
CS6202 ML 1

CS6202: Advanced Topics in
Programming Languages and Systems

Lecture 2/3 : Standard ML

A type-safe language that embodies
many innovative ideas in language
design.

CS6202 ML 2

Standard ML Standard ML

• Great programming language – reusability,
abstraction, quite efficient.

• Expression-Oriented.
• Values, Types and Effects
• Polymorphic Types and Inference
• Products, Records and Algebraic Types
• Higher-Order Functions
• Exceptions and Reference Types
• Rich Module Language

Reference --- Programming in Standard ML:
http://www.cs.cmu.edu/~rwh/introsml/

CS6202 ML 3

Example ML Program Example ML Program
• Problem – matching string against a regular expression.

• Structure is implementation, while signature denotes
interface.

CS6202 ML 4

Signature Signature

• Signature – describe interface of modules.

• Signature Expression :
sigexp ::= sig specs end

• Contains basic specifications for type, datatype,
exception, values.

• Signature binding :
signature sigid = sigexp

CS6202 ML 5

Implementation Implementation

• Implementation of signature is called structure.

• Components referred by long identifiers.

CS6202 ML 6

Structure Structure

• A unit of program with declarations for types,
exceptions and values.

• Structure Expression :
strexp ::= struct decs end

• Contains definitions for type, datatype, exception,
values.

• Structure binding :
structure strid = strexp

CS6202 ML 7

Computation Model Computation Model

• Emphasis is on evaluation of expressions rather than
command.

• Each expression has three characteristics :
(i) type, (ii) value and (iii) possible effect.

• Type is a description of the value it is supposed to yield.

• Evaluation may cause an effect, such as input/output,
exception or mutation.

• Pure expression (e.g. mathematical functions) does not
have side-effects.

CS6202 ML 8

ValuesValues

• Expression has a type, denoted by exp : typ

• Can be evaluated to a value, denoted by exp ⇓ val

CS6202 ML 9

TypesTypes
• Some examples of base types :

CS6202 ML 10

DeclarationsDeclarations

• Any type may be given a name through type binding

• A value may be given a name through a value binding.
Such bindings are type-checked, and rejected if ill-typed.

CS6202 ML 11

Limiting ScopeLimiting Scope

• Scope of a type variable or type constructor may be
delimited, as follows :

• An Example.

CS6202 ML 12

Functions Functions
• Two main aspects :

• algorithmic – how it is computed
• extensional – what is being computed

• Each function has a type :
typ -> typ’

• Anonymous function written using syntax :

Example :

CS6202 ML 13

Functions Functions
• Function is also a value :

• An example of function value :

CS6202 ML 14

TupleTuple and Product Typeand Product Type
• Aggregate data structures, such as tuples, lists, can be

easily created and manipulated.

• An n-tuple is a finite ordered sequence :

:

tuple value
product type

Example

CS6202 ML 15

TupleTuple PatternPattern
• Allows easy access of components. General form :

• Example :

• Permitted form of tuple pattern :

CS6202 ML 16

Record TypesRecord Types
• Record type allows a label to be associated with each

component.

• A record value and its type :

:

record value
record type

• Record binding.

CS6202 ML 17

Record ExampleRecord Example

ellipsis as shorthand

record type record binding

expanded

CS6202 ML 18

SelectorsSelectors
• A list of predefined selection function for the i-th

component of a tuple.

• Predefined selector for record fields :

• Use sparingly as patterns are typically clearer.

CS6202 ML 19

Case AnalysisCase Analysis

• Clausal function expression useful for cases.

• An example :

• Alternative form :

≡

CS6202 ML 20

Recursive FunctionRecursive Function
• Use rec to indicate recursive value binding.

• Or use fun notation directly :

CS6202 ML 21

General RecursionGeneral Recursion
• Requires linear stack space.

• Example :

CS6202 ML 22

Iteration via TailIteration via Tail--RecursionRecursion
• Loop is equivalent to tail-recursive code

• Example :

• What is a tail call, and why is it more efficient?

CS6202 ML 23

Polymorphism / OverloadingPolymorphism / Overloading
• Some functions have generic type. For example, the

identity function has a principal type ‘a -> ‘a

• Overloading uses the same name for a class of operator.

• Hard problem:

CS6202 ML 24

Algebraic Data Types Algebraic Data Types

• Data type declaration via datatype contains :
• Type constructor
• Value constructor(s)

• Examples of non-recursive data types.

type constructor value constructors

CS6202 ML 25

Algebraic Data Types Algebraic Data Types

• Some may have type parameters, e.g.

• An example of its use :

• Recursive type is also possible :

CS6202 ML 26

Algebraic Data Types Algebraic Data Types

• Recursive functions :

• Mutual recursive data types (a bit contrived):

• Disjoint union types :

CS6202 ML 27

Abstract Syntax TreeAbstract Syntax Tree

• Easy to model symbolic data structures :

• An interpreter :

CS6202 ML 28

ListsLists

• A built-in data type with 2 value constructors.

