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CS6202: Advanced Topics in Programming 
Languages and Systems

Lecture 6 : Type Reconstruction

• Type Variables and Susbtitutions

• Two View of Type Variables

• Constraint-Based Typing

• Unification

• Principal Types

• Let Polymorphism 
CS6202 Lecture 7 : Type Reconstruction 2

Type Variables and SubstitutionsType Variables and Substitutions

In this lecture, we treat uninterpreted base types as type 
variables. 

A type X can stand for Nat → Bool. We may need to substitute 
X by the desired type Nat → Bool.   

A type substitution is a finite mapping from type variables to 
types.  Example:

σ = [X a T, Y a U ]
where

dom(σ) = {X, Y}
range(σ) = {T, U}
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Applying Substitutions to TypesApplying Substitutions to Types

σ (X) = T  if (X a T) ∈ σ
= X if X ∉dom(σ)

σ (Nat) = Nat

σ (Bool) = Bool

σ (T1 → T2) = σ T1 → σ T2
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Applying Substitutions to Contexts/TermsApplying Substitutions to Contexts/Terms

Applying it to contexts:

σ (x1:T1,…,xn:Tn) = (x1: σ T1,…,xn: σ Tn)

Applying it to terms by applying it to all its types. E.g :

[X a Bool] (λ x:X. x) = λ x:Bool. x



CS6202 Lecture 7 : Type Reconstruction 5

Composing SubstitutionsComposing Substitutions

Apply γ followed by σ, as follows:

σ ◦ γ = X a σ(T) for each (X a T ) ∈ γ

= X a T for each (X a T ) ∈ σ with X ∉dom(γ) 
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Preservation under Type Substitution Preservation under Type Substitution 

If  Γ ` t : T

then σ Γ ` σ t : σ T 
for any type substitution σ
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First View of Type Equation Solving First View of Type Equation Solving 

Let t be a term with type variables, and let Γ be a typing 
context with type variables.

First View:
For every σ there exists a T such that σ Γ ` σ t : σ T . 

“Are all substitution instances of t well-typed?”

This view leads to parametric polymorphism.
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Second View of Type Equation Solving Second View of Type Equation Solving 

Let t be a term with type variables, and let Γ be a typing 
context with type variables.

Second View:
Is there a σ such that there is a T  whereby
σ Γ ` σ t : σ T . 

“Is some substitution instance of t well-typed?”

This view leads to type reconstruction.



CS6202 Lecture 7 : Type Reconstruction 9

Type Reconstruction : The Problem  Type Reconstruction : The Problem  

Let t be a term and Γ be a typing context.

A solution for (Γ, t) is a pair (σ, T) such that σ Γ ` σ t : σ T 
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Example  Example  

Let Γ = f:X, a:Y and     t = f a

Then the possible solutions for  (Γ, t) include:

([X a Y → Nat], Nat)
([X a Y → Z], Z)
([X a Y → Z, Z a Nat ], Z)
([X a Y → Nat → Nat], Nat → Nat)
([X a Nat → Nat, Y a Nat ], Nat)
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ConstraintConstraint--based Typing based Typing 

Constraint-based typing is an algorithm that computes for 
(Γ, t) a set of constraints that must be satisfied by any solution 
for (Γ, t).

A constraint set C is a set of solutions {Si=Ti}i ∈ 1..n. A 
substitution σ unifies an equation S=T if  σ S and σ T are 
identical, namely σ S ≡ σ T.

A substitution unifies (or satisfies) a constraint set C if it 
unifies every equation in C .
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ConstraintConstraint--based Typing based Typing 

We define a relation

Γ ` t : T  |X C

The term t has type T under assumptions  Γ whenever the 
constraint C are satisfied.

