
CS6202 Lecture 7 : Type Reconstruction 1

CS6202: Advanced Topics in Programming
Languages and Systems

Lecture 6 : Type Reconstruction

• Type Variables and Susbtitutions

• Two View of Type Variables

• Constraint-Based Typing

• Unification

• Principal Types

• Let Polymorphism
CS6202 Lecture 7 : Type Reconstruction 2

Type Variables and SubstitutionsType Variables and Substitutions

In this lecture, we treat uninterpreted base types as type
variables.

A type X can stand for Nat → Bool. We may need to substitute
X by the desired type Nat → Bool.

A type substitution is a finite mapping from type variables to
types. Example:

σ = [X a T, Y a U]
where

dom(σ) = {X, Y}
range(σ) = {T, U}

CS6202 Lecture 7 : Type Reconstruction 3

Applying Substitutions to TypesApplying Substitutions to Types

σ (X) = T if (X a T) ∈ σ
= X if X ∉dom(σ)

σ (Nat) = Nat

σ (Bool) = Bool

σ (T1 → T2) = σ T1 → σ T2

CS6202 Lecture 7 : Type Reconstruction 4

Applying Substitutions to Contexts/TermsApplying Substitutions to Contexts/Terms

Applying it to contexts:

σ (x1:T1,…,xn:Tn) = (x1: σ T1,…,xn: σ Tn)

Applying it to terms by applying it to all its types. E.g :

[X a Bool] (λ x:X. x) = λ x:Bool. x

CS6202 Lecture 7 : Type Reconstruction 5

Composing SubstitutionsComposing Substitutions

Apply γ followed by σ, as follows:

σ ◦ γ = X a σ(T) for each (X a T) ∈ γ

= X a T for each (X a T) ∈ σ with X ∉dom(γ)

CS6202 Lecture 7 : Type Reconstruction 6

Preservation under Type Substitution Preservation under Type Substitution

If Γ ` t : T

then σ Γ ` σ t : σ T
for any type substitution σ

CS6202 Lecture 7 : Type Reconstruction 7

First View of Type Equation Solving First View of Type Equation Solving

Let t be a term with type variables, and let Γ be a typing
context with type variables.

First View:
For every σ there exists a T such that σ Γ ` σ t : σ T .

“Are all substitution instances of t well-typed?”

This view leads to parametric polymorphism.

CS6202 Lecture 7 : Type Reconstruction 8

Second View of Type Equation Solving Second View of Type Equation Solving

Let t be a term with type variables, and let Γ be a typing
context with type variables.

Second View:
Is there a σ such that there is a T whereby
σ Γ ` σ t : σ T .

“Is some substitution instance of t well-typed?”

This view leads to type reconstruction.

CS6202 Lecture 7 : Type Reconstruction 9

Type Reconstruction : The Problem Type Reconstruction : The Problem

Let t be a term and Γ be a typing context.

A solution for (Γ, t) is a pair (σ, T) such that σ Γ ` σ t : σ T

CS6202 Lecture 7 : Type Reconstruction 10

Example Example

Let Γ = f:X, a:Y and t = f a

Then the possible solutions for (Γ, t) include:

([X a Y → Nat], Nat)
([X a Y → Z], Z)
([X a Y → Z, Z a Nat], Z)
([X a Y → Nat → Nat], Nat → Nat)
([X a Nat → Nat, Y a Nat], Nat)

CS6202 Lecture 7 : Type Reconstruction 11

ConstraintConstraint--based Typing based Typing

Constraint-based typing is an algorithm that computes for
(Γ, t) a set of constraints that must be satisfied by any solution
for (Γ, t).

A constraint set C is a set of solutions {Si=Ti}i ∈ 1..n. A
substitution σ unifies an equation S=T if σ S and σ T are
identical, namely σ S ≡ σ T.

A substitution unifies (or satisfies) a constraint set C if it
unifies every equation in C .

CS6202 Lecture 7 : Type Reconstruction 12

ConstraintConstraint--based Typing based Typing

We define a relation

Γ ` t : T |X C

The term t has type T under assumptions Γ whenever the
constraint C are satisfied.

X is used to track variables that are introduced along the way.

