
CS6202 Extended Lambda Calculus 1

CS6202: Advanced Topics in
Programming Languages and Systems

Lecture 4-5 : Types

Lecturer : Chin Wei Ngan

Email : chinwn@comp.nus.edu.sg

Office : S15 06-01

“Types for Extended Lambda Calculus”

CS6202 Extended Lambda Calculus 2

Rise of L ightweight Formal MethodsRise of L ightweight Formal Methods

Don’t prove correctness: just find bugs ..

- model checking
- light specification and verification (e.g. ESC, SLAM ..)
- type-checking!

Basic ideas are long established; but industrial attitudes
have been softened by the success of model checking in
hardware design.

“Formal methods will never have any impact until they can be
used by people that don’t understand them” : Tom Melham

CS6202 Extended Lambda Calculus 3

What is a Type Systems? What is a Type Systems?

A Type System is a

• tractable syntactic method

• for proving the absence of certain program
behaviors

• by classifying phrases according to the
kinds of values they compute

CS6202 Extended Lambda Calculus 4

Why Type Systems? Why Type Systems?

Type systems are good for:

• detecting errors
• abstraction
• documentation
• language design
• efficiency
• safety
• .. etc.. (security,exception,theorem-proving,web-

metadata,categorical grammer)

CS6202 Extended Lambda Calculus 5

Pure Simply Typed Lambda CalculusPure Simply Typed Lambda Calculus

• t ::= terms
x variable
O x:T.t abstraction
t t application

• v ::= value
O x :T.t abstraction value

• T ::= types
T � T type of functions

• * ::= contexts
� empty context
*, x:T type variable binding

CS6202 Extended Lambda Calculus 6

TypingTyping

* C x : T

x:T � *

* C t1 t2 : T2

* C t1 : T1 � T2 * C t2 : T1

(T-Var)

(T-App)

* C O x:T1.t2 : T1 � T2

*, x:T1 C t2 : T2 (T-Abs)

CS6202 Extended Lambda Calculus 7

Where are the Base Types?Where are the Base Types?

• T ::= types
T � T type of functions

Extend with uninterpreted base types, e.g.
• T ::= types

T � T type of functions
A base type 1
B base type 2
C base type 3
:

CS6202 Extended Lambda Calculus 8

Unit TypeUnit Type

New Syntax:
t ::= … terms

unit constant unit
v ::= … values

unit constant unit
T ::= … types

Unit unit type
Note that Unit type has only one possible value.

New Evaluation Rules: None

New Typing Rules :
* C unit : Unit T-Unit

CS6202 Extended Lambda Calculus 9

Sequencing : Basic Idea Sequencing : Basic Idea

Syntax : e1; e2

Evaluate an expression (to achieve some side-effect, such as
printing), ignore its result and then evaluate another
expression.

Examples:

(print x); x+1

(printcurrenttime); compute; (printcurrenttime)

CS6202 Extended Lambda Calculus 10

Lambda Calculus with SequencingLambda Calculus with Sequencing

New Syntax
• t ::= … terms

t ; t sequence

unit ; t � t (E-SeqUnit)

t1 ; t2 � t‘
1 ; t2

t1 � t‘
1 (E-Seq)

New Evaluation Rules:

CS6202 Extended Lambda Calculus 11

Sequencing (cont) Sequencing (cont)

* C t1 ; t2 : T2

* C t1 : Unit1 * C t2 : T2 (T-Seq)

New Typing Rule:

CS6202 Extended Lambda Calculus 12

Sequencing (Second Version)Sequencing (Second Version)

• Treat t1;t2 as an abbreviation for (Ox:Unit. t2) t1 .

• Then the evaluation and typing rules for abstraction and
application will take care of sequencing!

• Such shortcuts are called derived forms (or syntactic
sugar) and are heavily used in programming language
definition.

CS6202 Extended Lambda Calculus 13

Equivalence of two SequencingEquivalence of two Sequencing

Let OE be the simply typed lambda calculus with the Unit type
and the sequencing construct.

Let OI be the simply-typed lambda calculus with Unit only.

Let e ��OE � OI be the elaboration function that translates
from OE To OI.

