
Automated Verification of Shape and Size

Properties via Separation Logic

Huu Hai Nguyen1, Cristina David2, Shengchao Qin3, and Wei-Ngan Chin1,2

1 Computer Science Programme, Singapore-MIT Alliance
2 Department of Computer Science, National University of Singapore

3 Department of Computer Science, Durham University
{nguyenh2,davidcri,chinwn}@comp.nus.edu.sg shengchao.qin@durham.ac.uk

Abstract. Despite their popularity and importance, pointer-based pro-
grams remain a major challenge for program verification. In this pa-
per, we propose an automated verification system that is concise, precise
and expressive for ensuring the safety of pointer-based programs. Our
approach uses user-definable shape predicates to allow programmers to
describe a wide range of data structures with their associated size prop-
erties. To support automatic verification, we design a new entailment
checking procedure that can handle well-founded inductive predicates
using unfold/fold reasoning. We have proven the soundness and termi-
nation of our verification system, and have built a prototype system.

1 Introduction

In recent years, separation logic has emerged as a contender for formal reasoning
of heap-manipulating imperative programs. While the foundations of separation
logic have been laid in seminal papers by Reynolds [17] and Isthiaq and O’Hearn
[10], new automated reasoning tools based on separation formulae, such as [2,
8], are beginning to appear. Several major challenges are faced by the designers
of such reasoning systems, including key issues on automation and expressivity.
This paper’s main goal is to raise the level of expressivity and verifiability that
is possible with an automated verification system based on separation logic. We
make the following technical contributions towards this overall goal :

– We provide a shape predicate specification mechanism that can capture a wide
range of data structures together with size properties, such as various height-
balanced trees, priority heap, sorted list, etc. We provide a mechanism to
soundly approximate each shape predicate by a heap-independent invariant
which plays an important role in entailment checking (Secs 2 and 4.1).

– We design a new procedure to check entailment of separation heap con-
straints. This procedure uses unfold/fold reasoning to deal with shape def-
initions. While the unfold/fold mechanism is not new, we have identified
sufficient conditions for soundness and termination of automatic unfold/fold
reasoning to support entailment checking, in the presence of user-defined
shape predicates that may be recursive. (Secs 3.1, 4 and 5)

– We have implemented a prototype verification system with the above features
and have also proven both its soundness and termination (Secs 6 and 7).

2 User-Definable Shape Predicates

Separation logic [17, 10] extends Hoare logic to support reasoning about shared
mutable data structures. It adds two more connectives to classical logic : sep-
arating conjunction ∗, and separating implication −−∗. h1 ∗ h2 asserts that two
heaps described by h1 and h2 are domain-disjoint. h1−−∗h2 asserts that if the
current heap is extended with a disjoint heap described by h1, then h2 holds in
the extended heap. In this paper we use only separating conjunction.

We propose an intuitive mechanism based on inductive predicates (or rela-
tions) to allow user specification of shapely data structures with size properties.
Our shape specification is based on separation logic with support for disjunctive
heap states. Furthermore, each shape predicate may have pointer or integer pa-
rameters to capture relevant properties of data structures. We use the following
data node declarations for the examples in the paper. They are recursive data
declarations with different number of fields.

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right; node3 parent }

We use p::c〈v∗〉 to denote two things in our system. When c is a data name,
p::c〈v∗〉 stands for singleton heap p7→[(f : v)]∗ where f∗ are fields of data decla-
ration c. When c is a predicate name, p::c〈v∗〉 stands for the formula c(p, v∗).
The reason we distinguish the first parameter from the rest is that each predi-
cate has an implicit parameter self as the first one. Effectively, self is a “root”
pointer to the specified data structure that guides data traversal and facilitates
the definition of well-founded predicates (Sec 3.1). As an example, a singly linked
list with length n is described by :

ll〈n〉≡(self=null∧n=0)∨(∃i, m, q · self::node〈i, q〉∗q::ll〈m〉∧n=m+1) inv n≥0

The second parameter n captures a derived value that is computed rather
than taken directly from the heap state. The above definition asserts that an ll

list can be empty (the base case self=null) or consists of a head data node
(specified by self::node〈i, q〉) and a separate tail data structure which is also
an ll list (q::ll〈m〉). The ∗ connector ensures that the head node and the tail
reside in disjoint heaps. We also specify a default invariant n≥0 that holds for all
ll lists. Our predicate uses existential quantifiers for local values and pointers,
such as i, m, q.

A more complex shape, doubly linked-list with length n, is described by :

dll〈p, n〉≡(self=null∧n=0)∨(self::node2〈 , p, q〉∗q::dll〈self, n−1〉) inv n≥0

The dll shape predicate has a parameter p that represents the prev field of
the first node of the doubly linked-list. It captures a chain of nodes that are to
be traversed via the next field starting from the current node self. The nodes
accessible via the prev field of the self node are not part of the dll list. This

example also highlights some shortcuts we may use to make shape specification
easier. We use underscore to denote an anonymous variable. Non-parameter
variables in the RHS of the shape definition, such as q, are considered existen-
tially quantified. Furthermore, terms may be directly written as arguments of
shape predicate or data node.

