CS6202: Advanced Topics In
Programming Languages and Systems

Lecture 1 : Lambda Calculus

CS6202 Introduction

Lambda Calculus

e Untyped Lambda Calculus

e Evaluation Strategy

« Techniques - encoding, extensions, recursion
o Operational Semantics

o Explicit Typing

 Type Rules and Type Assumption

* Progress, Preservation, Erasure

Introduction to Lambda Calculus:
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.cs.chalmers.se/Cs/Research/Logic/TypesSS05/Extra/geuvers.pdf

CS6202 Introduction 2

Untyped Lambda Calculus

o Extremely simple programming language which
captures core aspects of computation and yet allows
programs to be treated as mathematical objects.

» Focused on functions and applications.

 Invented by Alonzo (1936,1941), used In
programming (Lisp) by John McCarthy (1959).

CS6202 Introduction

Functions without Names

Usually functions are given a name (e.g. in language C):

Int plusone(int x) { return x+1; }
...plusone(b)...

However, function names can also be dropped:
(int (int x) { return x+1;}) (5)

Notation used in untyped lambda calculus:

(A X. x+1) (5)

CS6202 Introduction

Syntax

In purest form (no constraints, no built-in operations), the lambda calculus
has the following syntax.

t= terms
X variable
A X.t abstraction
tt application

This is simplest universal programming language!

CS6202 Introduction

Conventions

» Parentheses are used to avoid ambiguities.
e.J. xyz can be either (xy)z or x (y z)

« Two conventions for avoiding too many parentheses:
« Applications associates to the left
e.g. xy z stands for (xy) z

« Bodies of lambdas extend as far as possible.
e.g. Ax. A y. xyxstands for A x. (L y. ((x y) x)).

* Nested lambdas may be collapsed together.
e.0. Ax.Ly.xyx can be written as A xy. x y x

CS6202 Introduction

Scope

An occurrence of variable x Is said to be bound when it
occurs In the body t of an abstraction i x . t

An occurrence of x Is free If it appears in a position where
It Is not bound by an enclosing abstraction of x.

Examples: xy

AY. XYy

A X. X (identity function)
(A X. X X) (L X. X X) (non-stop loop)
(AX.X)y

(A X. X) X

CS6202 Introduction

Alpha Renaming

e Lambda expressions are equivalent up to bound variable

renaming.

.. AX.X =, AVY.Y
AY. XYy =, AMZ.XZ

But NOT:

LY. Xy =, Ay.zy

e Alpha renaming rule:

AX.E = Az.[x—>2Z]E (z I1s not free In E)

CS6202 Introduction

Beta Reduction

* An application whose LHS Is an abstraction, evaluates to
the body of the abstraction with parameter substitution.
.. (Ax.xy)z —>5 ZY

(A X.y)z —p Y
(A X XX) (A X.XX) =5 (A X XX) (A X XX)

« Beta reduction rule (operational semantics):

(AX.t)t = X GLlY

Expression of form (A x.t,)t,Is called a redex (reducible
expression).

CS6202 Introduction

Evaluation Strategies

e A term may have many redexes. Evaluation strategies can

be used to limit the number of ways in which a term can
be reduced.

* An evaluation strategy Is deterministic, If it allows
reduction with at most one redex, for any term.

e Examples:
- full beta reduction
- normal order
- call by name
- call by value, etc

CS6202 Introduction 10

Full Beta Reduction

* Any redex can be chosen, and evaluation proceeds until no
more redexes found.

o Example: (Ax.X) (Ax.X) (Az. (AX.X) 2))
denoted by id (id (Az. id 2))
Three possible redexes to choose:
id (id (Az. 1d 2))
id (id (Az. id 2))
id (id (Az. id 2))
* Reduction;
id (id (Az. 1d 2))
— 1d (id (Az.2))

— 1d (\Lz.z
— ANZ.Z

CS6202 7L> Introduction 11

Normal Order Reduction

Deterministic strategy which chooses the leftmost,
outermost redex, until no more redexes.

Example Reduction:

1d (id (Az. id 2))
— 1d (Az. 1d 2))
—Azid z
— NZ.Z

s

CS6202 Introduction

12

Call by Name Reduction

Chooses the leftmost, outermost redex, but never reduces
Inside abstractions.

