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Rise of Lightweight Formal MethodsRise of Lightweight Formal Methods

Don’t prove correctness: just find bugs ..

- model checking  
- light specification and verification (e.g. ESC, SLAM ..)
- type-checking!  

Basic ideas are long established; but industrial attitudes 
have been softened by the success of model checking in 
hardware design.

“Formal methods will never have any impact until they can be 
used by people that don’t understand them” : Tom Melham
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What is a Type Systems? What is a Type Systems? 

A Type System is a

• tractable syntactic method  

• for proving the absence of certain program 
behaviors  

• by classifying phrases according to the 
kinds of values they compute 
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Why Type Systems? Why Type Systems? 

Type systems are good for:

• detecting errors 
• abstraction
• documentation
• language design
• efficiency
• safety
• .. etc.. (security,exception,theorem-proving,web-

metadata,categorical grammer)
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Pure Simply Typed Lambda CalculusPure Simply Typed Lambda Calculus

• t ::= terms
x variable
λ x:T.t abstraction
t t application

• v ::= value
λ x :T.t abstraction value

• T ::= types
T → T type of functions

• Γ ::= contexts
∅ empty context
Γ, x:T type variable binding
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TypingTyping

Γ ` x : T 
x:T ∈ Γ

Γ ` t1 t2 : T2 

Γ ` t1 : T1 → T2   Γ ` t2 : T1

(T-Var)

(T-App)

Γ ` λ x:T1.t2 : T1 → T2

Γ, x:T1 ` t2 : T2 (T-Abs)
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Where are the Base Types?Where are the Base Types?

• T ::= types
T → T type of functions

Extend with uninterpreted base types, e.g.
• T ::= types

T → T type of functions
A base type 1
B base type 2
C base type 3
:
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Unit TypeUnit Type

New Syntax:
t ::= … terms

unit constant unit
v ::= … values

unit constant unit
T ::= … types

Unit unit type
Note that Unit type has only one possible value.

New Evaluation Rules: None

New Typing Rules :
Γ ` unit : Unit T-Unit
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Sequencing : Basic Idea Sequencing : Basic Idea 

Syntax :  e1; e2

Evaluate an expression (to achieve some side-effect, such as 
printing), ignore its result and then evaluate another 
expression.

Examples:

(print x); x+1

(printcurrenttime); compute; (printcurrenttime)
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Lambda Calculus with SequencingLambda Calculus with Sequencing
New Syntax
• t ::= … terms

t ; t sequence

unit ; t  → t (E-SeqUnit)

t1 ; t2 → t‘
1 ; t2

t1 → t‘
1 (E-Seq)

New Evaluation Rules:
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Sequencing (cont) Sequencing (cont) 

Γ ` t1 ; t2 : T2 

Γ ` t1 : Unit1 Γ ` t2 : T2 (T-Seq)

New Typing Rule:
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Sequencing (Second Version)Sequencing (Second Version)

• Treat t1;t2 as an abbreviation for (λx:Unit. t2) t1 .

• Then the evaluation and typing rules for abstraction and 
application will take care of sequencing!

• Such shortcuts are called derived forms (or syntactic 
sugar) and are heavily used in programming language 
definition.
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Equivalence of two SequencingEquivalence of two Sequencing

Let λE be the simply typed lambda calculus with the Unit type 
and the sequencing construct.

Let λI be the simply-typed lambda calculus with Unit only.

Let e ∈ λE → λI be the elaboration function that translates 
from λE To λI.

Then, we have for each term t:

• t →E t’ iff e(t) →I e(t’)

• Γ `E t:T  iff Γ `I e(t):T  
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Ascription : Motivation  Ascription : Motivation  

Sometimes, we want to say explicitly that a term has a 
certain type. 

Reasons:
• as comments for inline documentation
• for debugging type errors
• control printing of types (together with type    

syntax)
• casting (Chapter 15)
• resolve ambiguity (see later)
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Ascription : Syntax  Ascription : Syntax  

New Syntax
• t ::= … terms

t as T ascription

Example:

(f (g (h x y z))) as Bool
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Ascription (cont)Ascription (cont)
New Evaluation Rules:

New Typing Rules:

v as T  → v (E-Ascribe1)

t as T → t‘ as T 
t → t‘

(E- Ascribe2)

Γ ` t as T : T

Γ ` t : T
(T-Ascribe)
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Let Bindings : Motivation  Let Bindings : Motivation  

• Let expression allow us to give a name to the result 
of an expression for later use and reuse. 

