
CS6202 Universal & Existential Types 1

CS6202: Advanced Topics in Programming
Languages and Systems

Lecture 7 : Universal/Existential Types

• Motivation for Universal Types

• System F & Examples

• Properties

• Type Reconstruction & Parametricity

• Existential Types

CS6202 Universal & Existential Types 2

Motivation for Universal TypesMotivation for Universal Types

Lack of code reuse!

Example:

doubleNat = O f: Nat � Nat. O x:Nat. f (f (x))

doubleBool = O f: Bool � Bool. O x:Bool. f (f (x))

doubleFun = O f: (Nat � Nat) � (Nat � Nat).
O x: Nat � Nat. f (f (x))

CS6202 Universal & Existential Types 3

Properties of Let PolymorphismProperties of Let Polymorphism

• allows for easy type reconstruction

• restricted to the let construct

• problems with references
(restricted to values on the RHS of =).

CS6202 Universal & Existential Types 4

Idea of Universal TypesIdea of Universal Types

Abstract over type!

double = O X. O f: X � X. O x:X. f (f (x))
> double : � X. (X � X) � X � X

double [Nat]
> <fun> : (Nat � Nat) � Nat � Nat

double [Bool]
> <fun> : (Bool � Bool) � Bool � Bool

CS6202 Universal & Existential Types 5

Evaluation (Type Abstraction/Application)Evaluation (Type Abstraction/Application)

(E-TAppTAbs)

t1[T2] � t1’ [T2]

t1 � t1’ (E-TApp)

(O X. t) [T] � [X � T] t

CS6202 Universal & Existential Types 6

Typing (Type Abstraction/Application)Typing (Type Abstraction/Application)

* C O X . t : � X. T

*, X C t : T (T-TAbs)

* C t1[T2] : [X � T2] T1

* C t1 : � X. T1 (T-TApp)

CS6202 Universal & Existential Types 7

Example : Identity FunctionExample : Identity Function

Creating the polymorphic identity function:

id = O X. O x:X. x
> id : � X. X � X

Using the polymorphic identity function:

id [Nat]
> <fun> : Nat � Nat

id [Bool] true
> true : Bool

CS6202 Universal & Existential Types 8

Example : SelfExample : Self--ApplicationApplication

We can apply a function to itself (in System F). Define

selfApp = O�x: � X. X � X . (x [� X. X � X]) x
> selfApp : (� X. X � X) � (� X. X � X)

One use of self-application is:

quadruple = selfApp double
> quadruple : � X. (X � X) � (X � X)

Exercise : show that above is the same as:
quadruple = O�X. double [X � X] (double [X])

CS6202 Universal & Existential Types 9

Example : Polymorphic ListExample : Polymorphic List

Assume that type constructor List is given with the following
primitives:

nil : � X. List X
cons : � X. X � List X � List X
isnil : � X. List X � Bool
head : � X. List X � X
tail : � X. List X � List X

CS6202 Universal & Existential Types 10

Example : MapExample : Map

With the help of fix, we can write a polymorphic map
operation, as follows:

map = O X. O Y. O f: X � Y.
fix (O m: (List X) � (List Y).

O l:List X.
if isnil [X] l then nil [Y]
else cons [Y] (f (head [X] l))

(m (tail [X] l))))

> map : � X. � Y. (X � Y) � List X � List Y

CS6202 Universal & Existential Types 11

System F : Soundness PropertiesSystem F : Soundness Properties

Preservation Theorem:

If * C t : T and t � t’
then * C t’ : T

Progress Theorem

If t is a closed well-typed term, then either t is a value or
else there is some t’ with t � t’ .

CS6202 Universal & Existential Types 12

System F :System F : NormalisationNormalisation

A term is normalizing if there is no infinite evaluation

t � t1 � t2 � t3� …

Well-typed System F terms (without the fix-point
operator) are normalizing.

CS6202 Universal & Existential Types 13

System F : Historical Background System F : Historical Background

• Discovered by Jean-Yves Girard in 1972 for proof theory.

• Independently developed by John Reynolds 1974 as
polymorphic lambda calculus.

• Normalization : quite innovative inductive proof technique
due to Tait (1968) and Girard (1972).

• Type reconstruction : was open problem until 1994!

CS6202 Universal & Existential Types 14

UndecidabilityUndecidability of Type Reconstructionof Type Reconstruction
for System F. for System F.

Wells 1994 : it is undecidable when given a closed term m of
the untyped lambda calculus, if there is some well-typed term
t in System F such that erase(t)=m.

The type erasure operation is defined as:

erase(x) = x
erase(O x:T. t) = O x. erase(t)
erase(t1 t2) = erase(t1) erase(t2)
erase(O x:X. t) = erase(t)
erase(t [T]) = erase(t)

CS6202 Universal & Existential Types 15

What to do withWhat to do with UndecidabilityUndecidability? ?

Restrict the language :

let polymorphism of ML, rank-2 polymorphism, etc.

Partial Type Reconstruction:

correct but incomplete approaches such as local type
inference, greedy type inference, etc.

CS6202 Universal & Existential Types 16

ParametricityParametricity

Polymorphic programs operate uniformly over any input,
independently of their type.

Language implementations benefit from this parametricity by
generating only one machine code version for polymorphic
functions. Also, certain theorems come for free.

At runtime, type application does not result in any
computation. This is exemplified by OCaml’ s let
polymorphism, where no type application is needed.

CS6202 Universal & Existential Types 17

Motivation for Existential TypeMotivation for Existential Type

We emphasize the operational reading, supported by the
notation:

{�X, T}

Terms of such type have the form:

{*S, t}

We call such terms “modules” with the hidden type S and the
term component t.