Example:

Id (id (Az. 1d 7))
— 1d (Az. 1d 2))
— Az.id z

76

CS6202 Introduction

13

Call by Value Reduction

Chooses the leftmost, innermost redex whose RHS iIs a
value: and never reduces Inside abstractions.

Example:

id (id (Az. 1d 2))
— 1d (Az. 1d 2)
— Az.id z

A

CS6202 Introduction

14

Strict vs Non-Strict Languages

« Strict languages always evaluate all arguments to function
before entering call. They employ call-by-value evaluation
(e.g. C, Java, ML).

« Non-strict languages will enter function call and only
evaluate the arguments as they are required. Call-by-name
(e.g. Algol-60) and call-by-need (e.g. Haskell) are possible
evaluation strategies, with the latter avoiding the re-
evaluation of arguments.

* In the case of call-by-name, the evaluation of argument
occurs with each parameter access.

CS6202 Introduction 15

Programming Techniques in A-Calculus

Multiple arguments.
Church Booleans.
Pairs.

Church Numerals.
Enrich Calculus.

Recursion.

CS6202 Introduction

16

Multiple Arguments

Pass multiple arguments one by one using lambda
abstraction as intermediate results. The process is also
known as currying.

Example:
f=a(xy)s I > f=ax.(LY.s)
Application:
f(v,w) (fv)w
requires pairs as requires higher
primitve types order feature

CS6202 Introduction 17

Church Booleans
e Church’s encodings for true/false type with a conditional:

true = At Af.t

false = At AT f
if =AlLAmAnImn

 Example:
If true vw
= (ALAm. An Imn)truevw
— truevw

= (AtAfHvw
— vV

* Boolean and operation can be defined as:
and =X a. A b. if ab false
=raAb. (ALAm. An Imn)ab false
=Aa.Ab.abfalse

CS6202 Introduction

Pairs

« Define the functions pair to construct a pair of values, fst to
get the first component and snd to get the second
component of a given pair as follows:

pair = Af.As.Ab.bfs
fst = Ap.ptrue
snd = Ap.pfalse

 Example:
snd (pair c d)
(A p.pfalse) (W f.As. A b.bfs)cd)
(A p.pfalse) (A b. bcd)
(A b. b cd) false
false c d
d

CS6202 Introduction

L L L Lt

Church Numerals

Numbers can be encoded by:

CS6202

AS.AZ.Z

AS.AZ.S7Z

AS.Az.5(s2)
LS. AZ.5(s(s2)

Introduction

20

Church Numerals

e Successor function can be defined as:
succ = AN.AS.Az.s(NsZ)

Example:
succ ¢,
= (An.As.Az.s(nsz)(As. Az s2)

—> AS.AZ.S((AS.Az.52)s2)
— AS.AZ.5(52)

succ c,

= ANAS.AzZ.s(hsz) (As.Az.5(52)
— AS.AZ.S((As.Az.s5(s2))sz)

— AS.AZ.5(5(s2)

CS6202 Introduction

Church Numerals
e Other Arithmetic Operations:

plus =Am.An As.Az.ms(nsz)
times =A m.An. m(plusn)c,
iIszero = A m. m (A x. false) true

« Exercise : Try out the following.

CS6202

plus c, X
times ¢, X
times X ¢,
ISzero ¢,
Iszero c,

Introduction

22

Enriching the Calculus

e We can add constants and built-in primitives to enrich A-

calculus. For example, we can add boolean and arithmetic
constants and primitives (e.g. true, false, if, zero, succ, iszero,
pred) Into an enriched language we call ANB:

Example:

A X. succ (succ xX) € ANB
A X. true € ANB

CS6202 Introduction

23

Recursion

Some terms go into a loop and do not have normal form.

Example:

(A X. X X) (A X. X X)
— (A X XX) (A X.XX)
_>

 However, others have an interesting property
fiX=AfL (AX.TAAY.XXY) (AX.T(AY.XXY))
which returns a fix-point for a given functional.
Given X =hx
_sixp] x is fix-point of h

Thatis: fixh — h (fix h) = h (h (fix h)) — ...