User-definable shape predicates provide us with more flexibility than some
recent automated reasoning systems [1, 3] that are designed to work with only a
small set of fixed predicates. Furthermore, our shape predicates can describe not
only the shape of data structures, but also their size properties. This capability
enables many applications, especially to support data structures with sophisti-
cated invariants. For example, we may define a non-empty sorted list as below.
The predicate also tracks the length, as well as the minimum and maximum
elements of the list.

sortl〈n, min, max〉 ≡ (self::node〈min, null〉 ∧ min=max ∧ n=1)
∨ (self::node〈min, q〉 ∗ q::sortl〈n−1, k, max〉 ∧ min≤k) inv min≤max ∧ n≥1

The constraint min≤k guarantees that sortedness property is adhered between
any two adjacent nodes in the list. We may now specify (and then verify) the
following insertion sort algorithm :

node insert(node x, node vn) where
x::sortl〈n, sm, lg〉 ∗ vn::node〈v, 〉 ∗→ res::sortl〈n+1, min(v, sm), max(v, lg)〉

{ if (vn.val≤x.val) then { vn.next:=x; vn }
else if (x.next=null) then { x.next:=vn; vn.next:=null; x }
else { x.next:=insert(x.next, vn); x }}

node insertion sort(node y) where y::ll〈n〉 ∧ n>0 ∗→ res::sortl〈n, , 〉
{ if (y.next=null) then y

else { y.next:=insertion sort(y.next); insert(y.next, y) }}

We use the notation Φpr ∗→Φpo to capture a precondition Φpr and a post-
condition Φpo of a method. We also use an expression-oriented language where
the last subexpression (e.g. e2 from e1;e2) denotes the result of an expression.
A special identifier res is also used in the postcondition to denote the result of
a method. The postcondition of insertion sort shows that the output list is
sorted and has the same number of nodes as the input list.

3 Automated Verification

In this section, we first introduce a core object-based imperative language and
then propose a set of forward verification rules to systematically check that
preconditions are satisfied at call sites, and that the declared postcondition is
successfully verified (assuming the precondition) for each method definition.

3.1 Language

We provide a simple imperative language in Figure 1. Our language is strongly
typed and we assume programs and constraints are well-typed. The language

supports data type declaration via datat, and shape predicate definition via
spred. For each shape definition, we also declare a heap-independent invariant
π0 over the parameters {self, v∗} that is valid for each instance of the predicate.

P ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
τ ::= int | bool | float | void
spred ::= c〈v∗〉 ≡ Φ inv π0

meth ::= t mn ((t v)∗) where Φpr ∗→Φpo {e}
e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗)

| e1; e2 | t v; e | mn(v∗) | if v then e1 else e2

| while v where Φpr ∗→Φpo do e
Φ ::=

W

(∃v∗·κ∧π)∗ π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
φ ::= b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

Fig. 1. A Core Imperative Language

Each method meth and while loop is declared with pre- and post-conditions
of the form Φpr ∗→Φpo. For simplicity, we assume that variable names declared
in each method are all distinct and that pass-by-value parameter mechanism
is used. Primed notation is used to capture the latest value of local variables
and may appear in the postcondition of loops. For example, a simple loop with
pre/post conditions is shown below :

while x<0 where true ∗→ (x>0∧x′=x) ∨ (x≤0∧x′=0) do { x:=x+1 }
Here x and x′ denote the old and new values of variable x at the entry and exit
of the loop, respectively.

The separation constraints we use are in a disjunctive normal form Φ. Each
disjunct consists of a ∗-separated heap constraint κ, referred to as heap part, and
a heap-independent formula π, referred to as pure part. The pure part does not
contain any heap nodes and is presently restricted to pointer equality/inequality
γ and Presburger arithmetic φ. Furthermore, ∆ denotes a composite formula
that could always be normalised into the Φ form (see Figure 3). The semantic
model for the separation constraints is left in the appendix due to page limit.

Separation constraints are used in pre/post conditions and shape definitions.
In order to handle them correctly without running into unmatched residual heap
nodes, we require each separation constraint to be well-formed, as follows :

Definition 3.1 (Well-Formed Constraint) A separation constraint Φ is well-
formed if (i) every data node and shape predicate are reachable from their acces-

sible variables, (ii) it is in a disjunctive normal form
∨

(∃v∗·κ∧γ∧φ)∗ where κ
is for heap nodes, γ is for pointer constraint, and φ is for arithmetic formula.

Definition 3.2 (Accessible) A variable is said to be accessible w.r.t. a shape
predicate if it is a parameter or it is a special variable, either self or res.

Definition 3.3 (Reachable) Given a heap constraint κ = p::c〈v∗〉 ∗ κ1, node
p::c〈v∗〉 is reachable from a variable q if and only if the following relation holds:

reach(κ, q, p::c〈v∗〉) =df (p=q)∨(κ1=q::cq〈.., r, ..〉∗κ2 ∧ reach(κ2, r, p::c〈v
∗〉))

The primary significance of the well-formed condition is that all heap nodes
of a heap constraint are reachable from accessible variables. This allows the
entailment checking procedure to correctly match up nodes from the consequent
with nodes from the antecedent of an entailment relation.

