s,m),(s',"))iff A(s,s’)inKandr’ = ws'. us
@ L(s,m) = L(S)

Hugh Anderson Verification of Real Time Systems - CS5270 9th lecture



CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

e CTL model checking
@ CTL formulee
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

CTL formulae

@ In CTL formulee each of the temporal operators must be
preceded by a path quantifier: A, or E.

@ There are ten base expressions as a result, but we only
actually need 3 expressions:

e EXp : For one computation path, property p holds in the
next state;

e A(pUQq) : For all computation paths, property p holds until
g holds.

e E(pUQq) : For one computation path, property p holds until
g holds.

@ (Call this CTL-) EES
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

CTL- formulae

Definition for CTL-
Given a proposition p € AP (a finite set of atomic propositions),
then p is a CTL- formula, and if ¢); and v, are CTL- formulee,
then

@ —), is a CTL- formula

@ 1 A1)y is a CTL- formula

@ Yy V), is a CTL- formula

@ EX(v1) is a CTL- formula

@ A(¢1U1)y) is a CTL- formula

@ E(¢1 U1p,) is a CTL- formula @
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

e CTL model checking

@ Semantics of CTL - the modelling relation
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Semantics of CTL-

Expressed in terms of model and modelling relation...

@ Model checking is commonly expressed as a ternary
relation (}=):
M,s =P

@ The relation is true when the property P holds in state s for
a given model M.

@ It is normally defined inductively, with a set of interlocking
rules.

@ A labelling algorithm may then be used to establish the set %
of states satisfying the relation. us
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Labelling the system for EX (wy)...

States coloured blue have desired temporal formula...

M, sp ’: EX(W]_)’) I
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Labelling the system for E (i, Uw;)...

States coloured blue have desired temporal formula...

M, s, ': E(I2 UWZ)’) i
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CTL model checking The model checking algorithm

M,Sz ): E(U2 UW]_)?

el states, check inclusio
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Inductive definition of the modelling relation

The model checking relation is defined for...

...each atomic proposition p and each CTL- formula 1, ¢, as:

M,s =p & peL(s)

M,s E -1 < iffitis not the case that M,s = 1
M,s = 1 A2 < iffM,s E v and M, s = i,

M,s =1 V abs <  iffM,s =1 0rM,s =

M,s = EX(¢1) < iff A(s,s’) and M, s’ = ¢

(i.e. s has a successor state at which ; holds)
M,s = A(y1Uv,) <« iff for every path m = sg s; ... from s, for

some j, M, 7w(j) E ¢z, and Vi < j M, 7e(i) = 91 i
M,s = E(¢1Uv,) <&  iffthereis apath m =sy s1 ... from s, where for @

some j, M, 7(j) E ¢z, and Vi < j M, 7e(i) = 91
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Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Temporal CTL operator M, s = EX(p) in UF(K)

Easier to see when unfolded:

( UF(M)
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Temporal CTL operator M, s = E(pUq) in UF(K)
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CTL formulee

Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Defining CTL operators in CTL-

Two of the missing operators:

@ AX(y) = -EX(—)) For every next state ¢ holds. It is not

the case that there exists a next state at which 1) does not
hold.

@ EG(y) = —A(true U—1)) There exists a path 7 from s such
that for every k > 0: M, 7(k) |= ¢. Itis not the case that ...

Hugh Anderson
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

e CTL model checking

@ The model checking algorithm
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

The model checking process for M, s = ¢

bel states, check inclusi

Model extraction TS

Property (Temporal logic
formula )

Model S &

checker: Y ¥

Step 1:

Labelled CTL Model
Y

. Step 2: L
i Check state s in Sat( y
|
|

Y YES! ¥ NO!
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

The satisfaction function for CTL model checking

ns a set of states:

set_of_States sat(Property ) =

if AP then {s| € L(s)}

else case 1 of
true: S
false: 0
-y S—sat (¥)
Y1 A tbpt sat (1) N sat ()
P V ! sat (1) U sat ()
EX(4h1): {ses|s’ esl As’ € sat (y1)}
A1 Ugp):  Ifp (9(Z) = sat () U (sat (¥1)N{s €S |vs' €sT nz}))
E(p1Ut):  Iip (n(Z) = sat (w2) U (sat (1) N{s €S |3s’ €sT nz})) ?s
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

The satisfaction function for CTL model checking

Least fix-point:

We can calculate the sets of states for A(; U,) and

E(y1 U y), by taking the least fix-point of functions g and h
(sometimes expressed as the algorithms sahy and saty). What
are the functions g and h? Some investigation will show that

A(wl U lbz) = YV (’(/)1 A AX (A(wl ) wz))), and
E(Y1Uv2) = 2V (Y1 AEX(E(1 Uy2)))

Express as fix-points of the corresponding functions

9(Z) = oV (¢¥1 AAX(Z)), and
h(Z) = 4oV (¥1 ANEX(Z)) ol
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Checking M, s; = E(i2 U (U1 A wy))...