Then, we have for each term t:

• t �E t’ iff e(t) �I e(t’)

• * CE t:T iff * CI e(t):T

CS6202 Extended Lambda Calculus 14

Ascription : Motivation Ascription : Motivation

Sometimes, we want to say explicitly that a term has a
certain type.

Reasons:
• as comments for inline documentation
• for debugging type errors
• control printing of types (together with type

syntax)
• casting (Chapter 15)
• resolve ambiguity (see later)

CS6202 Extended Lambda Calculus 15

Ascription : Syntax Ascription : Syntax

New Syntax
• t ::= … terms

t as T ascription

Example:

(f (g (h x y z))) as Bool

CS6202 Extended Lambda Calculus 16

Ascription (cont)Ascription (cont)

New Evaluation Rules:

New Typing Rules:

v as T � v (E-Ascribe1)

t as T � t‘ as T

t � t‘
(E- Ascribe2)

* C t as T : T

* C t : T
(T-Ascribe)

CS6202 Extended Lambda Calculus 17

Let Bindings : Motivation Let Bindings : Motivation

• Let expression allow us to give a name to the result
of an expression for later use and reuse.

• Examples:

let pi=<long computation> in … pi..pi..pi… .

let square = O x:Nat. x*x in … .(square 2)..(square 4)…

CS6202 Extended Lambda Calculus 18

Lambda Calculus with Let BindingLambda Calculus with Let Binding

New Syntax
t ::= … terms

let x=t in t let binding

* C let x=t1 in t2 : T2

* C t1 : T1 *, x:T1 C t2 : T2 (T-Let)

New Typing Rule:

CS6202 Extended Lambda Calculus 19

Let Bindings as Derived FormLet Bindings as Derived Form

We can consider let expressions as derived form:

In untyped setting:
let x=t1 in t2 abbreviates to (O x. t2) t1

In a typed setting:
let x=t1 in t2 abbreviates to (O x:?. t2) t1

How to get type declaration for the formal parameter?
Answer : Type inference (see later).

CS6202 Extended Lambda Calculus 20

Pairs : Motivation Pairs : Motivation

Pairs provide the simplest kind of data structures.

Examples:

{9, 81}

O x : Nat. {x, x*x}

CS6202 Extended Lambda Calculus 21

Pairs : SyntaxPairs : Syntax

• t ::= … terms
{t, t} variable
t.1 first projection
t.2 second projection

• v ::= … value
{v, v} pair value

• T ::= … types
T e T product type

CS6202 Extended Lambda Calculus 22

Pairs : Typing RulesPairs : Typing Rules

* C {t1,t2} : T1 e T2

* C t1 : T1 * C t2 : T2 (T-Pair)

* C t.1 : T1

* C t : T1 e T2 (T-Proj1)

* C t.2 : T2

* C t : T1 e T2 (T-Proj2)

CS6202 Extended Lambda Calculus 23

TuplesTuples

Tuples are a straightforward generalization of pairs,
where n terms are combined in a tuple expression.

Example:
{1, true, unit} : {Nat, Bool, Unit}
{1,{true, 0}} : {Nat, {Bool, Nat}}
{} : {}

Note that n may be 0. Then the only value is {} with
type {}. Such a type is isomorphic to Unit.

CS6202 Extended Lambda Calculus 24

Records Records

Sometimes it is better to have components labeled more
meaningfully instead of via numbers 1..n, as in tuples

Tuples with labels are called records.

Example:
{partno=5524,cost=30.27,instock =false}

has type {partno:Nat, cost:Float, instock:Bool}
instead of:

{5524,30.27,false} : {Nat, Float, Bool}

CS6202 Extended Lambda Calculus 25

Sums : Motivation Sums : Motivation

Often, we may want to handle values of different
structures with the same function.

Examples:

PhysicalAddr={firstlast:String, add:String}
VirtualAddr={name:String, email:String}

A sum type can then be written like this:

Addr = PhysicalAddr + VirtualAddr

CS6202 Extended Lambda Calculus 26

Sums : Motivation Sums : Motivation

Given a sum type; e.g.