• Some functions on list :

abbreviated

infix version of append

CS6202 ML 29

HigherHigher--Order FunctionsOrder Functions

• Functions are first-class : pass as arguments, return as
result, contain inside data structures, has a type.

• Key main uses :
• abstracting control
• staging computation

• Example – applies a function to every element of list

CS6202 ML 30

HigherHigher--Order FunctionsOrder Functions

• Returning function as result :

• Curry function to untupled argument

tupled curried

CS6202 ML 31

Abstracting ControlAbstracting Control

• Abstracting similar patterns of control

• What is the principal type of this reduction?

CS6202 ML 32

StagingStaging
• Distinguish early from late arguments :

• Improve by early evaluation and then sharing.

late argument

early argument

staged_append [v1,…,vn]

CS6202 ML 33

ExceptionsExceptions
• Are useful to catch runtime errors.

• An example of user-defined exception :

CS6202 ML 34

ExceptionsExceptions
• Exception handler can be used to catch a raised

exception. This can make software more robust.

• Handler has the syntax:
exp handle match
match ::= pat => exp

CS6202 ML 35

ExceptionsExceptions
• Exception can implement back-tracking.

• Exception may carry values.
declare

raise

catch

CS6202 ML 36

Mutable StoreMutable Store
• Mutable cell contains a value that may change :

• Create a mutable cell with an initial value :
ref : ‘a -> ‘a ref

• Contents can be retrieved using :
! : ‘a ref -> ‘a

Can use a ref pattern :

• How is equality implemented for reference?

CS6202 ML 37

Bad Imperative ProgrammingBad Imperative Programming
• A factorial function : can you follow?

CS6202 ML 38

OO Programming StyleOO Programming Style
• An single counter :

• A class of counters :

type of
new_counter

CS6202 ML 39

Mutable ArrayMutable Array
• Mutable array as a primitive data structure :

• Can be used for memoization where many redundant
calls, e.g n-th Catalan number :

sum f n = (f 0) + … + (f n)

CS6202 ML 40

MemoizationMemoization
• Repeated calls are retrieved rather than recomputed.

CS6202 ML 41

MemoizationMemoization
• Apply the same idea to computing fibonacci efficiently.

local
val limit : int = 1000
val memo : int option array = Array.array(limit,NONE)

in
fun fib’ 0 = 1
| fib’ 1 = 1
| fib’ n = fib(n-1) + fib(n-2)

and fib n =
if n<limit then
case Array.sub (memo,n) of
SOMR r => r

| None => let r=fib’ n in
Array.update(memo,n,SOME r)

end
else fib’ n

end
CS6202 ML 42

TuplingTupling
• Is there no hope for purity?

Use tupled function

fibtup n = (fib(n+1), fib(n))

fun fibtup 0 = (1,1)
| fibtup n = case fibtup(n-1) of

(u,v) => (u+v,u)
and fib n = snd(fibtup(n))
end

Optimised code with reuse :

More optimization – tail recursion ? logarithmic time?

CS6202 ML 43

Input/OutputInput/Output
• Standard input/output organized as streams.

• Read a line from an input stream.
inputLine : instream -> string

• Write a line to stdout stream.
print : string -> unit

• Write a line to a specific stream.
output : outstream * string -> unit
flushout : outstream -> unit

• A blocking input that reads current available string
input : instream -> string

• Non-blocking input that reads upto n-char string
caninput : instream * int -> string

CS6202 ML 44

Lazy Data StructuresLazy Data Structures
• ML philosophy – laziness us a special case of eagerness.

Can treat an unevaluated expression as a value.
• Applications (i) infinite structures (e.g. streams)

(ii) interactive system
(iii) better termination property

• Infinite stream and acceses:

activate SML/NJ option

CS6202 ML 45

Lazy Function DefinitionsLazy Function Definitions
• Function over lazy stream is already lazy.

• An example of difference in laziness

• So how can a function be made lazier?.

CS6202 ML 46

Programming with StreamsProgramming with Streams
• Lazily set up stream computation, not perform them.

• Lazy feature suspends a function call, an example :

Result : [0,1,2,3,4,5,6,…..]

CS6202 ML 47

Infinite PrimesInfinite Primes
• Using Sieve of Erastotene method that sieves away non-

prime.

CS6202 ML 48

Modules in MLModules in ML
• Signatures and Structures are fundamental constructs of

ML module system.

• Four basic forms of specifications are :

CS6202 ML 49

SignaturesSignatures
• An example of signature definition.

• Above signature requires its structure to provide a unary
type constructor, an exception and three polymorphic
value/functions.

CS6202 ML 50

Signature InheritanceSignature Inheritance

• Signatures can use two kinds of inheritance mechanism -
inclusion or specialization.

• An example with inclusion :

• Same as expanded version :

CS6202 ML 51

Signature SpecializationSignature Specialization

• Can augment an existing signature with extra type
definitions.