• Examples:

let pi=<long computation> in …pi..pi..pi….

let square = λ x:Nat. x*x in ….(square 2)..(square 4)…
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Lambda Calculus with Let BindingLambda Calculus with Let Binding
New Syntax

t ::= … terms
let x=t in t let binding

Γ ` let x=t1 in t2 : T2 

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2 (T-Let)

New Typing Rule:
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Let Bindings as Derived FormLet Bindings as Derived Form

We can consider let expressions as derived form:

In untyped setting:
let x=t1 in t2 abbreviates to (λ x. t2) t1

In a typed setting:
let x=t1 in t2 abbreviates to (λ x:?. t2) t1

How to get type declaration for the formal parameter? 
Answer : Type inference (see later).
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Pairs : Motivation  Pairs : Motivation  

Pairs provide the simplest kind of data structures.

Examples:

{9, 81}

λ x : Nat. {x, x*x}
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Pairs : SyntaxPairs : Syntax

• t ::= … terms
{t, t} variable
t.1 first projection
t.2 second projection

• v ::= … value
{v, v} pair value

• T ::= … types
T × T product type
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Pairs : Typing RulesPairs : Typing Rules

Γ ` {t1,t2} : T1 × T2

Γ ` t1 : T1      Γ ` t2 : T2   (T-Pair)

Γ ` t.1 : T1

Γ ` t : T1 × T2 (T-Proj1)

Γ ` t.2 : T2

Γ ` t : T1 × T2 (T-Proj2)
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TuplesTuples

Tuples are a straightforward generalization of pairs, 
where n terms are combined in a tuple expression.

Example:
{1, true, unit}  : {Nat, Bool, Unit}
{1,{true, 0}}  : {Nat, {Bool, Nat}}
{} :  {}

Note that n may be 0. Then the only value is {} with 
type {}. Such a type is isomorphic to Unit.
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Records   Records   

Sometimes it is better to have components labeled more 
meaningfully instead of via numbers 1..n, as in tuples

Tuples with labels are called records.

Example:
{partno=5524,cost=30.27,instock =false}

has type {partno:Nat, cost:Float, instock:Bool}
instead of:

{5524,30.27,false} : {Nat, Float, Bool}
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Sums : Motivation  Sums : Motivation  

Often, we may want to handle values of different 
structures with the same function.

Examples:

PhysicalAddr={firstlast:String, add:String}
VirtualAddr={name:String, email:String}

A sum type can then be written like this:

Addr = PhysicalAddr + VirtualAddr
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Sums : Motivation  Sums : Motivation  

Given a sum type; e.g.

K = Nat + Bool

Need to use tags inl and inr to indicate that a value is a 
particular member of the sum type; e.g.

inl 5 : K but not  inr 5 : K  nor 5 : K 
inr true : K
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Sums : Motivation  Sums : Motivation  

Given the address type:

Addr = PhysicalAddr + VirtualAddr

We can use  case construct to analyse the particular 
value of sum type:

getName = λ a : Addr. case a of
inl x => a.firstlast
inr y => y.name
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Sums : SyntaxSums : Syntax

• t ::= … terms
inl t as T tagging (left)
inr t as T tagging (right)
case t of {pi => ti} pattern matching 

• v ::= … value
inl v as T tagged value (left)
inr v as T tagged value (right)

• T ::= … types
T + T sum type
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Sums : Typing RulesSums : Typing Rules

Γ ` inl t1 as T1 × T2 : T1 × T2

Γ ` t1 : T1 (T-Inl)

Γ ` inr t2 as T1 × T2 : T1 × T2

Γ ` t2 : T2 (T-Inr)
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Variants : Labeled Sums  Variants : Labeled Sums  

Instead of inl and inr, we may like to use nicer labels, 
just as in records. This is what variants do.

For types, instead of: T1 + T2

we write: <l1:T1 + l2:T2>

For terms, instead of: inl r as T1 + T2

we write: <l1= t> as <l1:T1 + l2:T2>
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Variants : Example  Variants : Example  

An example using variant type:
Addr =<physical:PhysicalAddr, virtual:VirtualAddr>

A variant value:
a = <physical=pa> as Addr

Function over variant value:
getName = λ a : Addr.

case a of
<physical=x> ⇒ x.firstlast
<virtual=y> ⇒ y.name
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Application : Enumeration  Application : Enumeration  

Enumeration are variants that only make use of their 
labels. Each possible value is unit.