CS6202 Universal & Existential Types 18

ExampleExample

The term
{*Nat, {a=5, f=O x:Nat. succ(x)}}}

has type
{�X, {a:X,f:X � X}

but it may also have type:
{�X, {a:X,f:X � Nat}

Solution : use ascription to force a unique type for module.

{*Nat, {a=5, f=O x:Nat. succ(x)}}} as {�X, {a:X,f:X � X}

CS6202 Universal & Existential Types 19

Elements of Existential TypesElements of Existential Types

The hidden type of different elements can be different.

p4 = {*Nat, {a=5, f=O x:Nat. succ(x)}} as {�X, {a:X,f:X � Nat}
> p4 : {�X, {a:X,f:X � Nat}

p5 = {*Bool, {a=true, f=O x:Bool. 0}} as {�X, {a:X,f:X � Nat}
> p5 : {�X, {a:X,f:X � Nat}

In effect, the module type is parameterised over the internal
type. Elements of existential types use internal types, but
these are not visible where the elements are used.

CS6202 Universal & Existential Types 20

Violations of AbstractionViolations of Abstraction

We must not make assumption about internal type, nor could
it be exposed to a location out of its scope.

let {X,x}=p4 in succ(x.a)
> Error : argument of succ is not a number.

let {X,x}=p4 in x.a
> Error : scoping error!

where:
p4 = {*Nat, {a=5, f=O x:Nat. succ(x)}} as {�X, {a:X,f:X � Nat}

CS6202 Universal & Existential Types 21

Syntax of Existential TypesSyntax of Existential Types

• t ::= … terms
{*T,t} as T packing
let {X,x}=t in t unpacking

• v ::= … values
{*T,v) as T package value

• T ::= … values
{�X,T} existential type

CS6202 Universal & Existential Types 22

Typing RulesTyping Rules

* C {*U, t} as {� X, T} : {� X, T}

* C t : [X � U] T (T-Pack)

* C let {X,x}=t1 in t2 : T2

* C t1 : {� X, T1} *, X, x:T1 C t2 : T2 (T-Unpack)

CS6202 Universal & Existential Types 23

Evaluation RulesEvaluation Rules

(E-UnpackPack)

{*U, t} as T � {*U, t’ } as T

t � t’ (E-Pack)

let {X,x}= {*T, v} in t � [X � T, x � v] t

let {X,x}=t1 in t2 � let {X,x}=t1’ in t2

t1 � t1’ (E-UnPack)

CS6202 Universal & Existential Types 24

Abstract Data TypesAbstract Data Types

ADT counter =
type Counter
representation Nat
signature

new : Counter,
get : Counter � Nat,
inc : Counter � Counter;

operations
new = 1;
get = O i:Nat. i
inc = O i:Nat. succ(i)

CS6202 Universal & Existential Types 25

Translation using Existential Types Translation using Existential Types

counterADT =
{*Nat,

{new = 1,
get = O i:Nat. i
inc = O i:Nat. succ(i) }}

as {� Counter,
{new : Counter,

get : Counter � Nat,
inc : Counter � Counter}}

> counterADT : {� Counter, {new : Counter,
get : Counter � Counter, inc : Counter � Counter}}

CS6202 Universal & Existential Types 26

Using Abstract Data Types Using Abstract Data Types

let {Counter,ctr} = counterADT in
ctr.get (ctr.inc ctr.new)
> 2 : Nat

let {Counter,ctr} = counterADT in
let add3 = O c:Counter.

ctr.inc(ctr.inc(ctr.inc c)) in ctr.get(add3 ctr.new)
> 4 : Nat

CS6202 Universal & Existential Types 27

Structure of Programs usingStructure of Programs using ADTsADTs

Each ADT can use all previously declared ADTs.

let {ADT,m1} = <ADT1 package> in

let {ADT,m2} = <ADT2 package> in

…

let {ADT,mn} = <ADTn package> in

<main program>

CS6202 Universal & Existential Types 28

Representation IndependenceRepresentation Independence

Abstract data type enjoy representation independence. They
can be replaced by alternative implementations without
affecting the rest of the programs, as long as the existential
type is not modified. Example:

counterADT =
{* {x:Nat},

{new = {x=1},
get = O i: {x:Nat}. i.x
inc = O i: {x:Nat}. {x=succ(i.x)} }}

as {� Counter,
{new : Counter,

get : Counter � Nat,
inc : Counter � Counter}}

CS6202 Universal & Existential Types 29

Motivation for Bounded QuantificationMotivation for Bounded Quantification

Arises when subtyping is combined with polymorphism.

Consider:
f = O x: {a:Nat}. x
> f : {a:Nat} � {a:Nat}

Now, what is the type of?

f {a=0}
> {a=0} : {a:Nat}

f {a=1, b=4}
> {a=1,b=4} : {a:Nat}

CS6202 Universal & Existential Types 30

ProblemProblem

Note that below is ill-typed! Why?
let c = f {a=1, b=4} in

c.b

One solution is to use universal type:
f = O X . O x: X. x
> f : � X. X � X

But how to handle:
f = O x: {a:Nat}. {x.a, x}
> f : {a:Nat} � {a:Nat}

Certainly not !
f = O X . O x: X. {x.a, x}

CS6202 Universal & Existential Types 31

Solution : Bounded QuantificationSolution : Bounded Quantification

Quantified type may be bounded by a subtyping relation:

For example:

f = O X<:{a:Nat} . O x: X. {x.a, x}
> f : � X <:{a:Nat} . X � {Nat, X}

This is the core of System F<:. More details in Pierce’ s book!