• But must not re-define a type that is already defined.

CS6202 ML 52

StructuresStructures

• Structures are implementation of signatures, while
signatures are the types of structures.

• Four basic forms of structures.

CS6202 ML 53

Structure BindingStructure Binding

• An example :

• Long identifiers of the form : strid.id
Queue.empty : ‘a Queue.queue
Queue.insert : ‘a * ‘a Queue.queue -> ‘a Queue.queue
‘a Queue.queue = ‘a list * ‘a list

exposed details
CS6202 ML 54

Structure AbbreviationStructure Abbreviation

• Use shorter names :

• An open declaration can inline the bindings directly

• Caveat : if an identifier is re-declared, it
shadows/overrides the previous version.

CS6202 ML 55

Structure MatchingStructure Matching

• When does a structure implement a signature? All
components must satisfy all type definitions in signature.

• Rules of thumb :

CS6202 ML 56

Principal SignaturePrincipal Signature

• Captures the most specific description of the components
of structure.

• Briefly it contains all type definitions, datatype
definitions, exception bindings plus principal types of
value bindings.

• A candidate signature matches another one if it has all
components and all type equations of the latter.

• Target is considered a weakening of the candidate.

CS6202 ML 57

Signature MatchingSignature Matching

Queue_with_Empty match Queue

Queue_with_Lists match Queue
but not vice-versa!

CS6202 ML 58

Polymorphic InstantiationPolymorphic Instantiation

• Signature matching may involve an instantiation of
polymorphic types.

• ‘a queue has been instantiated to int queue

CS6202 ML 59

DatatypeDatatype RefinementRefinement

• A datatype spec matches a type with same name but no
definition.

• A structure implements a signature safely if its principal
signature matches with the latter signature.

CS6202 ML 60

Signature AscriptionSignature Ascription

• Signature ascription imposes the requirement that a
structure implements a signature, hence weakening its
signature for all subsequent uses.

• Two forms of ascriptions

transparent (descriptive)

opaque (restrictive)

CS6202 ML 61

Opaque AscriptionOpaque Ascription

• Primary use is to enforce data abstraction.

• The type ‘a Queue.queue is abstract. Cannot rely on the
fact that it is implemented as (‘a list * ‘a list) .

CS6202 ML 62

Exposing Opaque AscriptionExposing Opaque Ascription

• Occasionally some type need to be exposed.

• Cannot compare unless we know what elt type is.

CS6202 ML 63

Transparent AscriptionTransparent Ascription

• Cuts down need for explicit exposure of type definitions.

• Not useful unless we know the definition for t.

hidden

CS6202 ML 64

Transparent AscriptionTransparent Ascription

• Can help document an interpretation without rendering it
abstract.

• Two ways of ordering integers.

CS6202 ML 65

Module HierarchiesModule Hierarchies

• During structure implementation, some type may be
specialised to different possibilities.

can be changed
to other types

CS6202 ML 66

SubstructuresSubstructures

• Can organise as a structure within a structure.

CS6202 ML 67

SubstructuresSubstructures

• Different possible implementations :

• Can generalize to parameterised signatures.

CS6202 ML 68

Sharing SpecificationsSharing Specifications

• Substructures express dependency between one
abstraction and another. same Vector

CS6202 ML 69

Sharing SpecificationsSharing Specifications
• Opaque ascriptions make type abstract and different.

Point.Vector and
Vector are treated
as different types!

Solved by explicit
sharing constraints

CS6202 ML 70

Sharing SpecificationsSharing Specifications
• Can re-organise to cut down redundant substructures.

use Vector
from Point

• One fewer sharing constraint.

CS6202 ML 71

Parameterized ModulesParameterized Modules
• Can support code/spec reuse.

• Functor – module level function that takes a structure as
argument to return a structure as result.

result signature is
opaquely described

CS6202 ML 72

An Example An Example FunctorFunctor
• A parametric implementation of dictionary.

opaque result
signature

CS6202 ML 73

FunctorFunctor ApplicationApplication
• Format funid(binds) where binds is a sequence of

bindings of arguments of the functor

• Corresponding opaque signatures :

CS6202 ML 74

FunctorFunctor and Sharingand Sharing
• Functor can facilitate sharing of specification

• Without functor:

• With functor:

May be Wrongly typed!

CS6202 ML 75

FunctorFunctor and Sharingand Sharing
• Add sharing constraints to parameter list of functors.

• Is sharing constraint avoidable? Parameterize on Point
but there is a loss of generality.

CS6202 ML 76

Summary Summary

• Values, Types and Effects
• Polymorphic Types and Inference
• Products, Records and Algebraic Types
• Higher-Order Functions
• Exceptions, Mutable State, Memoization
• Lazy Evaluation
• Module – Signature, Structure, Functors

Reference --- Programming in Standard ML:
http://www.cs.cmu.edu/~rwh/introsml/