Weekday =<monday:Unit, tuesday:Unit, 
wednesday:Unit, thursday:Unit, friday:Unit >
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Application : SingleApplication : Single--Field Variants  Field Variants  

Labels can be convenient to add more information on 
how the value is used.

Example, currency denominations (or units):

DollarAmount =<dollars:Float>

EuroAmount =<euros:Float>
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Recursion : Motivation  Recursion : Motivation  

Recall the fix-point combinator:

fix = λ f. (λ x. f (λ y. x x y)) (λ x. f (λ y. x x y))

Unfortunately, it is not valid (well-typed) in simply 
typed lambda calculus. 

Solution : provide this as a language primitive that is 
hardwired.
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Recursion : Syntax & Evaluation RulesRecursion : Syntax & Evaluation Rules

New Syntax
• t ::= … terms

fix t  fixed point operator

New Evaluation

fix t → fix t’
t → t‘ (E-Fix)

fix (λ x : T. t)  → [x a fix (λ x : T. t)] t (E-FixBeta)
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Recursion : Typing RulesRecursion : Typing Rules

Γ ` fix t : T  
Γ ` t : T→ T (T-Fix)

Can you guess the inherent type of fix? 
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References : Motivation  References : Motivation  

Many languages do not syntactically distinguish 
between references (pointers) from their values.

In C, we write:  x = x+1

For typing, it is useful to make this distinction explicit; 
since operationally pointers and values are different.
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References : Motivation  References : Motivation  

Introduce the syntax (ref  t), which returns a reference to 
the result of evaluating t. The type of ref t is Ref T, if T
is the type of t.

Remember that we have many type constructors 
already:

Nat × float {partno:Nat,cost:float}
Unit+Nat <none:Unit,some:Nat>
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Typing : First AttemptTyping : First Attempt

Γ ` ref t  : Ref T 
Γ ` t : T (T-Ref)

Γ ` ! t  : T
Γ ` t : Ref T (T-Deref)

Γ ` t1 := t2 : Unit
Γ ` t1 : Ref T1 Γ ` t2 : T1 (T-Assign)
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References : Motivation  References : Motivation  

What should be the value of a reference?

What should the assignment “do”?

How can we capture the difference of evaluating a 
dereferencing depending on the value of the reference?

How do we capture side-effects of assignment?
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References : Motivation  References : Motivation  

Answer:

Introduce locations corresponding to references.

Introduce stores that map references to values.

Extend evaluation relation to work on stores.
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References : Evaluation  References : Evaluation  

Instead of:

t → t’

we now write:

t | µ  → t’ |  µ’

where µ’ denotes the changed store.
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Evaluation of Application  Evaluation of Application  

t1 t2 | µ → t’1 t2 | µ’
t1 | µ  → t’1 |  µ’ (E-Appl1)

(λ x : T.t) v | µ  → [x a v] t | µ (E-AppAbs)

v t2 | µ → v t’2 | µ’
t2 | µ  → t’2 |  µ’ (E-Appl2)
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ValuesValues

The result of evaluating a ref expression is a location

• v ::= value
λ x:T.t abstraction value
unit unit value
l store location
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TermsTerms

Below is the syntax for terms.

• t ::= terms
x variable
λ x:T.t abstraction value
unit constant unit
t t application
ref t reference creation
! t dereference
t := t assignment
l store location
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Evaluation of Evaluation of DeferencingDeferencing

! t | µ → ! t’ | µ’
t | µ  → t’ |  µ’ (E-Appl1)

! l | µ → v | µ
µ (l) = v (E-DeRefLoc)
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Evaluation of Assignment  Evaluation of Assignment  

t1 := t2 | µ → t’1 := t2 | µ’
t1 | µ  → t’1 |  µ’ (E-Assign1)

(E-Assign)

l := t2 | µ → l := t’2 | µ’
t2 | µ  → t’2 |  µ’ (E-Assign2)

l:=v2 | µ  → unit  | [l a v2] µ 
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Evaluation of References  Evaluation of References  

ref t | µ → ref t’ | µ’
t | µ  → t’ |  µ’ (E-Ref)

ref v | µ → l | µ, (l a v)
l ∉ dom(µ) (E-RefV)
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Towards a Typing for Locations  Towards a Typing for Locations  

Γ ` l  : Ref T 
Γ ` µ(l) : T

(T-Ref)

But where does µ come from? 
How about adding store to the typing relation

Γ | µ ` l  : Ref T 
Γ | µ ` µ(l) : T

(T-Ref)

..but store is a runtime entity
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Idea  Idea  

Instead of adding stores as argument to the typing
relation, we add store typings, which are mappings
from locations to types.