X is used to track variables that are introduced along the way.
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Rules for ConstraintRules for Constraint--Based Typing  Based Typing  

Γ ` x : T  |∅ {}
x :T ∈ Γ (CT-Var)

(CT-Zero)

Γ ` succ t : Nat  |X C’
Γ ` t : T  |X C      C’=C ∪ {T=Nat} (CT-Succ)

Γ ` 0 : Nat  |∅ {}

Γ ` pred t : Nat  |X C’
Γ ` t : T  |X C      C’=C ∪ {T=Nat} (CT-Pred)
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Rules for ConstraintRules for Constraint--Based Typing  Based Typing  

Γ ` if t1 then t2 else t3 : T2 |X’ C’

Γ ` t1 : T1 |X1 C1 Γ ` t2 : T2 |X2 C2 Γ ` t3 : T3 |X3 C3

C’=C1 ∪ C2 ∪C3 ∪ {T1=Bool, T2 =T3}
X’=X1 ∪ X2 ∪ X3 

(CT-If)

(CT-True)

Γ ` iszero t : Bool |X C’
Γ ` t : T  |X C      C’=C ∪ {T=Nat} (CT-IsZero)

Γ ` true : Bool |∅ {}

(CT-False)Γ ` false : Bool |∅ {}
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Rules for ConstraintRules for Constraint--Based Typing  Based Typing  

Γ ` λ x:T1 . t2 : T1 → T2 |X C
Γ, x:T1 ` t2 : T2 |X C (CT-Abs)

Γ ` t1 t2 : V  |X’ C’

Γ ` t1 : T1 |X1 C1 Γ ` t2 : T2 |X2 C2

fresh V       C’=C1 ∪ C2 ∪ {T1=T2 → V}
X’=X1 ∪ X2 ∪ {V} 

(CT-App)

Note that    X1, X2 , FV(T2) , FV(T1)   are disjoint.
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ConstraintConstraint--based Typing  (Solution)based Typing  (Solution)

Suppose that

Γ ` t : T  |X C

A solution for (Γ,t,S,C) is a pair (σ,T) such that σ satisfies C and 
σ S=T.

Note that is is OK to omit X from discussion as it is simply a 
set of locally introduced type variables.
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Properties of ConstraintProperties of Constraint--based Typing based Typing 

Soundness:

Suppose that  Γ ` t : T |X C .  If (σ,T) is a solution for (Γ,t,S,C), 
then it is also a solution for (Γ,t). That is σ Γ ` σ t : σ T . 

Completeness:

Suppose that  Γ ` t : T |X C .  If (σ,T) is a solution for (Γ,t) and 
dom(σ) ∩ X={}, then there is a solution (σ’,T) for (Γ,t,S,C) such 
that σ’ \X = σ .
Note that σ \X is a substitution that is undefined for all 
variables in X, but otherwise behaves like σ.
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Correctness of ConstraintCorrectness of Constraint--based Typing based Typing 

Suppose  Γ ` t : T |X C .  

There is some solution for (Γ,t) if and only if there is some 
solution for (Γ,t,S,C) . 

Correctness = Soundness + Completeness
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More General SubstitutionMore General Substitution

A substitution σ is more general (or less specific) than a 
substitution σ’, written as σ v σ’ , if σ’ = γ ◦ σ for some 
substitution γ.

For example:
[X a V → V, Y a W → W] is less specific than
[X a (Nat → Nat) → [(Nat → Nat) , Y a Nat → Nat]

Take γ = [V a Nat → Nat, W a Nat ].
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Principal UnifierPrincipal Unifier

A principal unifier for a constraint set C is a substitution σ
such that:

• σ satisfies C, and
• for every σ’ that satisfies C, we have σ v σ’.

That is, 
σ is the most general substitution that satisfies C.
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ExamplesExamples

What is the principal unifier of the following?

{X=Nat, Y= X → X}

{X → Y= Y → Z, Z= U → W}

⇒ [X a U → W, Y a U → W , Z a U → W ]

⇒ [X a Nat, Y a Nat → Nat]
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Unification AlgorithmUnification Algorithm

This derives principal unifier from a set of constraint

unify(C) = if C={} then []
else let {S=T} ∪ C’=C in

if S ≡ T then unify(C’)
else if S ≡ X ∧ X ∉FV(T) 

then unify([X a T]C’) ◦ [X a T]
else if T ≡ X ∧ X ∉FV(S) 

then unify([X a S]C’) ◦ [X a S]
else if S ≡ S1 → S2 ∧ T ≡ T1 → T2

then unify(C’ ∪ {S1=T1, S2=T2})
else fail

occurs
check
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Unification Algorithm (Properties)Unification Algorithm (Properties)

Let C be an arbitrary constraint set.

