
CS6202 Introduction 1

CS6202: Advanced Topics in
Programming Languages and Systems

Lecture 0 : Overview

Lecturer : Chin Wei Ngan

Email : chinwn@comp.nus.edu.sg

Office : S15 06-01

“Advanced Language Features
and Foundations”

CS6202 Introduction 2

Administrative Matters Administrative Matters

- mainly via Web-page + IVLE

- Reading Materials :
various papers/books
Robert Harper : Foundations of Practical Programming Languages.
Free PL books : http://www.cs.uu.nl/~franka/ref

- Lectures + Term Paper (100% CA)
- Assignment (30%)
- Take-Home Tests (20%)
- Term Paper and Miniproject (50%)

CS6202 Introduction 3

Course Objectives Course Objectives

- graduate-level course with research focus

- languages as tool for programming/research

- foundations for reasoning about programs

- explore research frontiers

CS6202 Introduction 4

Course Outline Course Outline

• Lecture Topics (10 weeks)
• Advanced Language (Standard ML)

http://www.cs.cmu.edu/~rwh/smlbook/online.pdf
• Type System for Lightweight Analysis

http://www.cs.cmu.edu/~rwh/plbook/book.pdf
• Genericity for OO (Java 5)

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
https://java-generics-book.dev.java.net/

• Formal Reasoning – Separation Logic + Theorem Provers

• Term Paper Project (7 weeks)
• Read, Present, Research, Critique, Evaluate

CS6202 Introduction 5

Possible Term Paper TopicsPossible Term Paper Topics

Dependent types and sized analysis .
Types for security.
Language support for XML processing.
Security Vulnerability analysis.
Automatic ProgramVerification.
Domain-specific languages (e.g. sensor programming).
Real-time Languages
Resource Analysis for Embedded Devices
Reasoning about Program Concurrency.
OO Genericity.
Others : …(you propose and let me know)

CS6202 Introduction 6

Advanced Language Advanced Language -- ML ML

• Strongly-typed with polymorphism
• Higher-order functions
• Mostly pure except for mutable references.
• Algebraic data types + records
• Exceptions
• Strong module system - components
• Advantages : concise, abstract, reuse

• Why use ML ? productivity

CS6202 Introduction 7

Example Example -- ML ProgramML Program
• Apply a function to every element of a list.

datatype ‘a list = Nil | Cons of ‘a * (‘a list)

fun map (f, Nil) = Nil
| map (f, Cons(x,xs)) = Cons (f(x), map(f,xs))

map(inc,Cons(1,Cons(2,Cons(3,Nil))))
==> Cons(2,Cons(3,Cons(4,Nil))))

a type variable

type is : (‘a → ‘b) * (‘a list) → (‘b list)

CS6202 Introduction 8

Type System Type System –– Lightweight Analysis Lightweight Analysis

• Abstract description of code + genericity

• Compile-time analysis that is tractable

• Guarantees absence of some bad behaviors

• Issues – expressivity, soundness,
completeness, inference?

• How to use, design and prove type system.

• Why? detect bugs

CS6202 Introduction 9

Java 5 Java 5

• mainstream language with generic types

• sophisticated subtyping mechanism

• F-bounds polymorphism with use-site variance

• Why? generic code +
type safety

CS6202 Introduction 10

Example Example –– Java 4Java 4
• Inclusion polymorphism – safe during upcast but may fail

during downcast.

class Cell {
Object val;
Object get() { return val; }
void set(Object x) { val = x; }

}

Cell c;

c.set(new Integer(3)};

Integer y = (Integer) c.get();

generic
container

downcast
may fail

safe upcast

CS6202 Introduction 11

Background to OO Background to OO GenericityGenericity

• Why not adopt FL’s type polymorphism?

• Covariance for container
List<Int> <: List<Num>

but requires immutability while OO has
mutable objects

Solutions
• GJ,Pizza : Parametric type
• Eiffel, Scala, C# : Declaration-site variance
• Java 5 : Use-site variance

CS6202 Introduction 12

Example Example –– Java 5Java 5
• Bounded parametric polymorphism with variance

class Cell<T> {
T val;
<T> Cell<? extends T> | T get() { return val; }
<T> Cell<? super T> | void set(T x) { val = x; }

}

Cell<Integer> c;
<Integer> c.set(new Integer(3)};
Cell<? extends Number> d;
d = c;

(?) c.get();
(?) d.get();
d.set(new Float(1.0));
d.set(null);

type
parameter

for reading mainly

reading/writing

illegal due to writing

CS6202 Introduction 13

Separation Logic and Theorem Proving Separation Logic and Theorem Proving

• Is sorting algorithm correct?
• Any memory leaks?
• Any null pointer dereference?
• Any array bound violation?

• What is the your specification/contract?

• How to verify program correctness?

• Issues – mutation and aliasing

• Why? sw reliability