Example for a store typing:

Σ = (l1 a Nat → Nat, l2 a Nat→ Nat, l3 a Unit)
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Typing : Final Typing : Final 

Γ | Σ ` ref t  : Ref T 
Γ | Σ ` t : T (T-Ref)

Γ | Σ ` l  : Ref T
Σ(l) = T (T-Loc)
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Typing : Final Typing : Final 

Γ | Σ ` ! t  : T
Γ | Σ ` t : Ref T (T-Deref)

Γ | Σ ` t1 := t2 : Unit
Γ | Σ ` t1 : Ref T1 Γ | Σ ` t2 : T1 (T-Assign)
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Exceptions : MotivationExceptions : Motivation

During execution, situations may occur that requires drastic 
measures such as resetting the state of program or even 
aborting the program.

• division by zero
• arithmetic overflow
• array index out of bounds
• …
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ErrorsErrors

We can denote error explicitly:
t ::= … terms

error run-time error

(E-AppErr1)error t   → error

(E-AppErr2)v error   → error

Γ ` error : T (T-Error)

for any T

Evaluation Rules:

Typing Rule:
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Examples Examples 

(λ x:Nat. 0) error

(fix (λ x:Nat. x)) error

(λ x:Bool. x) error

(λ x:Bool. x) (error true)
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Error Handling : Motivation  Error Handling : Motivation  

In implementation, the evaluation of error will force
the runtime stack to be cleared so that program
releases its computational resources.

Idea of error handling : Install a marker on the stack. 
During clearing of stack frames, the markers can be 
checked and when the right one is found, execution can 
resume normally.
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Error HandlingError Handling

display  
try 

(..complicated calculation..)
with 

“cannot compute the result”
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Error HandlingError Handling

Provide a try-with (similar to try-catch of Java) mechanism. 
t ::= … terms

try t with t trap errors

(E-TryV)try v with t   → v

(E-TryError)try error with t → t

New Evaluation Rules: 

try t1 with t2→ try t’1 with t2

t1 → t’1 (E-Try)
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Typing Error HandlingTyping Error Handling

New Typing Rule: 

Γ ` try t1 with t2 : T 
Γ ` t1 : T Γ ` t2 : T (E-Try)
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Exception Carrying Values: Motivation  Exception Carrying Values: Motivation  

Typically, we would like to know what kind of 
exceptional situation has occurred in order to take 
appropriate action.

Idea : Instead of errors, raise exception value that can be 
examined after trapping. This technique is called 
exception handling.
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Exception Carrying ValueException Carrying Value

New syntax:

t ::= … terms
raise t raise exception
try t with t handle exception
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Exception Carrying ValuesException Carrying Values

New Evaluation Rules: 

raise t  → raise t’
t → t’

(E-Raise)

(E-AppRaise1)(raise v) t   → raise v

v1 (raise v2)    → (raise v2) (E-AppRaise1)

(raise (raise v))    → (raise v) (E-AppRaiseRaise)
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Exception Carrying ValuesException Carrying Values

(E-TryV)try v with t   → v

(E-TryError)try (raise v) with t → t v

New Evaluation Rules: 

try t1 with t2→ try t’1 with t2

t1 → t’1 (E-Try)
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Exception Carrying ValuesException Carrying Values

New Typing Rules: 

Γ ` try t1 with t2 : T 
Γ ` t1 : T Γ ` t2 : Texn → T (E-Try)

Γ ` raise t : T 
Γ ` t : Texn (E-Raise)
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What Values can serve as Exceptions?  What Values can serve as Exceptions?  

• Texn is Nat as in return codes for Unix system calls.

• Texn is String for convenience in printing out messages.

