CS6202: Advanced Topics In
Programming Languages and Systems

Lecture 1 : Lambda Calculus
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Lambda Calculus

e Untyped Lambda Calculus

e Evaluation Strategy

« Techniques - encoding, extensions, recursion
o Operational Semantics

o Explicit Typing

 Type Rules and Type Assumption

* Progress, Preservation, Erasure

Introduction to Lambda Calculus:
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.cs.chalmers.se/Cs/Research/Logic/TypesSS05/Extra/geuvers.pdf
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Untyped Lambda Calculus

o Extremely simple programming language which
captures core aspects of computation and yet allows
programs to be treated as mathematical objects.

» Focused on functions and applications.

 Invented by Alonzo (1936,1941), used In
programming (Lisp) by John McCarthy (1959).
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Functions without Names

Usually functions are given a name (e.g. in language C):

Int plusone(int x) { return x+1; }
...plusone(b)...

However, function names can also be dropped:
(int (int x) { return x+1;} ) (5)

Notation used in untyped lambda calculus:

(A X. x+1) (5)
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Syntax

In purest form (no constraints, no built-in operations), the lambda calculus
has the following syntax.

t= terms
X variable
A X.t abstraction
tt application

This is simplest universal programming language!
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Conventions

» Parentheses are used to avoid ambiguities.
e.J. xyz can be either (xy)z or x (y z)

« Two conventions for avoiding too many parentheses:
« Applications associates to the left
e.g. xy z stands for (xy) z

« Bodies of lambdas extend as far as possible.
e.g. Ax. A y. xyxstands for A x. (L y. ((x y) x)).

* Nested lambdas may be collapsed together.
e.0. Ax.Ly.xyx can be written as A xy. x y x
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Scope

An occurrence of variable x Is said to be bound when it
occurs In the body t of an abstraction i x . t

An occurrence of x Is free If it appears in a position where
It Is not bound by an enclosing abstraction of x.

Examples: xy

AY. XYy

A X. X (identity function)
(A X. X X) (L X. X X) (non-stop loop)
(AX.X)y

(A X. X) X
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Alpha Renaming

e Lambda expressions are equivalent up to bound variable

renaming.

.. AX.X =, AVY.Y
AY. XYy =, AMZ.XZ

But NOT:

LY. Xy =, Ay.zy

e Alpha renaming rule:

AX.E = Az.[x—>2Z]E (z I1s not free In E)
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Beta Reduction

* An application whose LHS Is an abstraction, evaluates to
the body of the abstraction with parameter substitution.
.. (Ax.xy)z —>5  ZY

(A X.y)z —p Y
(A X XX) (A X.XX) =5 (A X XX) (A X XX)

« Beta reduction rule (operational semantics):

(AX.t)t = X GLlY

Expression of form (A x.t,)t,Is called a redex (reducible
expression).
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Evaluation Strategies

e A term may have many redexes. Evaluation strategies can

be used to limit the number of ways in which a term can
be reduced.

* An evaluation strategy Is deterministic, If it allows
reduction with at most one redex, for any term.

e Examples:
- full beta reduction
- normal order
- call by name
- call by value, etc
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Full Beta Reduction

* Any redex can be chosen, and evaluation proceeds until no
more redexes found.

o Example: (Ax.X) (Ax.X) (Az. (AX.X) 2))
denoted by id (id (Az. id 2))
Three possible redexes to choose:
id (id (Az. 1d 2))
id (id (Az. id 2))
id (id (Az. id 2))
* Reduction;
id (id (Az. 1d 2))
— 1d (id (Az.2))

— 1d (\Lz.z
— ANZ.Z
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Normal Order Reduction

Deterministic strategy which chooses the leftmost,
outermost redex, until no more redexes.

Example Reduction:

1d (id (Az. id 2))
— 1d (Az. 1d 2))
—Azid z
— NZ.Z

s
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Call by Name Reduction

Chooses the leftmost, outermost redex, but never reduces
Inside abstractions.

Example:

Id (id (Az. 1d 7))
— 1d (Az. 1d 2))
— Az.id z

76
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Call by Value Reduction

Chooses the leftmost, innermost redex whose RHS iIs a
value: and never reduces Inside abstractions.

Example:

id (id (Az. 1d 2))
— 1d (Az. 1d 2)
— Az.id z

A
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Strict vs Non-Strict Languages

« Strict languages always evaluate all arguments to function
before entering call. They employ call-by-value evaluation
(e.g. C, Java, ML).

« Non-strict languages will enter function call and only
evaluate the arguments as they are required. Call-by-name
(e.g. Algol-60) and call-by-need (e.g. Haskell) are possible
evaluation strategies, with the latter avoiding the re-
evaluation of arguments.

* In the case of call-by-name, the evaluation of argument
occurs with each parameter access.
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Programming Techniques in A-Calculus

Multiple arguments.
Church Booleans.
Pairs.

Church Numerals.
Enrich Calculus.

Recursion.
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Multiple Arguments

Pass multiple arguments one by one using lambda
abstraction as intermediate results. The process is also
known as currying.