CS6202 Lecture 7 : Type Reconstruction 13

Rules for ConstraintRules for Constraint--Based Typing Based Typing

Γ ` x : T |∅ {}
x :T ∈ Γ (CT-Var)

(CT-Zero)

Γ ` succ t : Nat |X C’
Γ ` t : T |X C C’=C ∪ {T=Nat} (CT-Succ)

Γ ` 0 : Nat |∅ {}

Γ ` pred t : Nat |X C’
Γ ` t : T |X C C’=C ∪ {T=Nat} (CT-Pred)

CS6202 Lecture 7 : Type Reconstruction 14

Rules for ConstraintRules for Constraint--Based Typing Based Typing

Γ ` if t1 then t2 else t3 : T2 |X’ C’

Γ ` t1 : T1 |X1 C1 Γ ` t2 : T2 |X2 C2 Γ ` t3 : T3 |X3 C3

C’=C1 ∪ C2 ∪C3 ∪ {T1=Bool, T2 =T3}
X’=X1 ∪ X2 ∪ X3

(CT-If)

(CT-True)

Γ ` iszero t : Bool |X C’
Γ ` t : T |X C C’=C ∪ {T=Nat} (CT-IsZero)

Γ ` true : Bool |∅ {}

(CT-False)Γ ` false : Bool |∅ {}

CS6202 Lecture 7 : Type Reconstruction 15

Rules for ConstraintRules for Constraint--Based Typing Based Typing

Γ ` λ x:T1 . t2 : T1 → T2 |X C
Γ, x:T1 ` t2 : T2 |X C (CT-Abs)

Γ ` t1 t2 : V |X’ C’

Γ ` t1 : T1 |X1 C1 Γ ` t2 : T2 |X2 C2

fresh V C’=C1 ∪ C2 ∪ {T1=T2 → V}
X’=X1 ∪ X2 ∪ {V}

(CT-App)

Note that X1, X2 , FV(T2) , FV(T1) are disjoint.

CS6202 Lecture 7 : Type Reconstruction 16

ConstraintConstraint--based Typing (Solution)based Typing (Solution)

Suppose that

Γ ` t : T |X C

A solution for (Γ,t,S,C) is a pair (σ,T) such that σ satisfies C and
σ S=T.

Note that is is OK to omit X from discussion as it is simply a
set of locally introduced type variables.

CS6202 Lecture 7 : Type Reconstruction 17

Properties of ConstraintProperties of Constraint--based Typing based Typing

Soundness:

Suppose that Γ ` t : T |X C . If (σ,T) is a solution for (Γ,t,S,C),
then it is also a solution for (Γ,t). That is σ Γ ` σ t : σ T .

Completeness:

Suppose that Γ ` t : T |X C . If (σ,T) is a solution for (Γ,t) and
dom(σ) ∩ X={}, then there is a solution (σ’,T) for (Γ,t,S,C) such
that σ’ \X = σ .
Note that σ \X is a substitution that is undefined for all
variables in X, but otherwise behaves like σ.

CS6202 Lecture 7 : Type Reconstruction 18

Correctness of ConstraintCorrectness of Constraint--based Typing based Typing

Suppose Γ ` t : T |X C .

There is some solution for (Γ,t) if and only if there is some
solution for (Γ,t,S,C) .

Correctness = Soundness + Completeness

CS6202 Lecture 7 : Type Reconstruction 19

More General SubstitutionMore General Substitution

A substitution σ is more general (or less specific) than a
substitution σ’, written as σ v σ’ , if σ’ = γ ◦ σ for some
substitution γ.

For example:
[X a V → V, Y a W → W] is less specific than
[X a (Nat → Nat) → [(Nat → Nat) , Y a Nat → Nat]

Take γ = [V a Nat → Nat, W a Nat].

CS6202 Lecture 7 : Type Reconstruction 20

Principal UnifierPrincipal Unifier

A principal unifier for a constraint set C is a substitution σ
such that:

• σ satisfies C, and
• for every σ’ that satisfies C, we have σ v σ’.

That is,
σ is the most general substitution that satisfies C.

CS6202 Lecture 7 : Type Reconstruction 21

ExamplesExamples

What is the principal unifier of the following?

{X=Nat, Y= X → X}

{X → Y= Y → Z, Z= U → W}

⇒ [X a U → W, Y a U → W , Z a U → W]

⇒ [X a Nat, Y a Nat → Nat]

CS6202 Lecture 7 : Type Reconstruction 22

Unification AlgorithmUnification Algorithm

This derives principal unifier from a set of constraint

unify(C) = if C={} then []
else let {S=T} ∪ C’=C in

if S ≡ T then unify(C’)
else if S ≡ X ∧ X ∉FV(T)

then unify([X a T]C’) ◦ [X a T]
else if T ≡ X ∧ X ∉FV(S)

then unify([X a S]C’) ◦ [X a S]
else if S ≡ S1 → S2 ∧ T ≡ T1 → T2

then unify(C’ ∪ {S1=T1, S2=T2})
else fail

occurs
check

CS6202 Lecture 7 : Type Reconstruction 23

Unification Algorithm (Properties)Unification Algorithm (Properties)

Let C be an arbitrary constraint set.