• unify(C) terminates, either with fail or by returning a 
substitution.

• If unify(C)=σ then σ is a unifier for C. 

• If  δ is a unifier for C, then unify(C)=σ for some σ such that 
σ v δ.  

CS6202 Lecture 7 : Type Reconstruction 24

Principal Types Principal Types 

A principal solution for (Γ,t,S,C), is a solution (σ,T), such that, 
whenever (σ’,T’) is a solution for (Γ,t,S,C), we have σ v σ’. 

When (σ,T) is a principal solution, we call T a principal type 
for t under Γ.
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Unification Finds Principal Solution  Unification Finds Principal Solution  

If   (Γ,t,S,C) has any solution, then it has a principal one.  

The unification algorithm can be used to determine whether 
(Γ,t,S,C) has a solution and, if so, to calculate a principal 
solution.
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LetLet--Polymorphism (Motivation)   Polymorphism (Motivation)   

Consider a function that applies the first argument twice to 
the second argument:

λ f. λ a. f(f(a))

This function has few assumptions on f and a.

Can we apply the function, whenever these conditions are 
met?
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LetLet--Polymorphism (Example)   Polymorphism (Example)   

We can use let construct to capture more generic code:

let double = λ f. λ a. f(f(a))  in
… double (λ x. succ(succ(x))) 1 …
… double (λ x. not(x)) false …

However, what type should double have?

CS6202 Lecture 7 : Type Reconstruction 28

LetLet--Polymorphism (Initial Idea)   Polymorphism (Initial Idea)   

Provide type variable for double: 
let double = λ f : X → X. λ a:X. f(f(a))  in
… double (λ x. succ(succ(x))) 1 …
… double (λ x. not(x)) false …

However, the let typing rule :

X → X  =  Nat → Nat
X → X  =  Bool → Bool

Γ ` let x=t1 in t2 : T2 

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2 (T-Let)

generates the following contradiction! 
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LetLet--Polymorphism (Second Idea)   Polymorphism (Second Idea)   

Use implicitly annotated lambda abstraction:
let double = λ f . λ a. f(f(a))  in
… double (λ x:Nat. succ(succ(x))) 1 …
… double (λ x:Bool. not(x)) false …

Typing rule substitute all occurrences of double in body:

Γ ` let x=t1 in t2 : T2 

Γ ` [x a t1]t2 : T2 (T-LetPoly)

Problems (i) what if x not used in t2
(ii) what if x occurs multiple times
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LetLet--Polymorphism (Problem 1)   Polymorphism (Problem 1)   

What if x is not used in t2?

Modify the type rule:

Γ ` let x=t1 in t2 : T2 

Γ ` t1 : T1 Γ ` [x a t1]t2 : T2
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What if x occurs multiple times?

Explicit substitution of each occurrence of variable may result 
in slow type-checking. 

Solution : use type schemes. Resulting implementations of 
type reconstruction run in practice in linear time. 

In theory, they are exponential as shown by Kfoury, Tiuryn
and Urzyczyn (1990) since types can be exponential in size to 
program!  

LetLet--Polymorphism (Problem 2)   Polymorphism (Problem 2)   
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Problem with References   Problem with References   

Let-polymorphism does not work correctly with references:

let r=ref (λ x.x) in
r:=(λ x:Nat. succ x); (!r) true

This results in run-time error even though it type-checks. 
Reason - mismatch between evaluation rule and type rule.

Solution : use polymorphism only if the RHS of let is a value.
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Unification Algorithm (Background)Unification Algorithm (Background)

• Unification is due to J Alan Robinson (1971), and is widely 
used in computer science.

• Logic programming is based on unification over first-order 
terms. It is a generalization of our language of types. 
Unification is built-in.

• Occurs check is justified because we consider only finite 
types (ie. non-recursive types).