Example:
f=a(xy)s I > f=ax.(LY.s)
Application:
f(v,w) (fv)w
requires pairs as requires higher
primitve types order feature
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Church Booleans
e Church’s encodings for true/false type with a conditional:

true = At Af.t

false = At AT f
if =AlLAmAnImn

 Example:
If true vw
= (ALAm. An Imn)truevw
— truevw

= (AtAfHvw
— vV

* Boolean and operation can be defined as:
and =X a. A b. if ab false
=raAb. (ALAm. An Imn)ab false
=Aa.Ab.abfalse
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Pairs

« Define the functions pair to construct a pair of values, fst to
get the first component and snd to get the second
component of a given pair as follows:

pair = Af.As.Ab.bfs
fst = Ap.ptrue
snd = Ap.pfalse

 Example:
snd (pair c d)
(A p.pfalse) (W f.As. A b.bfs)cd)
(A p.pfalse) (A b. bcd)
(A b. b cd) false
false c d
d
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Church Numerals

Numbers can be encoded by:
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AS.AZ.Z

AS.AZ.S7Z

AS.Az.5(s2)
LS. AZ.5(s(s2)
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Church Numerals

e Successor function can be defined as:
succ = AN.AS.Az.s(NsZ)

Example:
succ ¢,
= (An.As.Az.s(nsz)(As. Az s2)

—> AS.AZ.S((AS.Az.52)s2)
— AS.AZ.5(52)

succ c,

= ANAS.AzZ.s(hsz) (As.Az.5(52)
— AS.AZ.S((As.Az.s5(s2))sz)

— AS.AZ.5(5(s2)
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Church Numerals
e Other Arithmetic Operations:

plus =Am.An As.Az.ms(nsz)
times =A m.An. m(plusn)c,
iIszero = A m. m (A x. false) true

« Exercise : Try out the following.
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plus c, X
times ¢, X
times X ¢,
ISzero ¢,
Iszero c,
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Enriching the Calculus

e We can add constants and built-in primitives to enrich A-

calculus. For example, we can add boolean and arithmetic
constants and primitives (e.g. true, false, if, zero, succ, iszero,
pred) Into an enriched language we call ANB:

Example:

A X. succ (succ xX) € ANB
A X. true € ANB
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Recursion

Some terms go into a loop and do not have normal form.

Example:

(A X. X X) (A X. X X)
— (A X XX) (A X.XX)
_>

 However, others have an interesting property
fiX=AfL (AX.TAAY.XXY) (AX.T(AY.XXY))
which returns a fix-point for a given functional.
Given X =hx
_sixp ] x is fix-point of h

Thatis:  fixh — h (fix h) = h (h (fix h)) — ...
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Example - Factorial

We can define factorial as:

fact = A n. iIf (n<=1) then 1 else times n (fact (pred n))

= (A h. A n.if (n<=1) then 1 else times n (h (pred n))) fact

N
= fix (A h. A n. if (n<=1) then 1 else times n (h (pred n)))
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Example - Factorial

CS6202

Recall:
fact = fix (A h. A n. if (n<=1) then 1 else times n (h (pred n)))

Let g = (A h. & n. if (n<=1) then 1 else times n (h (pred n)))

Example reduction:

fact 3 fixg 3

g (fixg) 3

times 3 ((fix g) (pred 3))

times 3 (g (fix g) 2)

times 3 (times 2 ((fix g) (pred 2)))
times 3 (times 2 (g (fix g) 1))
times 3 (times 2 1)

6
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Formal Treatment of Lambda Calculus

Let v be a countable set of variable names. The set of
terms 1s the smallest set T such that:

1. xeTforeveryxeV

2. Ift,eTandxeV,thenix.t,eT

3. Ift,eTandt, T, thentt,eT

Recall syntax of lambda calculus:

t= terms
X variable
A .t abstraction
tt application
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Free Variables

The set of free variables of a term t is defined as:

FV(X)
FV(A x.t)

FV(t, 1)
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{x}
FV()\ {x}

FV(t) UFV(t)
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Substitution

Works when free variables are replaced by term that does
not clash:

X AZ.ZW](AYy.X)= (LY. A X. ZW)
However, problem if there is name capture/clash:
[X—> Az, zw] (A XX)#=(AX. AZ. ZW)

[X>AzZ.zw] (A wX) = (AW. A Z.ZW)
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Formal Defn of Substitution

X — S] X
X+ S|y
X =] (t 1)

[X = s] (A y.1)

[X+—s] (Ay.1)

[X—>s] (A y.1)
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S If y=x
y If y=x
(x> s]ty) ([x—s]t,)
Lyt If y=x

LY. x> s8]t Ifyzx Ay eFV(s)

[X—>s](Az. [y z] 1)
If y=x Ay € FV(s) A fresh z

Introduction

30



Syntax of Lambda Calculus

CS6202

A Xt
tt

A x.t

terms
variable
abstraction
application

terms
abstraction value
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Call-by-Value Semantics

premise —__
t, >t
— (E-Appl)
Lt =101
conclusion —
t, >t
=2 (E-App2)
v, t, = v, U,
(AXt)Vv — [X—> V]t (E-AppAbs)
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Getting Stuck

Evaluation can get stuck. (Note that only values are A-
abstraction)

e.g. (xy)

In extended lambda calculus, evaluation can also get stuck
due to the absence of certain primitive rules.