K = Nat + Bool

Need to use tags inl and inr to indicate that a value is a
particular member of the sum type; e.g.

inl 5 : K but not inr 5 : K nor 5 : K
inr true : K

CS6202 Extended Lambda Calculus 27

Sums : Motivation Sums : Motivation

Given the address type:

Addr = PhysicalAddr + VirtualAddr

We can use case construct to analyse the particular
value of sum type:

getName = O a : Addr. case a of
inl x => a.firstlast
inr y => y.name

CS6202 Extended Lambda Calculus 28

Sums : SyntaxSums : Syntax

• t ::= … terms
inl t as T tagging (left)
inr t as T tagging (right)
case t of {pi => ti} pattern matching

• v ::= … value
inl v as T tagged value (left)
inr v as T tagged value (right)

• T ::= … types
T + T sum type

CS6202 Extended Lambda Calculus 29

Sums : Typing RulesSums : Typing Rules

* C inl t1 as T1 e T2 : T1 e T2

* C t1 : T1 (T-Inl)

* C inr t2 as T1 e T2 : T1 e T2

* C t2 : T2 (T-Inr)

CS6202 Extended Lambda Calculus 30

Variants : Labeled Sums Variants : Labeled Sums

Instead of inl and inr, we may like to use nicer labels,
just as in records. This is what variants do.

For types, instead of: T1 + T�
we write: <l1:T1 + l2:T2>

For terms, instead of: inl r as T1 + T�
we write: <l1= t> as <l1:T1 + l2:T2>

CS6202 Extended Lambda Calculus 31

Variants : Example Variants : Example

An example using variant type:
Addr =<physical:PhysicalAddr, virtual:VirtualAddr>

A variant value:
a = <physical=pa> as Addr

Function over variant value:
getName = O a : Addr.

case a of
<physical=x> � x.firstlast
<virtual=y> � y.name

CS6202 Extended Lambda Calculus 32

Application : Enumeration Application : Enumeration

Enumeration are variants that only make use of their
labels. Each possible value is unit.

Weekday =<monday:Unit, tuesday:Unit,
wednesday:Unit, thursday:Unit, friday:Unit >

CS6202 Extended Lambda Calculus 33

Application : SingleApplication : Single--Field Variants Field Variants

Labels can be convenient to add more information on
how the value is used.

Example, currency denominations (or units):

DollarAmount =<dollars:Float>

EuroAmount =<euros:Float>

CS6202 Extended Lambda Calculus 34

Recursion : Motivation Recursion : Motivation

Recall the fix-point combinator:

fix = O f. (O x. f (O y. x x y)) (O x. f (O y. x x y))

Unfortunately, it is not valid (well-typed) in simply
typed lambda calculus.

Solution : provide this as a language primitive that is
hardwired.

CS6202 Extended Lambda Calculus 35

Recursion : Syntax & Evaluation RulesRecursion : Syntax & Evaluation Rules

New Syntax
• t ::= … terms

fix t fixed point operator

New Evaluation

fix t � fix t’

t � t‘
(E-Fix)

fix (O x : T. t) � [x � fix (O x : T. t)] t (E-FixBeta)

CS6202 Extended Lambda Calculus 36

Recursion : Typing RulesRecursion : Typing Rules

* C fix t : T

* C t : T� T (T-Fix)

Can you guess the inherent type of fix?

CS6202 Extended Lambda Calculus 37

References : Motivation References : Motivation

Many languages do not syntactically distinguish
between references (pointers) from their values.

In C, we write: x = x+1

For typing, it is useful to make this distinction explicit;
since operationally pointers and values are different.

CS6202 Extended Lambda Calculus 38

References : Motivation References : Motivation

Introduce the syntax (ref t), which returns a reference to
the result of evaluating t. The type of ref t is Ref T, if T
is the type of t.

Remember that we have many type constructors
already:

Nat e float {partno:Nat,cost:float}
Unit+Nat <none:Unit,some:Nat>

CS6202 Extended Lambda Calculus 39

Typing : First AttemptTyping : First Attempt

* C ref t : Ref T

* C t : T (T-Ref)

* C ! t : T

* C t : Ref T (T-Deref)

* C t1 := t2 : Unit

* C t1 : Ref T1 * C t2 : T1 (T-Assign)

CS6202 Extended Lambda Calculus 40

References : Motivation References : Motivation

What should be the value of a reference?