• Texn is a certain fixed variant type, such as:

< divideByZero : Unit,
overflow : Unit,
fileNotFound : String

>

• …
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OO’’CamlCaml Exceptions  Exceptions  

• Exceptions are a special extensible variant type.

• Syntax (exception l of T) does variant extension.

• Syntax (raise l(t)) is short for:
raise (<l=t>) as Texn

• Syntax of  try is sugar for try and case.
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Motivation : Motivation : SubtypingSubtyping

Typing for application :  

Consider the term:

(λ r : {x:Nat}. r.x) {x=0, y=1}

But note that:
{x:Nat, y:Nat} = {x:Nat}

Γ ` t1 t2 : T2 

Γ ` t1 : T1 → T2       Γ ` t2 : T1 (T-App)
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SubtypingSubtyping Relation Relation 

Idea : Introduce a subtyping relation  <:

S <: T  means that every value described by S is also 
described by T.

When we view types as sets of values, we can say that
S is a subset of T.
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SubsumptionSubsumption RuleRule

If we define <: such that {x:Nat, y:Nat} <: {x:Nat}

We can obtain:

Γ ` t : T
Γ ` t : S S <: T (T-Sub)

Γ ` {x=0, y=1} : {x:Nat} 

Γ ` {x=0, y=1} : {x:Nat, y:Nat}          {x:Nat, y:Nat} <: {x:Nat}
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General Rules for General Rules for SubtypingSubtyping

S <: T
S <: U U <: T (S-Trans)

Subtyping should be a pre-order:

(S-Refl)S <: S for all types S
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SubtypingSubtyping of Records of Records 

{li : Si}i ∈ 1..n <: {li : Ti}i ∈ 1..n

Si <: Ti     ∀ i ∈ 1..n (S-RcdDepth)

(S-RcdWidth){li : Ti}i ∈ 1..n+k <: {li : Ti}i ∈ 1..n

CS6202 Extended Lambda Calculus 72

Example Example 

(S-RcdDepth)` {x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

` {a:Nat,b:Nat} <: {a:Nat} ` {m:Nat} <: {} (S-RcdWidth)
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Record PermutationRecord Permutation

{ki : Si}i ∈ 1..n <: {li : Ti}i ∈ 1..n

{ki : Si}i ∈ 1..n is a permutation of {li : Ti}i ∈ 1..n

(S-RcdPerm)

Orders of fields in records should be unimportant.

{b:Bool, a:Nat} <: {a:Nat, b:Bool}
{a:Nat, b:Bool} <: {b:Bool, a:Nat}

Hence   <: is not a partial-order. 
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SubtypingSubtyping FunctionsFunctions

S1 → S2 <:  T1 → T2

T1 <: S1 S2 <: T2
(S-Arrow)

Subtyping is contravariant in the argument type and 
covariant in the result type.
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ContravarianceContravariance of Argument Typesof Argument Types

T1 <: S1

Consider a function f of type: S1 → S2

Consider some type T1 <: S1. It is clear that f accepts all 
elements of T1 as argument. Therefore f should also be of 
type T1 → S2 .

f :: T1 → S2

f :: S1 → S2 S1 → S2 <: T1 → S2

CS6202 Extended Lambda Calculus 76

Covariance of Result TypesCovariance of Result Types

S2 <: T2

Consider a function f of type: S1 → S2

Consider some type T2 such that S2 <: T2. It is clear that f
returns only values of type T2. Therefore f should also be 
of type S1 → T2 .

f :: S1 → T2

f :: S1 → S2 S1 → S2 <: S1 → T2
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TopTop

Introduce a type Top that is the supertype of every type.

S <: Top   for every type S

While Top is not crucial for typed lambda calculus with 
subtyping, it has the following advantages:

- corresponds to Object in existing languages
- convenient for subtyping and polymorphism 
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BottomBottom

Sometimes also useful to add a Bot type such that:

Bot <: T   for every type T

Note that Bot is empty; as there is no value of this type. If 
such a value v exist, we would have:

` v: Top → Top 

` v:Bot Bot <: Top → Top                        

` v: {} 

` v:Bot Bot <: {}                        

contradicts canonical form lemma!
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SubtypingSubtyping of Extensionsof Extensions

• Ascription and Casting

• Variants

• Lists

• References

• Arrays
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SubtypingSubtyping and Ascriptionand Ascription

Let us consider expressions of the form  (t as T)

• Up-casting means that T is a supertype of the “usual”
type of t.