Arbitrary recursive shape relation can lead to non-termination in unfold/fold
reasoning. To avoid that problem, we propose to use only well-founded shape
predicates in our framework.

Definition 3.4 (Well-Founded Predicate) A shape predicate is said to be
well-founded if it satisfies four conditions, namely: (i) it is a well-formed con-
straint, (ii) the parameter self may only be bound to a data node and not a
predicate, (iii) only self is allowed to be bound to a data node and (iv) every
predicate is reachable from self.

Note that the definitions above are syntactic and can easily be enforced. Two
examples of well-founded shape predicates are treep – binary tree with parent
pointer, and avl – binary tree with near balanced heights, as follows :

treep〈p〉 ≡ (self=null) ∨ (self::node3〈 , l, r, p〉 ∗ l::treep〈self〉
∗r::treep〈self〉) inv true

avl〈n, h〉 ≡ (self=null ∧ n=0 ∧ h=0) ∨ (self::node2〈 , p, q〉 ∗ p::avl〈n1, h1〉
∗q::avl〈n2, h2〉 ∧ n=n1+n2∧ h=1+max(h1, h2) ∧ −1≤h1−h2≤1) inv n, h≥0

In contrast, the following three shape definitions are not well-founded.

foo〈n〉 ≡ self::foo〈m〉 ∧ n=m+1

goo〈〉 ≡ self::node〈 , 〉 ∗ q::goo〈〉
too〈〉 ≡ self::node〈 , q〉 ∗ q::node〈 , 〉

For foo, the self identifier is bound to a shape predicate. For goo, the heap node
pointed by q is not reachable from variable self. For too, an extra data node is
bound to a non-self variable. The first example may cause infinite unfolding,
while the second example captures an unreachable (junk) heap that cannot be
located by our entailment procedure. The last example is just a syntactic re-
striction to facilitate termination proof reasoning, and can be easily overcome
by introducing intermediate predicates.

[FV−PRED]

XPure0(Φ) =⇒ [0/null](πinv)

` c〈v∗〉 = Φ inv πinv

[FV−CALL]

t mn((ti vi)
n
i=1) whereΦpr ∗→Φpo {..} ρ=[v′

i/vi]
∆`ρΦpr ∗∆1 W = {v1, .., vn} ∆2=(∆1 ∗W Φpo)

` {∆}m(v1..vn) {∆2}

[FV−METH]

V ={v1..vn} W=prime(V) ∆=Φpr∧nochange(V) ` {∆} e {∆1} (∃W·∆1)`Φpo ∗∆2

` t0 mn(t1 v1, .., tn vn) where Φpr ∗→ Φpo {e}

Fig. 2. Some Forward Verification Rules

3.2 Forward Verification

With pre/post conditions declared for each method, we can now apply modu-
lar verification to its body using Hoare-style triples ` {∆1} e {∆2}. These are
forward verification rules as we expect ∆1 to be given before computing ∆2.
Three rules are given in Fig 2 while others are left in the appendix (Fig 7).
They are used to track heap states as accurately as possible with path-, flow-,
and context-sensitivity. For each call site, [FV−CALL] ensures that its method’s
precondition is satisfied. At each method definition, [FV−METH] checks that its
postcondition holds for the method body assuming its precondition. At each
shape definition, [FV−PRED] checks that its given invariant is a consequence of
the well-founded heap formula. The soundness of the forward verification is also
left in the appendix due to page limit.

Our rules currently allow both preconditions and shape predicates to contain
contradictory/false heap state. A false precondition implies anything but can
never be satisfied by any call site from a non-contradictory heap state. Similarly,
a shape predicate with a false heap formula can never be constructed.

We now explain the operators/functions used in our verification rules. The
operators ∧{v} (in assignment rule) and ∗W (in method call rule) are composition
with update operators. Given a state ∆1, a state change ∆2, and a set of variables
to be updated X={x1, . . . , xn}, the composition operator ⊕X is defined as :

∆1 ⊕X ∆2 =df ∃ r1..rn · ρ1 ∆1 ⊕ ρ2 ∆2

where r1, . . . , rn are fresh variables; ρ1 = [ri/x′
i]

n
i=1 ; ρ2 = [ri/xi]

n
i=1

Note that ρ1 and ρ2 are substitutions that link each latest value of x′
i in ∆1

with the corresponding initial value xi in ∆2 via a fresh variable ri. The binary
operator ⊕ is either ∧ or ∗. Function nochange(V) returns a formula asserting
that the unprimed and primed versions of each variable in V are equal; prime(V)
returns the primed form of all variables in V . We use [e∗/v∗] to represent
substitutions of v∗ by e∗. A special case is [0/null], which denotes replacement
of null by 0. Normalization rules for separation constraints are given in Figure 3.
XPure is described in the next section.