CS6202 Introduction

24

Example - Factorial

We can define factorial as:

fact = A n. iIf (n<=1) then 1 else times n (fact (pred n))

= (A h. A n.if (n<=1) then 1 else times n (h (pred n))) fact

N
= fix (A h. A n. if (n<=1) then 1 else times n (h (pred n)))

CS6202 Introduction

25

Example - Factorial

CS6202

Recall:
fact = fix (A h. A n. if (n<=1) then 1 else times n (h (pred n)))

Let g = (A h. & n. if (n<=1) then 1 else times n (h (pred n)))

Example reduction:

fact 3 fixg 3

g (fixg) 3

times 3 ((fix g) (pred 3))

times 3 (g (fix g) 2)

times 3 (times 2 ((fix g) (pred 2)))
times 3 (times 2 (g (fix g) 1))
times 3 (times 2 1)

6

Introduction

26

Formal Treatment of Lambda Calculus

Let v be a countable set of variable names. The set of
terms 1s the smallest set T such that:

1. xeTforeveryxeV

2. Ift,eTandxeV,thenix.t,eT

3. Ift,eTandt, T, thentt,eT

Recall syntax of lambda calculus:

t= terms
X variable
A .t abstraction
tt application

CS6202 Introduction

27

Free Variables

The set of free variables of a term t is defined as:

FV(X)
FV(A x.t)

FV(t, 1)

CS6202

{x}
FV()\ {x}

FV(t) UFV(t)

Introduction

28

Substitution

Works when free variables are replaced by term that does
not clash:

X AZ.ZW](AYy.X)= (LY. A X. ZW)
However, problem if there is name capture/clash:
[X—> Az, zw] (A XX)#=(AX. AZ. ZW)

[X>AzZ.zw] (A wX) = (AW. A Z.ZW)

CS6202 Introduction

29

Formal Defn of Substitution

X — S] X
X+ S|y
X =] (t 1)

[X = s] (A y.1)

[X+—s] (Ay.1)

[X—>s] (A y.1)

CS6202

S If y=x
y If y=x
(x> s]ty) ([x—s]t,)
Lyt If y=x

LY. x> s8]t Ifyzx Ay eFV(s)

[X—>s](Az. [y z] 1)
If y=x Ay € FV(s) A fresh z

Introduction

30

Syntax of Lambda Calculus

CS6202

A Xt
tt

A x.t

terms
variable
abstraction
application

terms
abstraction value

Introduction

31

Call-by-Value Semantics

premise —__
t, >t
— (E-Appl)
Lt =101
conclusion —
t, >t
=2 (E-App2)
v, t, = v, U,
(AXt)Vv — [X—> V]t (E-AppAbs)

CS6202 Introduction

32

Getting Stuck

Evaluation can get stuck. (Note that only values are A-
abstraction)

e.g. (xy)

In extended lambda calculus, evaluation can also get stuck
due to the absence of certain primitive rules.

(A X. succ X) true — succ true -

CS6202 Introduction

33

Boolean-Enriched Lambda Calculus

Term:
t..=

X
A Xt
tt
true
false
If tthentelset

Value:
A Xt
true
false

CS6202

terms
variable
abstraction
application
constant true
constant false
conditional

value

abstraction value
true value

false value

Introduction

34

Key ldeas

Exact typing impossible.
If <long and tricky expr> then true else (A X.X)

Need to introduce function type, but need argument and
result types.

If true then (A Xx.true) else (A X.X)

CS6202 Introduction

35

Simple Types

The set of simple types over the type Bool is generated by
the following grammar:

T .= types
Bool type of booleans
T>T type of functions

— IS right-associative:

T,—>T,—T, denotes T,—(T,— T,

CS6202 Introduction

36

Implicit or Explicit Typing

e Languages in which the programmer declares all types are
called explicitly typed. Languages where a typechecker
Infers (almost) all types is called implicitly typed.

o Explicitly-typed languages places onus on programmer but

are usually better documented. Also, compile-time
analysis Is simplified.