What should the assignment “do”?

How can we capture the difference of evaluating a
dereferencing depending on the value of the reference?

How do we capture side-effects of assignment?

CS6202 Extended Lambda Calculus 41

References : Motivation References : Motivation

Answer:

Introduce locations corresponding to references.

Introduce stores that map references to values.

Extend evaluation relation to work on stores.

CS6202 Extended Lambda Calculus 42

References : Evaluation References : Evaluation

Instead of:

t � t’

we now write:

t | P��� t’ | P’

where P’ denotes the changed store.

CS6202 Extended Lambda Calculus 43

Evaluation of Application Evaluation of Application

t1 t2 | P� t’ 1 t2 | P’

t1 | P��� t’ 1 | P’
(E-Appl1)

(O x : T.t) v | P��� [x � v] t | P� (E-AppAbs)

v t2 | P� v t’ 2 | P’

t2 | P��� t’ 2 | P’
(E-Appl2)

CS6202 Extended Lambda Calculus 44

ValuesValues

The result of evaluating a ref expression is a location

• v ::= value
O x:T.t abstraction value
unit unit value
l store location

CS6202 Extended Lambda Calculus 45

TermsTerms

Below is the syntax for terms.

• t ::= terms
x variable
O x:T.t abstraction value
unit constant unit
t t application
ref t reference creation
! t dereference
t := t assignment
l store location

CS6202 Extended Lambda Calculus 46

Evaluation of Evaluation of DeferencingDeferencing

! t | P� ! t’ | P’

t | P��� t’ | P’
(E-Appl1)

! l | P� v | P
P��l�� �v

(E-DeRefLoc)

CS6202 Extended Lambda Calculus 47

Evaluation of Assignment Evaluation of Assignment

t1 := t2 | P� t’ 1 := t2 | P’

t1 | P��� t’ 1 | P’
(E-Assign1)

(E-Assign)

l := t2 | P� l := t’ 2 | P’

t2 | P��� t’ 2 | P’
(E-Assign2)

l:=v2 | P��� unit | >l � v�] P�

CS6202 Extended Lambda Calculus 48

Evaluation of References Evaluation of References

ref t | P� ref t’ | P’

t | P��� t’ | P’
(E-Ref)

ref v | P�� l | P, (l � v)

l � dom(P) (E-RefV)

CS6202 Extended Lambda Calculus 49

Towards a Typing for Locations Towards a Typing for Locations

* C l : Ref T

* C P(l) : T
(T-Ref)

But where does P come from?
How about adding store to the typing relation

* | P C l : Ref T

* | P C P(l) : T
(T-Ref)

..but store is a runtime entity

CS6202 Extended Lambda Calculus 50

Idea Idea

Instead of adding stores as argument to the typing
relation, we add store typings, which are mappings
from locations to types.

Example for a store typing:

6 = (l1 � Nat ��Nat, l2 � Nat� Nat, l3 � Unit)

CS6202 Extended Lambda Calculus 51

Typing : Final Typing : Final

* | 6 C ref t : Ref T

* | 6 C t : T (T-Ref)

* | 6 C l : Ref T
6(l) = T (T-Loc)

CS6202 Extended Lambda Calculus 52

Typing : Final Typing : Final

* | 6 C ! t : T

* | 6 C t : Ref T (T-Deref)

* | 6 C t1 := t2 : Unit

* | 6 C t1 : Ref T1 * | 6 C t2 : T1 (T-Assign)

CS6202 Extended Lambda Calculus 53

Exceptions : MotivationExceptions : Motivation

During execution, situations may occur that requires drastic
measures such as resetting the state of program or even
aborting the program.