(∆1 ∨ ∆2) ∧ π ; (∆1 ∧ π) ∨ (∆2 ∧ π)
(∆1 ∨ ∆2) ∗ ∆ ; (∆1 ∗ ∆) ∨ (∆2 ∗ ∆)
(κ1∧π1) ∗ (κ2∧π2) ; (κ1∗κ2)∧(π1∧π2)
(κ1∧π1) ∧ (π2) ; κ1∧(π1∧π2)

(γ1∧φ1) ∧ (γ2∧φ2) ; (γ1∧γ2) ∧ (φ1∧φ2)
(∃x · ∆) ∧ π ; ∃y · ([y/x]∆ ∧ π)
(∃x · ∆1) ∗ ∆2 ; ∃y · ([y/x]∆1 ∗ ∆2)

Fig. 3. Normalization Rules

4 Entailment

We present in this section the entailment checking rules for the class of con-
straints used by our verification system.

4.1 Separation Constraint Approximation

(c〈v∗〉 ≡ Φ inv π0) ∈ P

Inv0(p::c〈v∗〉) = [p/self, 0/null]π0

(c〈v∗〉 ≡ Φ inv π0) ∈ P

Invn(p::c〈v∗〉) = [p/self, 0/null]XPuren−1(Φ)

XPuren(
∨

(∃v∗·κ∧π)∗) =df

∨
(∃v∗·XPuren(κ)∧[0/null]π)∗

XPuren(emp) =df true

IsData(c) fresh i

XPuren(p::c〈v∗〉) =df ex i·(p=i∧i>0)

IsPred(c) fresh i∗ Invn(p::c〈v∗〉) = ex j∗ ·
∨

(∃u∗·π)∗

XPuren(p::c〈v∗〉) =df ex i∗ · [i∗/j∗]
∨

(∃u∗·π)∗

XPuren(κ1 ∗ κ2) =df XPuren(κ1) ∧ XPuren(κ2)

Fig. 4. XPure : Translating to Pure Form

Entailment between
separation formulae
(detailed in section
4.2) is reduced to
entailment between
pure formulae by
successively remov-
ing heap nodes from
the consequent un-
til only a pure for-
mula remains. When
the consequent is
pure, the heap for-
mula in the an-
tecedent is soundly
approximated by a
pure formula via
function XPuren. The
function XPuren(Φ),
whose definition is given in Fig 4, returns a sound approximation of Φ as for-
mula ex i∗·

∨
(∃v∗·π)∗ where i∗ are (non-null) distinct symbolic addresses of

heap nodes of Φ. The function IsData(c) returns true if c is a data node, while
IsPred(c) returns true if c is a shape predicate.

We illustrate how this function works by the following example :

XPuren(p1::node〈 , 〉 ∗ p2::node〈 , 〉)
= (ex i1·(p1=i1 ∧ i1>0)) ∧ (ex i2·(p2=i2 ∧ i2>0))
= ex i1, i2·(p1=i1 ∧ i1>0 ∧ p2=i2 ∧ i2>0 ∧ i1 6=i2)

The following normalization rules are also used :

(ex I ·φ1)∨(ex J ·φ2); ex I∪J · (φ1 ∨ φ2)
∃ v · (ex I ·φ) ; ex I · (∃ v ·φ)
(ex I ·φ1)∧(ex J ·φ2); ex I∪J ·φ1∧φ2∧

∧
i∈I,j∈J i6=j

The ex i∗ construct is converted to ∃ i∗ when the formula is used as a pure
formula. The soundness of XPuren is formalized by :

Lemma 4.1 (Sound Abstraction). Given a separation constraint Φ where
the invariants of the shape predicates appearing in Φ are semantic consequences
of their respective predicate definitions, we have : Φ |= XPuren(Φ)
Proof : By structural induction on Φ.

Lemma 4.2 (Sound Invariant). Given a shape predicate c〈v∗〉≡Φ, we have
Φ |= Invn(self::c〈v∗〉) if XPuren(Φ) =⇒ Invn(self::c〈v∗〉).
Proof: By structural induction on Φ.

These lemmas ensure the soundness of the entailment checking rule [ENT−EMP]
(Fig. 5) and the forward verification rule [FV−PRED] (Fig. 2). Lemma 4.1 asserts
that it is safe to approximate an antecedent by using XPure if all the predicate
invariants are sound. Lemma 4.2 ensures that a supplied invariant that passes the
[FV−PRED] check is a semantic consequence of the predicate. They also allow the
possibility of obtaining a more precise invariant by applying XPure one or more
times. For example, when given a pure invariant n≥0 for the predicate ll〈n〉,
a single application returns ex i·(self=0∧n=0 ∨ self=i∧i>0∧n>0) which is
sound and more precise, as it relates the nullness of the self pointer with the
size n of the list.

The invariants associated with shape predicates play an important role in
our system. Without the knowledge m≥0, the entailment x::node〈 , y〉∗y::ll〈m〉 `
x::ll〈n〉 ∧ n≥1 would not have succeeded due to n≥1. Without the more precise
derived invariant using XPure for predicate ll, the entailment x::ll〈n〉 ∧ n>0 `
x6=null would not have succeeded either.