• unify(C) terminates, either with fail or by returning a
substitution.

• If unify(C)=σ then σ is a unifier for C.

• If δ is a unifier for C, then unify(C)=σ for some σ such that
σ v δ.

CS6202 Lecture 7 : Type Reconstruction 24

Principal Types Principal Types

A principal solution for (Γ,t,S,C), is a solution (σ,T), such that,
whenever (σ’,T’) is a solution for (Γ,t,S,C), we have σ v σ’.

When (σ,T) is a principal solution, we call T a principal type
for t under Γ.

CS6202 Lecture 7 : Type Reconstruction 25

Unification Finds Principal Solution Unification Finds Principal Solution

If (Γ,t,S,C) has any solution, then it has a principal one.

The unification algorithm can be used to determine whether
(Γ,t,S,C) has a solution and, if so, to calculate a principal
solution.

CS6202 Lecture 7 : Type Reconstruction 26

LetLet--Polymorphism (Motivation) Polymorphism (Motivation)

Consider a function that applies the first argument twice to
the second argument:

λ f. λ a. f(f(a))

This function has few assumptions on f and a.

Can we apply the function, whenever these conditions are
met?

CS6202 Lecture 7 : Type Reconstruction 27

LetLet--Polymorphism (Example) Polymorphism (Example)

We can use let construct to capture more generic code:

let double = λ f. λ a. f(f(a)) in
… double (λ x. succ(succ(x))) 1 …
… double (λ x. not(x)) false …

However, what type should double have?

CS6202 Lecture 7 : Type Reconstruction 28

LetLet--Polymorphism (Initial Idea) Polymorphism (Initial Idea)

Provide type variable for double:
let double = λ f : X → X. λ a:X. f(f(a)) in
… double (λ x. succ(succ(x))) 1 …
… double (λ x. not(x)) false …

However, the let typing rule :

X → X = Nat → Nat
X → X = Bool → Bool

Γ ` let x=t1 in t2 : T2

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2 (T-Let)

generates the following contradiction!

CS6202 Lecture 7 : Type Reconstruction 29

LetLet--Polymorphism (Second Idea) Polymorphism (Second Idea)

Use implicitly annotated lambda abstraction:
let double = λ f . λ a. f(f(a)) in
… double (λ x:Nat. succ(succ(x))) 1 …
… double (λ x:Bool. not(x)) false …

Typing rule substitute all occurrences of double in body:

Γ ` let x=t1 in t2 : T2

Γ ` [x a t1]t2 : T2 (T-LetPoly)

Problems (i) what if x not used in t2
(ii) what if x occurs multiple times

CS6202 Lecture 7 : Type Reconstruction 30

LetLet--Polymorphism (Problem 1) Polymorphism (Problem 1)

What if x is not used in t2?

Modify the type rule:

Γ ` let x=t1 in t2 : T2

Γ ` t1 : T1 Γ ` [x a t1]t2 : T2

CS6202 Lecture 7 : Type Reconstruction 31

What if x occurs multiple times?

Explicit substitution of each occurrence of variable may result
in slow type-checking.

Solution : use type schemes. Resulting implementations of
type reconstruction run in practice in linear time.

In theory, they are exponential as shown by Kfoury, Tiuryn
and Urzyczyn (1990) since types can be exponential in size to
program!

LetLet--Polymorphism (Problem 2) Polymorphism (Problem 2)

CS6202 Lecture 7 : Type Reconstruction 32

Problem with References Problem with References

Let-polymorphism does not work correctly with references:

let r=ref (λ x.x) in
r:=(λ x:Nat. succ x); (!r) true

This results in run-time error even though it type-checks.
Reason - mismatch between evaluation rule and type rule.

Solution : use polymorphism only if the RHS of let is a value.

CS6202 Lecture 7 : Type Reconstruction 33

Unification Algorithm (Background)Unification Algorithm (Background)

• Unification is due to J Alan Robinson (1971), and is widely
used in computer science.

• Logic programming is based on unification over first-order
terms. It is a generalization of our language of types.
Unification is built-in.

• Occurs check is justified because we consider only finite
types (ie. non-recursive types).