CS6202 Introduction 37

Explicitly Typed Lambda Calculus

¢ tI= terms
AX:Tit abstraction
e vi= value
AX: Tt abstraction value
« Tu= types
Bool type of booleans
T—>T type of functions

CS6202 Introduction 38

Examples

CS6202

true
A X:Bool . x

(A x:Bool . x) true

If false then (A x:Bool . True) else (A x:Bool . x)

Introduction

39

Erasure

The erasure of a simply typed term t is defined as:

erase(X)
erase(Ax :T.t)
erase(t; t,)

X
A X. erase(t)
erase(t,) erase(t,)

A term m In the untyped lambda calculus is said to be

typable in A_, (simply typed A-calculus) if there are some
simply typed term t, type T and context I" such that:

erase(t)y=m ATHF t:T

CS6202 Introduction

40

Typing Rule for Functions

First attempt:

t,: T,
AXT . LT, =T,

But t,:T, can assume that x has type T,

CS6202 Introduction

41

Need for Type Assumptions

Typing relation becomes ternary

T, Ft,:T,
AXT LT, =T,

For nested functions, we may need several assumptions.

CS6202 Introduction

42

Typing Context

A typing context Is a finite map from variables to their
types.

Examples:
X : Bool

X : Bool, y : Bool — Bool, z : (Bool — Bool) — Bool

CS6202 Introduction

43

Type Rule for Abstraction

Shall use I'" to denote typing context.

[XxT -t T,
' FAXT LT, =T,

(T-Abs)

CS6202 Introduction

44

Other Type Rules

Variable

xTel
'+ x:T

(T-Var)

Application
't : T, =T, TI'Ft:T,;

' =t t:T,

Boolean Terms.

CS6202 Introduction

(T-App)

45

Typing Rules

True : Bool (T-true) False : Bool (T-false) 0 : Nat (T-Zero)

t;:Bool t,;T t;:T

_ (T-1f)
Ift,thent,elset;: T
t . Nat t - Nat t . Nat
_ (T-Succ) ' (T-Pred) —— (T-Iszero)
succ t: Nat pred t : Nat iszero t : Bool

CS6202 Introduction 46

Example of Typing Derivation

X : Bool € x : Bool

(T-Var)
X : Bool x : Bool

(T-Abs))
~ (A x : Bool. x) : Bool — Bool e—— (T-True)

(T-App)

- (A x : Bool. x) true : Bool

CS6202 Introduction 47

Canonical Forms

If v IS a value of type Bool, then v Is either true or false.

If v Is a value of type T, — T,, then v= x:T,. t, where t:T,

CS6202 Introduction

48

Progress

Suppose t Is a closed well-typed term (thatis {} - t: T
for some T).

Then either t 1s a value or else there is some t’
such thatt — t’.

CS6202 Introduction

49

Preservation of Types (under Substitution)

If I'xS+Ht:TandTl F s:S

thenTH[x—>s]t: T

CS6202 Introduction

50

Preservation of Types (under reduction)

Ifr-t:Tandt -t

thenTkH t: T

CS6202 Introduction

51

Motivation for Typing

« Evaluation of a term either results in a value or gets
stuck!

e Typing can prove that an expression cannot get stuck.

 Typing Is static and can be checked at compile-time.

CS6202 Introduction

52

Normal Form

A term t 1S a normal form if there is no t’ such that t — t.

The multi-step evaluation relation —* is the reflexive,
transitive closure of one-step relation.

pred (succ(pred 0))

— pred (succ(pred 0))
pred (succ 0) e

— 0

0

CS6202 Introduction

53

Stuckness

Evaluation may fail to reach a value:

succ (if true then false else true)
_>

succ (false)

A

A term i1s stuck iIf it i1s a normal form but not a value.

Stuckness Is a way to characterize runtime errors.

CS6202 Introduction

54

Safety = Progress + Preservation

e Progress : A well-typed term is not stuck. Either it is a
value, or It can take a step according to the evaluation
rules.

Suppose t Is a well-typed term (that is t:T for some T).
Then either t 1s a value or else there 1Is some t witht — t’

CS6202 Introduction 55

Safety = Progress + Preservation

* Preservation : If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.

If tT A t—t thent:T.

CS6202 Introduction

56