• division by zero
• arithmetic overflow
• array index out of bounds
• …

CS6202 Extended Lambda Calculus 54

ErrorsErrors

We can denote error explicitly:
t ::= … terms

error run-time error

(E-AppErr1)error t � error

(E-AppErr2)v error � error

* C error : T (T-Error)

for any T

Evaluation Rules:

Typing Rule:

CS6202 Extended Lambda Calculus 55

Examples Examples

(O x:Nat. 0) error

(fix (O x:Nat. x)) error

(O x:Bool. x) error

(O x:Bool. x) (error true)

CS6202 Extended Lambda Calculus 56

Error Handling : Motivation Error Handling : Motivation

In implementation, the evaluation of error will force
the runtime stack to be cleared so that program
releases its computational resources.

Idea of error handling : Install a marker on the stack.
During clearing of stack frames, the markers can be
checked and when the right one is found, execution can
resume normally.

CS6202 Extended Lambda Calculus 57

Error HandlingError Handling

display
try

(..complicated calculation..)
with

“cannot compute the result”

CS6202 Extended Lambda Calculus 58

Error HandlingError Handling

Provide a try-with (similar to try-catch of Java) mechanism.
t ::= … terms

try t with t trap errors

(E-TryV)try v with t � v

(E-TryError)try error with t � t

New Evaluation Rules:

try t1 with t2� try t’ 1 with t2

t1 � t’ 1 (E-Try)

CS6202 Extended Lambda Calculus 59

Typing Error HandlingTyping Error Handling

New Typing Rule:

* C try t1 with t2 : T

* C t1 : T * C t2 : T
(E-Try)

CS6202 Extended Lambda Calculus 60

Exception Carrying Values: Motivation Exception Carrying Values: Motivation

Typically, we would like to know what kind of
exceptional situation has occurred in order to take
appropriate action.

Idea : Instead of errors, raise exception value that can be
examined after trapping. This technique is called
exception handling.

CS6202 Extended Lambda Calculus 61

Exception Carrying ValueException Carrying Value

New syntax:

t ::= … terms
raise t raise exception
try t with t handle exception

CS6202 Extended Lambda Calculus 62

Exception Carrying ValuesException Carrying Values

New Evaluation Rules:

raise t � raise t’

t � t’
(E-Raise)

(E-AppRaise1)(raise v) t � raise v

v1 (raise v2) � (raise v2) (E-AppRaise1)

(raise (raise v)) � (raise v) (E-AppRaiseRaise)

CS6202 Extended Lambda Calculus 63

Exception Carrying ValuesException Carrying Values

(E-TryV)try v with t � v

(E-TryError)try (raise v) with t � t v

New Evaluation Rules:

try t1 with t2� try t’ 1 with t2

t1 � t’ 1 (E-Try)

CS6202 Extended Lambda Calculus 64

Exception Carrying ValuesException Carrying Values

New Typing Rules:

* C try t1 with t2 : T

* C t1 : T * C t2 : Texn � T
(E-Try)

* C raise t : T

* C t : Texn (E-Raise)

CS6202 Extended Lambda Calculus 65

What Values can serve as Exceptions? What Values can serve as Exceptions?

• Texn is Nat as in return codes for Unix system calls.

• Texn is String for convenience in printing out messages.

• Texn is a certain fixed variant type, such as:

< divideByZero : Unit,
overflow : Unit,
fileNotFound : String

>

• …

CS6202 Extended Lambda Calculus 66

OO’’CamlCaml Exceptions Exceptions

• Exceptions are a special extensible variant type.

• Syntax (exception l of T) does variant extension.

• Syntax (raise l(t)) is short for:
raise (<l=t>) as Texn

• Syntax of try is sugar for try and case.

CS6202 Extended Lambda Calculus 67

Motivation : Motivation : SubtypingSubtyping

Typing for application :

Consider the term:

(O r : {x:Nat}. r.x) {x=0, y=1}

But note that:
{x:Nat, y:Nat} = {x:Nat}

* C t1 t2 : T2

* C t1 : T1 � T2 * C t2 : T1 (T-App)

CS6202 Extended Lambda Calculus 68

SubtypingSubtyping Relation Relation

Idea : Introduce a subtyping relation <:

S <: T means that every value described by S is also
described by T.

When we view types as sets of values, we can say that
S is a subset of T.