4.2 Separation Constraint Entailment

We express the main procedure for heap entailment by the relation

∆A`
κ
V ∆C ∗∆R

which denotes

κ ∗ ∆A`∃V ·(κ ∗ ∆C) ∗∆R

The purpose of heap entailment is to check that heap nodes in the antecedent
∆A are sufficiently precise to cover all nodes from the consequent ∆C , and to
compute a residual heap state ∆R. κ is the history of nodes from the antecedent
that have been used to match nodes from the consequent, V is the list of existen-
tially quantified variables from the consequent. Note that k and V are derived.
The entailment checking procedure is invoked with κ = emp and V = ∅. The en-
tailment checking rules are given in Fig 5. We discuss the matching rule in what
follows, and leave unfold/fold rules to Sec 5.

The procedure works by successively matching up heap nodes that can be
proven aliased. As the matching process is incremental, we keep the successfully

[ENT−EMP]
ρ=[0/null]

ρ(XPuren(κ1∗κ)∧π1)=⇒ρ∃V·π2

κ1∧π1`
κ
V π2 ∗ (κ1∧π1)

[ENT−MATCH]
XPuren(p1::c〈v

∗
1〉∗κ1∗π1)=⇒p1=p2 ρ=[v∗

1/v∗
2]

κ1∧π1∧freeEqn(ρ, V)`
κ∗p1::c〈v∗

1
〉

V −{v∗

2
} ρ(κ2∧π2) ∗∆

p1::c〈v∗
1
〉∗κ1∧π1`

κ
V (p2::c〈v∗

2
〉∗κ2∧π2) ∗∆

[ENT−FOLD]
IsPred(c2)∧IsData(c1) (∆r, κr, πr)∈foldκ(p1::c1〈v

∗
1〉∗κ1∧π1, p2::c2〈v

∗
2〉)

XPuren(p1::c1〈v
∗
1〉∗κ1∗π1)=⇒p1=p2 (πa, πc)=split

{v∗

2
}

V (πr) ∆r∧πa`κr

V (κ2∧π2∧πc) ∗∆

p1::c1〈v∗
1
〉∗κ1∧π1`

κ
V (p2::c2〈v∗

2
〉∗κ2∧π2) ∗∆

[ENT−UNFOLD]
XPuren(p1::c1〈v

∗
1〉∗κ1∗π1)=⇒p1=p2 IsPred(c1)∧IsData(c2)

unfold(p1::c1〈v
∗
1〉)∗κ1∧π1`

κ
V (p2::c2〈v

∗
2〉∗κ2∧π2) ∗∆

p1::c1〈v∗
1
〉∗κ1∧π1`

κ
V (p2::c2〈v∗

2
〉∗κ2∧π2) ∗∆

[ENT−LHS−OR]
∆1`

κ
V ∆3 ∗∆4

∆2`
κ
V ∆3 ∗∆5

∆1∨∆2`
κ
V ∆3 ∗ (∆4∨∆5)

[ENT−RHS−OR]
∆1`

κ
V ∆i ∗∆R

i

∆1`
κ
V (∆2∨∆3) ∗∆R

i

i∈{2, 3}

[ENT−RHS−EX]
∆1`

κ
V ∪{w}([w/v]∆2) ∗∆3

fresh w ∆=∃ w ·∆3

∆1`
κ
V (∃ v ·∆2) ∗∆3

[ENT−LHS−EX]
[w/v]∆1`

κ
V ∆2 ∗∆

fresh w

∃v · ∆1`
κ
V ∆2 ∗∆

Fig. 5. Separation Constraint Entailment

matched nodes from antecedent in κ for better precision. For example, consider
the following (valid) proof:

(((p=null ∧ n=0) ∨ (p6=null ∧ n>0)) ∧ n>0 ∧ m=n) =⇒ p6=null

R = (n>0 ∧ m=n)
n>0 ∧ m=n `p::ll〈n〉 p6=null ∗ R

p::ll〈n〉 ∧ n>0 ` p::ll〈m〉 ∧ p6=null ∗ R

Had the predicate p::ll〈n〉 not been kept and used, the proof would not have
succeeded. Such an entailment would be useful when, for example, a list with
positive length n is used as input for a function that requires a non-empty list.

Another feature of the entailment procedure is exemplified by the transfer
of m=n to the antecedent (and subsequently to the residue). In general, when a
match occurs (rule [ENT−MATCH]) and an argument of the heap node coming
from the consequent is free, the entailment procedure binds the argument to
the corresponding variable from the antecedent and moves the equality to the
antecedent. In our system, free variables in consequent are variables from method
preconditions. Hence these bindings act as substitutions that have to be kept in
antecedent to allow subsequent program state (from residual heap) to be aware
of their values. This process is formalized by the function freeEqn below, where
V is the set of existentially quantified variables :

freeEqn([ui/vi]
n
i=1, V) =df let πi = if vi ∈ V then true else vi=ui in

∧n
i=1 πi

For soundness, we perform a preprocessing step to ensure that variables appear-
ing as arguments of heap nodes and predicates are i) distinct and ii) if they are

free, they do not appear in the antecedent by adding (existentially quantified)
fresh variables and equalities. This guarantees that the generated substitutions
are well-defined. It also guarantees that the formula generated by freeEqn does
not introduce any additional constraints over existing variables in the antecedent,
as one side of each equation does not appear anywhere else in the antecedent.
An additional outcome is that the order of picking nodes from the consequent
for matching does not matter.