Start with the labelled Kripke structure:

Hugh Anderson
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Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Checking sa(E(i> U (uy A wy)))...

ing Ifp equatio
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

M,s; = E(i2 U (ug Awy))... if sp € salE(i> U (up A ws)))

Once we reach the fix-point:

Fixed point!

P2 V (1 AEX(E(¥1 Uty)))

Hugh Anderson



CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Example (A different arbiter)

Difficult to find convincing examples that are small:

@ We choose to use as an example a simple mutual
exclusion protocol in which

e two processes, P; and P, share six boolean variables, and

@ co-operate to ensure mutually exclusive access to a critical
section of code.

@ A third process T1 monitors the variables and changes a
turn variable.

@ The entire system is the parallel composition of these three
processes, and is continuous.

@ Each line of code is considered to be atomic, and we use 1
to represent true, O to represent false

Verification of Real Time Systems - CS5270 9th lecture




CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

A different arbiter

The source code:

P, = if idle; then (wait; := 1;idle; :=0) else
if waiy Aidle, then (activg := 1;wait; := 0) else
if wait; A wait; A —turn then (active := 1; wait; := 0);
if active then (CritSectidle; := 1;activg := 0);

P, = if idle; then (wait, := 1;idle; :=0) else
if wait, Aidle; then (active, := 1;wait, := 0) else
if wait; A waity Aturn then (activey := 1; wait, := 0);
if active then (CritSectidle, := 1;active, := 0);

Ty = if idle; Awaity then turn:=1 else
if idle; Awaity then turn:=0;

System= (P || P || T1); System
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Transition diagram

Numbers relate back to program:
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

How do we get this?

Encoding states as boolean formulee:

@ Encode states using m boolean variables.

@ Allows for 2™ states.

e For example: m =3: S = {s;, S», S3, S4, S5, S6, S7, S8 }
@ Propositional booleans a, b, c:

e S ={000,001,010,011,100,101,110,111}
e S=
{-an-bA-c,-an-bAc,-aAbA—-Cc,-aAbAcC,...,anbAC}

@ Encode transitions using before (a, b, c)and after (a’, b’, c’)
variables.

e For example: (s1,54) = (—maA—-bA-C)A(-a’ Ab"Ac) @
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Transition relation as a predicate

Transition system ends up as a boolean formula:
Pris (it AWL AT]) V(Wi Aip Adf AW]) V (Wi AWp At AR AWV (ag Al Ad])
Pois (o AW AQg) V (Wa Aip Aay AWS) V (Wo AWr At Aay AWS) V (a2 Ay Aay)

Psis (it Awa At)) V (i Awg AtY)
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Efficiently encoding transition relation

Encode as an ordered binary decision tree (OBDT):

@ The levels denote the different variables, and paths
through the tree represent valuations of the transition
relation. The OBDT for (i1 Aiz) V (i3 Alg):
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

Efficiently encoding transition relation

From OBDT to ROBDD:

@ Note that if we reorder the variables, we get a different
decision tree, but this new tree still represents the
predicate.

@ In other words, it is independent of the order of the
variables.

@ The OBDT does not scale well, but there are optimizations
that may be done.

@ An optimization to exploit repetition on OBDTSs leads to
reduced ordered binary decision diagrams (ROBDDs). -
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

ROBDD reduction from OBDT

Remove ineffective subtree:
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

ROBDD reduction from OBDT

Identify and merge duplicate subtrees:

T T
I'F F F . ' F F F
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

ROBDD reduction from OBDT

ove ineffective subtree:

T T
I'F F'F
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Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

ROBDD reduction from OBDT

Merge common pa
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

ROBDD reduction from OBDT
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CTL formulee
Semantics of CTL - the modelling relation
CTL model checking The model checking algorithm

ROBDD reduction from OBDT

A significant optimization:

ROBDDs provide a canonical form for the OBDTs, but more
significantly, similar sub-trees of a OBDT result in the ROBDD
merging the two subtrees.

Bryant introduced these data structures, showing how such
representations of functions may be manipulated efficiently. In
the paper, fast algorithms for common boolean operations are
described, with complexities proportional to the sizes of the
graphs.

The ROBDD optimization for the purpose of model checking
was first identified by McMillan, and resulted in significant
improvements in the number of states that could be %
model-checked. us
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