CS6202 Extended Lambda Calculus 69

SubsumptionSubsumption RuleRule

If we define <: such that {x:Nat, y:Nat} <: {x:Nat}

We can obtain:

* C t : T

* C t : S S <: T
(T-Sub)

* C {x=0, y=1} : {x:Nat}

* C {x=0, y=1} : {x:Nat, y:Nat} {x:Nat, y:Nat} <: {x:Nat}

CS6202 Extended Lambda Calculus 70

General Rules for General Rules for SubtypingSubtyping

S <: T

S <: U U <: T
(S-Trans)

Subtyping should be a pre-order:

(S-Refl)S <: S for all types S

CS6202 Extended Lambda Calculus 71

SubtypingSubtyping of Records of Records

{li : Si}i � 1..n <: {li : Ti}i � 1..n

Si <: Ti � i � 1..n
(S-RcdDepth)

(S-RcdWidth){li : Ti}i � 1..n+k <: {li : Ti}i � 1..n

CS6202 Extended Lambda Calculus 72

Example Example

(S-RcdDepth)C {x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

C {a:Nat,b:Nat} <: {a:Nat} C {m:Nat} <: {} (S-RcdWidth)

CS6202 Extended Lambda Calculus 73

Record PermutationRecord Permutation

{ki : Si}i � 1..n <: {li : Ti}i � 1..n

{ki : Si}i � 1..n is a permutation of {li : Ti}i � 1..n

(S-RcdPerm)

Orders of fields in records should be unimportant.

{b:Bool, a:Nat} <: {a:Nat, b:Bool}
{a:Nat, b:Bool} <: {b:Bool, a:Nat}

Hence <: is not a partial-order.

CS6202 Extended Lambda Calculus 74

SubtypingSubtyping FunctionsFunctions

S1 � S2 <: T1 � T2

T1 <: S1 S2 <: T2
(S-Arrow)

Subtyping is contravariant in the argument type and
covariant in the result type.

CS6202 Extended Lambda Calculus 75

ContravarianceContravariance of Argument Typesof Argument Types

T1 <: S1

Consider a function f of type: S1 � S2

Consider some type T1 <: S1. It is clear that f accepts all
elements of T1 as argument. Therefore f should also be of
type T1 � S2 .

f :: T1 � S2

f :: S1 � S2 S1 � S2 <: T1 � S2

CS6202 Extended Lambda Calculus 76

Covariance of Result TypesCovariance of Result Types

S2 <: T2

Consider a function f of type: S1 � S2

Consider some type T2 such that S2 <: T2. It is clear that f
returns only values of type T2. Therefore f should also be
of type S1 � T2 .

f :: S1 � T2

f :: S1 � S2 S1 � S2 <: S1 � T2

CS6202 Extended Lambda Calculus 77

TopTop

Introduce a type Top that is the supertype of every type.

S <: Top for every type S

While Top is not crucial for typed lambda calculus with
subtyping, it has the following advantages:

- corresponds to Object in existing languages
- convenient for subtyping and polymorphism

CS6202 Extended Lambda Calculus 78

BottomBottom

Sometimes also useful to add a Bot type such that:

Bot <: T for every type T

Note that Bot is empty; as there is no value of this type. If
such a value v exist, we would have:

C v: Top � Top

C v:Bot Bot <: Top � Top

C v: {}

C v:Bot Bot <: {}

contradicts canonical form lemma!

CS6202 Extended Lambda Calculus 79

SubtypingSubtyping of Extensionsof Extensions

• Ascription and Casting

• Variants

• Lists

• References

• Arrays

CS6202 Extended Lambda Calculus 80

SubtypingSubtyping and Ascriptionand Ascription

Let us consider expressions of the form (t as T)

• Up-casting means that T is a supertype of the “usual”
type of t.

• Down-casting means that T is a subtype of the “usual”
type of t.

CS6202 Extended Lambda Calculus 81

UpUp--CastingCasting

Up-casting is always safe as implied by subsumption.

* C t as T : T

* C t : T

* C t : S S <: T

: :

(T-Ascribe)

(T-Sub)

CS6202 Extended Lambda Calculus 82

DownDown--CastingCasting

Down-casting is to assign a more specific type to a term.
The programmer forces the type on the term. The type
checker just swallows such claims.