5 Unfold/Fold Mechanism

Unfold/fold operations can be used to handle well-founded inductive predicates
in a deductive manner. In particular, we can unfold a predicate that appears in
the antecedent that matches with a data node in the consequent. Correspond-
ingly, we fold a predicate that appears in the consequent if it matches with a
data node in the antecedent. The well-founded condition is sufficient to ensure
termination.

5.1 Unfolding a Shape Predicate in the Antecedent

We apply an unfold operation on a predicate in the antecedent that matches
with a data node in the consequent. Consider :

x::ll〈n〉∧n>3 ` (∃r·x::node〈 , r〉∗r::node〈 , y〉∧y6=null) ∗ ∆R

where ∆R captures the residual of entailment. For the entailment to succeed, we
would unfold the ll〈n〉 predicate in the antecedent twice to allow the two data
nodes on the consequent to be matched up. This would result in the following
reduction towards a residual state :

∃q1·x::node〈 , q1〉∗q1::ll〈n−1〉∧n>3 ` (∃r·x::node〈 , r〉∗r::node〈 , y〉∧y6=null) ∗ ∆R
q1::ll〈n−1〉∧n>3 ` (q1::node〈 , y〉 ∧ y6=null) ∗ ∆R
∃q2·q1::node〈 , q2〉∗q2::ll〈n−2〉∧n>3 ` q1::node〈 , y〉∧y6=null ∗ ∆R
q2::ll〈n−2〉∧n>3∧q2=y ` y6=null ∗ ∆R

[UNFOLDING]
c〈v∗〉≡Φ ∈ P

unfold(p::c〈v∗〉) =df [p/self]Φ

Note that due to the well-founded condi-
tion, each unfolding exposes a data node that
matches the data node in the consequent.
Thus a reduction of the consequent immedi-
ately follows, which contributes to the termi-
nation of the entailment check. A formal definition of unfolding is given by the
rule [UNFOLDING].

5.2 Folding a Shape Predicate in the Consequent

We apply a fold operation when a data node in the antecedent matches with a
predicate in the consequent. An example is :

x::node〈1, q1〉∗q1::node〈2, null〉∗y::node〈3, null〉 ` x::ll〈n〉∧n>1 ∗ ∆R

The fold step may be recursively applied but is guaranteed to terminate for
well-founded predicate as it will reduce a data node in the antecedent for each
recursive invocation. This reduction in the antecedent cannot go on forever.
Furthermore, the fold operation may introduce bindings for the parameters of
the folded predicate. In the above, we obtain n=2 which may be transferred to
the antecedent if n is free, but kept in the consequent otherwise. Since n is indeed
free, our folding step would finally derive :

y::node〈3, null〉 ∧ n=2 ` n>1 ∗ ∆R

The effects of folding may seem similar to unfolding the predicate in the conse-
quent. However, there is a subtle difference in their handling of bindings for free
derived variables. If we choose to use unfolding on the consequent instead, these
bindings may not be transferred to the antecedent. Consider the example below
where n is free :

z=null ` z::ll〈n〉 ∧ n>−1 ∗ ∆R

By unfolding the predicate ll〈n〉 in the consequent, we obtain :

z=null ` (z=null∧n=0∧n>−1)∨(∃q·z::node〈 , q〉∗q::ll〈n−1〉∧n>−1) ∗ ∆R

There are now two disjuncts in the consequent. The second one fails because it
mismatches. The first one matches but still fails as the derived binding n=0 was
not transferred to the antecedent.

When a fold to a predicate p2::c2〈v
∗
2〉 is performed, the constraints related

to variables v∗2 are important. The split function projects these constraints out
and differentiates those constraints based on free variables.

split
{v∗

2
}

V (
∧n

i=1 πr
i) =

let πa
i , πc

i = if FV(πr
i) ∩ v∗2 = ∅ then (true, true)

else if FV(πr
i) ∩ V = ∅ then (πr

i , true) else (true, πr
i)

in (
∧n

i=1 πa
i ,

∧n
i=1 πc

i)

[FOLDING]
c〈v∗〉≡Φ ∈ P Wi=Vi−{v∗, p}

κ∧π`κ′

{p,v∗}[p/self]Φ ∗ {(∆i, κi, Vi, πi)}
n
i=1

foldκ′

(κ∧π, p::c〈v∗〉) =df {(∆i, κi, ∃Wi·πi)}n
i=1

A formal definition of
folding is specified by rule
[FOLDING]. Some heap nodes
from κ are removed by the
entailment procedure so as
to match with the heap formula of predicate p::c〈v∗〉. This requires a special
version of entailment that returns three extra things: (i) consumed heap nodes,
(ii) existential variables used, and (iii) final consequent. The final consequent is
used to return a constraint for {v∗} via ∃Wi·πi. A set of answers is returned
by the fold step as we allow it to explore multiple ways of matching up with its
disjunctive heap state. Our entailment also handles empty predicates correctly.

6 Soundness of Entailment

The following theorems state that our entailment check procedure(given in Fig. 5)
is sound and terminating.

Theorem 6.1 (Soundness) If entailment check ∆1`∆2 ∗∆ succeeds, we have:
for all s, h, if s, h |= ∆1 then s, h |= ∆2 ∗ ∆.