(A X. succ X) true — succ true -
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Boolean-Enriched Lambda Calculus

Term:
t..=

X
A Xt
tt
true
false
If tthentelset

Value:
A Xt
true
false
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terms
variable
abstraction
application
constant true
constant false
conditional

value

abstraction value
true value

false value
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Key ldeas

Exact typing impossible.
If <long and tricky expr> then true else (A X.X)

Need to introduce function type, but need argument and
result types.

If true then (A Xx.true) else (A X.X)
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Simple Types

The set of simple types over the type Bool is generated by
the following grammar:

T .= types
Bool type of booleans
T>T type of functions

— IS right-associative:

T,—>T,—T, denotes T,—(T,— T,
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Implicit or Explicit Typing

e Languages in which the programmer declares all types are
called explicitly typed. Languages where a typechecker
Infers (almost) all types is called implicitly typed.

o Explicitly-typed languages places onus on programmer but

are usually better documented. Also, compile-time
analysis Is simplified.
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Explicitly Typed Lambda Calculus

¢ tI= terms
AX:Tit abstraction
e vi= value
AX: Tt abstraction value
« Tu= types
Bool type of booleans
T—>T type of functions
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Examples

CS6202

true
A X:Bool . x

(A x:Bool . x) true

If false then (A x:Bool . True) else (A x:Bool . x)
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Erasure

The erasure of a simply typed term t is defined as:

erase(X)
erase(Ax :T.t)
erase(t; t,)

X
A X. erase(t)
erase(t,) erase(t,)

A term m In the untyped lambda calculus is said to be

typable in A_, (simply typed A-calculus) if there are some
simply typed term t, type T and context I" such that:

erase(t)y=m ATHF t:T
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Typing Rule for Functions

First attempt:

t,: T,
AXT . LT, =T,

But t,:T, can assume that x has type T,
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Need for Type Assumptions

Typing relation becomes ternary

T, Ft,:T,
AXT LT, =T,

For nested functions, we may need several assumptions.
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Typing Context

A typing context Is a finite map from variables to their
types.

Examples:
X : Bool

X : Bool, y : Bool — Bool, z : (Bool — Bool) — Bool
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Type Rule for Abstraction

Shall use I'" to denote typing context.

[XxT -t T,
' FAXT LT, =T,

(T-Abs)
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Other Type Rules

Variable

xTel
'+ x:T

(T-Var)

Application
't : T, =T, TI'Ft:T,;

' =t t:T,

Boolean Terms.
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Typing Rules

True : Bool (T-true) False : Bool (T-false) 0 : Nat (T-Zero)

t;:Bool t,;T t;:T

_ (T-1f)
Ift,thent,elset;: T
t . Nat t - Nat t . Nat
_ (T-Succ) ' (T-Pred) —— (T-Iszero)
succ t: Nat pred t : Nat iszero t : Bool
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Example of Typing Derivation

X : Bool € x : Bool

(T-Var)
X : Bool  x : Bool

(T-Abs) )
~ (A x : Bool. x) : Bool — Bool e—— (T-True)

(T-App)

- (A x : Bool. x) true : Bool
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Canonical Forms

If v IS a value of type Bool, then v Is either true or false.

If v Is a value of type T, — T,, then v= x:T,. t, where t:T,
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Progress

Suppose t Is a closed well-typed term (thatis {} - t: T
for some T).

Then either t 1s a value or else there is some t’
such thatt — t’.
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Preservation of Types (under Substitution)

If I'xS+Ht:TandTl F s:S

thenTH[x—>s]t: T
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Preservation of Types (under reduction)

Ifr-t:Tandt -t

thenTkH t: T
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Motivation for Typing

« Evaluation of a term either results in a value or gets
stuck!

e Typing can prove that an expression cannot get stuck.

 Typing Is static and can be checked at compile-time.
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Normal Form

A term t 1S a normal form if there is no t’ such that t — t.

The multi-step evaluation relation —* is the reflexive,
transitive closure of one-step relation.

pred (succ(pred 0))

— pred (succ(pred 0))
pred (succ 0) e

— 0

0

CS6202 Introduction

53



Stuckness

Evaluation may fail to reach a value:

succ (if true then false else true)
_>

succ (false)

A

A term i1s stuck iIf it i1s a normal form but not a value.

Stuckness Is a way to characterize runtime errors.
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Safety = Progress + Preservation

e Progress : A well-typed term is not stuck. Either it is a
value, or It can take a step according to the evaluation
rules.

Suppose t Is a well-typed term (that is t:T for some T).
Then either t 1s a value or else there 1Is some t witht — t’
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Safety = Progress + Preservation

* Preservation : If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.

If tT A t—t thent:T.
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