* C t as T : T
(T-Downcast)

* C t : S

Note that stupid-casting is possible.

CS6202 Extended Lambda Calculus 83

Problems with DownProblems with Down--CastingCasting

With the usual evaluation rule:

v as T � v

We lose preservation. Need to add a runtime type test as
follows:

v as T � v

C v : T
(E-DownCast)

CS6202 Extended Lambda Calculus 84

Variant Variant SubtypingSubtyping

Similar to record subtyping, except that the subtyping rule S-
VariantWidth is reversed:

<li : Ti>i � 1..n <: <li : Ti>i � 1..n+k (S-VariantWidth)

More labels makes the variant bigger in set framework.

CS6202 Extended Lambda Calculus 85

L ist L ist SubtypingSubtyping

List are also co-variant, thus:

List S <: List T

S <: T

CS6202 Extended Lambda Calculus 86

References References

References of the form r=ref v are used in two ways:

• for assignment r:=t, similar to arguments of functions:
contravariant typing
:= : Ref T � T � ()

• for dereferencing !r, similar to return values of
functions:

covariant typing
! : Ref T � T

CS6202 Extended Lambda Calculus 87

References : Assignment References : Assignment

Let r=ref v be of type Ref S.

Say we have an assignment r:=v’ .

We must insist that v’ is a subtype of S, because
subsequent dereferencing needs to produce values of type
S. Thus:

Ref S <: Ref T

T <: S

CS6202 Extended Lambda Calculus 88

References : Dereferencing References : Dereferencing

Let r=ref v be of type Ref S.

Say we have a dereferencing !r.

The dereferencing may be used whenever a supertype of S
is required. Thus:

Ref S <: Ref T

S <: T

CS6202 Extended Lambda Calculus 89

References : Invariant Typing References : Invariant Typing

The result is an invariant subtyping of references.

Ref S <: Ref T

S <: T T <: S

In other words:
contravariance + covariance = invariance

CS6202 Extended Lambda Calculus 90

Array Array SubtypingSubtyping

Similar to references since elements of assignment and
dereferencing also present.

Invariant subtyping:

Array S <: Array T

S <: T T <: S

CS6202 Extended Lambda Calculus 91

Array Typing in Java Array Typing in Java

Java allows covariant subtyping of arrays:

Array S <: Array T

S <: T

This is considered to be a design flaw of Java, because it
necessitates runtime type checks.

CS6202 Extended Lambda Calculus 92

Java Example Java Example

class Vehicle {int speed;}

class Motorcycle extends Vehicle {int enginecc;}

Motorcycle[] myBikes = new Motorcyle[10]
Vehicle[] myVehicles = myBikes;

myVehicles[0] = new Vehicle(); // ArrayStoreException

CS6202 Extended Lambda Calculus 93

Intersection Types Intersection Types

The members of intersection type T1 A T2 are members of
both T1 and of T2. It can be used where either T1 or T2 is
expected.

S <: T1 A T2

S <: T1 S <: T2

T1 A T2 <: T1

T1 A T2 <: T2

CS6202 Extended Lambda Calculus 94

Intersection Type and Function Intersection Type and Function

If we know that a term has the function type of both S � T1

and S � T2, then we can pass it an S and expect to get back
a value that is both a T1 and a T2.

S � T1 A S � T2 <: S � T1 A T2

CS6202 Extended Lambda Calculus 95

Intersection for Intersection for FinitaryFinitary Overloading Overloading

We can use intersection to denote the type of overloaded
functions.

For example, the + operator can be applied to a pair of
integers and floats, and return corresponding results.
Such an overloaded operator can be typed as follows:

C + : (Nat � Nat � Nat) A (Float � Float � Float)

CS6202 Extended Lambda Calculus 96

Union TypesUnion Types

Union type T1 B T2 simply denote the ordinary union of set
of values belonging to both T1 and T2 .

This differs from sum/variant types which add tags to
identify the origin of a given element. Tagged union is
also known as disjoint union.

T1 B T2 <: S

T1 <: S T2 <: S

T1 <: T1 B T2

T2 <: T1 B T2