Proof: Given in the technical report [15].

Theorem 6.2 (Termination) The entailment check ∆1`∆2 ∗∆ always termi-
nates.

Proof sketch: A well-founded measure exists for heap entailment. Matching
and unfolding decrease nodes from the consequent. Fold operation has bounded
recursive depth as each recursive fold operation always decreases the antecedent
since shape predicate has the well-founded property. The size of antecedent is
bounded despite unfolding since each unfold is always followed by a decrease of a
data node from the consequent. At the end of a fold, a node from the consequent
is also removed. A detailed proof is given in the technical report [15].

7 Implementation

We have built a prototype system using Objective Caml. The proof obligations
generated by our verification are discharged by our entailment checking proce-
dure with the help of Omega Calculator [16].

Programs Verification
Time (sec)

Linked List (size/length)

delete 0.09
reverse 0.07

Circular List (size, cyclic structure)

delete 0.09
count 0.16

Doubly Linked List (size, double links)

append 0.16
flatten (from tree) 0.30

Sorted List (size, min, max, sortedness)

delete 0.13
insertion sort 0.27
selection sort 0.41
bubble sort 0.64
merge sort 0.61
quick sort 0.59

Programs Verification
Time (sec)

Binary Search Tree (min, max, sortedness)

insert 0.20
delete 0.38

Priority Queue (size, height, max-heap)

insert 0.45
delete max 7.17

AVL Tree (size, height-balanced)

insert 5.06

Red-Black Tree (size, black-height-balanced)

insert 1.53

2-3 Tree (height-balanced)

insert 24.41

Perfect Tree (perfectness)

insert 0.26

Complete Tree (completeness)

insert 1.50

Fig. 6. Verifying Data Structures with Arithmetic Properties

Fig 6 summarizes a suite of programs tested. These examples use complicated
recursion and data structures with sophisticated shape and size properties. They
help show that our approach is general enough to handle interesting data struc-
tures such as sorted lists, sorted trees, priority queues, various balanced trees,
etc. in a uniform way. Verification time of a function includes time to verify

all functions that it calls. The time required for shape and size verification is
mostly within a couple of seconds. The average annotation cost (number of an-
notations/LOC ratio) for our examples is around 7%.

We have also investigated the precision/cost tradeoff of using XPuren and
settled on n = 1 as the default. XPure0 fails for many examples, while XPure2

incurs substantial overheads without increasing precision for our examples.

8 Related Work

Separation Logic. The general framework of separation logic [17, 10] is highly
expressive but undecidable. Likewise, [13] formalised the proof rules for handling
abstract predicates (with scopes on visibility of predicates) but provided no au-
tomated procedure for checking the user supplied specifications. In the search
for a decidable fragment of separation logic for automated verification, Berdine
et al. [1] supports only a limited set of predicates without size properties, dis-
junctions and existential quantifiers. Similarly, Jia and Walker [11] postponed
the handling of recursive predicates in their recent work on automated reasoning
of pointer programs. Our approach is more pragmatic as we aim for a sound and
terminating formulation of automated verification via separation logic but do
not aim for completeness in the expressive fragment that we handle. On the
inference front, Lee et al. [12] has conducted an intraprocedural analysis for loop
invariants using grammar approximation under separation logic. Their analysis
can handle a wide range of shape predicates with local sharing but is restricted
to predicates with two parameters and without size properties. A recent work
[8] has also formulated interprocedural shape inference but is restricted to just
the list segment shape predicate. Sims [20] extends separation logic with fixpoint
connectives and postponed substitution to express recursively defined formulae
to model the analysis of while-loops. However, it is unclear how to check for en-
tailment in their extended separation logic. While our work does not address the
inference/analysis challenge, we have succeeded in providing direct support for
automated verification via an expressive shape and size specification mechanism.
Shape Checking/Analysis. Many formalisms for shape analysis have been
proposed for checking user programs’ intricate manipulations of shapely data
structures. One well-known work is Pointer Assertion Logic [14] by Moeller and
Schwartzbach where shape specifications in monadic second-order logic are given
by programmers for loop invariants and method pre/post conditions, and checked
by their MONA tool. For shape inference, Sagiv et al. [19] presented a param-
eterised framework, called TVLA, using 3-valued logic formulae and abstract
interpretation. Based on the properties expected of data structures, program-
mers must supply a set of predicates to the framework which are then used to
analyse that certain shape invariants are maintained. However, most of these
techniques were focused on analysing shape invariants, and did not attempt to
track the size properties of complex data structures. An exception is the quan-
titative shape analysis of Rugina [18] where a data flow analysis was proposed
to compute quantitative information for programs with destructive updates. By
tracking unique points-to reference and its height property, their algorithm is