• Down-casting means that T is a subtype of the “usual”
type of t.
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UpUp--CastingCasting

Up-casting is always safe as implied by subsumption.

Γ ` t as T : T

Γ ` t : T

Γ ` t : S S <: T

: :

(T-Ascribe)

(T-Sub)
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DownDown--CastingCasting

Down-casting is to assign a more specific type to a term. 
The programmer forces the type on the term. The type 
checker just swallows such claims.

Γ ` t as T : T
(T-Downcast)

Γ ` t : S

Note that stupid-casting is possible.
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Problems with DownProblems with Down--CastingCasting

With the usual evaluation rule:

v as T → v

We lose preservation. Need to add a runtime type test as 
follows:  

v as T → v
` v : T (E-DownCast)
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Variant Variant SubtypingSubtyping

Similar to record subtyping, except that the subtyping rule S-
VariantWidth is reversed:

<li : Ti>i ∈ 1..n <:   <li : Ti>i ∈ 1..n+k (S-VariantWidth)

More labels makes the variant bigger in set framework.  
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List List SubtypingSubtyping

List are also co-variant, thus:

List S  <:  List T
S  <:  T
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References References 

References of the form r=ref v are used in two ways:  

• for assignment r:=t, similar to arguments of functions:
contravariant typing   
:=  :  Ref T → T → ()

• for dereferencing !r, similar to return values of 
functions:  

covariant typing  
!  :  Ref T → T
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References : Assignment References : Assignment 

Let  r=ref v be of type  Ref S.

Say we have an assignment r:=v’. 

We must insist that v’ is a subtype of S, because 
subsequent dereferencing needs to produce values of type 
S. Thus:

Ref S  <:  Ref T
T  <:  S
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References : Dereferencing References : Dereferencing 

Let  r=ref v be of type  Ref S.

Say we have a dereferencing !r. 

The dereferencing may be used whenever a supertype of S
is required. Thus:  

Ref S  <:  Ref T
S  <:  T
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References : Invariant Typing References : Invariant Typing 

The result is an invariant subtyping of references.

Ref S  <:  Ref T
S  <:  T       T  <:  S

In other words:
contravariance + covariance = invariance
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Array Array SubtypingSubtyping

Similar to references since elements of assignment and 
dereferencing also present.

Invariant subtyping:

Array S  <:  Array T
S  <:  T       T  <:  S
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Array Typing in Java  Array Typing in Java  

Java allows covariant subtyping of arrays:  

Array S  <:  Array T
S  <:  T

This is considered to be a design flaw of Java, because it 
necessitates runtime type checks.  
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Java Example  Java Example  

class Vehicle {int speed;} 

class Motorcycle extends Vehicle {int enginecc;}

Motorcycle[] myBikes = new Motorcyle[10]
Vehicle[] myVehicles = myBikes;

myVehicles[0] = new Vehicle(); // ArrayStoreException
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Intersection Types  Intersection Types  

The members of intersection type T1 ∧ T2 are members of 
both T1 and of T2.  It can be used where either T1 or T2 is 
expected.

S  <: T1 ∧ T2

S  <:  T1 S  <:  T2

T1 ∧ T2   <:  T1

T1 ∧ T2   <:  T2
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Intersection Type and Function  Intersection Type and Function  

If we know that a term has the function type of both S → T1

and S → T2, then we can pass it an S and expect to get back 
a value that is both a T1 and a T2.    

S → T1 ∧ S → T2     <:    S → T1 ∧ T2 
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Intersection for Intersection for FinitaryFinitary Overloading  Overloading  

We can use intersection to denote the type of overloaded 
functions. 

For example, the + operator can be applied to a pair of 
integers and floats, and return corresponding results.
Such an overloaded operator can be typed as follows:

` + : (Nat → Nat → Nat) ∧ (Float → Float → Float) 
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Union TypesUnion Types

Union type T1 ∨ T2 simply denote the ordinary union of set 
of values belonging to both T1 and T2 .

This differs from sum/variant types which add tags to 
identify the origin of a given element. Tagged union is 
also known as disjoint union.  

T1 ∨ T2 <: S

T1 <: S         T2 <: S 

T1  <: T1 ∨ T2

T2  <: T1 ∨ T2