able to handle AVL-like tree structures. Even then, the author acknowledged
the lack of a general specification mechanism for handling arbitrary shape/size
properties.
Size Properties. In another direction of research, size properties have been
most explored for declarative languages [9, 22, 6] as the immutability property
makes their data structures easier to analyse statically. Size analysis was later
extended to object-based programs [7] but was restricted to tracking either size-
immutable objects that can be aliased and size-mutable objects that are una-
liased, with no support for complex shapes. The Applied Type System (ATS) [5]
was proposed for combining programs with proofs. In ATS, dependent types for
capturing program invariants are extremely expressive and can capture many
program properties with the help of accompanying proofs. Using linear logic,
ATS may also handle mutable data structures with sharing. However, users must
supply all expected properties, and precisely state where they are to be applied,
with ATS playing the role of a proof-checker. Comparatively, we use a more
limited class of constraint for shape and size analysis but supports automated
modular verification.
Unfold/Fold Mechanism. Unfold/fold techniques were originally used for pro-
gram transformation [4] on purely functional programs. A similar technique
called unroll/roll was later used in alias types [21] to manually witness the iso-
morphism between a recursive type and its unfolding. Here, each unroll/roll step
must be manually specified by programmer, in contrast to our approach which
applies these steps automatically during entailment checking. In [1], an auto-
mated procedure that uses unroll/roll was given but it was hardwired to work
for only lseg and tree predicates. Furthermore, it performs rolling by unfolding
a predicate in the consequent which would miss bindings on free variables. Our
unfold/fold mechanism is general, automatic and terminates for heap entailment
checking.

9 Conclusion
We have presented a new approach to verifying pointer-based programs that
can precisely track shape and size properties. Our approach is built on well-
founded shape relations and well-formed separation constraints from which we
have designed a sound procedure for heap entailment. We have implemented a
verification system that is both precise and expressive. Our automated deduction
mechanism is based on the unfold/fold reasoning of user-definable predicates
that has been proven to be sound and terminating.

Acknowledgement

This work is supported by the Singapore-MIT Alliance and NUS research grant
R-252-000-213-112.

References

1. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with Separation
Logic. In APLAS. Springer-Verlag, November 2005.

2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In FMCO, Springer LNCS 4111, 2006.

3. J. Bingham and Z. Rakamaric. A Logic and Decision Procedure for Predicate
Abstraction of Heap-Manipulating Programs. In VMCAI, Springer LNCS 3855,
pages 207–221, Charleston, U.S.A, January 2006.

4. R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of ACM, 24(1):44–67, January 1977.

5. C. Chen and H. Xi. Combining Programming with Theorem Proving. In ACM
SIGPLAN ICFP, Tallinn, Estonia, September 2005.

6. W.N. Chin and S.C. Khoo. Calculating sized types. In ACM SIGPLAN PEPM,
pages 62–72, Boston, United States, January 2000.

7. W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyen. Verifying Safety
Policies with Size Properties and Alias Controls. In ACM SIGSOFT ICSE, St.
Louis, Missouri, May 2005.

8. A. Gotsman, J. Berdine, and B. Cook. Interprocedural Shape Analysis with Sep-
arated Heap Abstractions. In SAS, Springer LNCS, Seoul, Korea, August 2006.

9. J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. In ACM POPL, pages 410–423. ACM Press, January 1996.

10. S. Isthiaq and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In ACM POPL, London, January 2001.

11. L. Jia and D. Walker. ILC: A foundation for automated reasoning about pointer
programs. In 15th ESOP, March 2006.

12. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. In ESOP. Springer Verlag, April 2005.

13. M.J.Parkinson and G.M.Bierman. Separation logic and abstraction. In ACM
POPL, pages 247–258, 2005.

14. A. Moeller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. In ACM
PLDI, June 2001.

15. H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Automated Verification of
Shape, Size and Bag Properties via Separation Logic. Technical report, SoC, Natl
Univ. of Singapore, July 2006. avail. at http://www.comp.nus.edu.sg/∼chinwn/
papers/verify-report.pdf.

16. W. Pugh. The Omega Test: A fast practical integer programming algorithm for
dependence analysis. Communications of the ACM, 8:102–114, 1992.

17. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
IEEE LICS, Copenhagen, Denmark, July 2002.

18. R. Rugina. Quantitative Shape Analysis. In SAS, Springer LNCS, Verona, Italy,
August 2004.

19. S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24(3), May 2002.

20. É-J. Sims. Extending separation logic with fixpoints and postponed substitution.
Theoretical Computer Science, 351(2):258–275, 2006.

21. D. Walker and G. Morrisett. Alias Types for Recursive Data Structures. In TIC,
Springer LNCS 2071, pages 177–206, 2000.

22. H. Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon
University, 1998.

A Semantic Model

The semantics of our constraints is that of separation logic [17], with extensions
to handle our shape predicates.

To define the model we assume sets Loc of locations (positive integer values),
Val of primitive values, with 0 ∈ Val denoting null, Var of variables (program
variables and other meta variables), and ObjVal of object values stored in the
heap, with c[f1 7→ν1, .., fn 7→νn] denoting an object value of data type c where
ν1, .., νn are current values of the corresponding fields f1, .., fn. Let s, h |= Φ
denotes that stack s and heap h form a model of the constraint Φ, with h, s from
the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal s ∈ Stacks =df Var → Val∪Loc

Function dom(f) returns the domain of function f . Note that we use 7→ to
denote mappings, not the points-to assertion in separation logic, which has been
replaced by p::c〈v∗〉 in our notation. The model s |= π for pure constraint is
standard and left to the technical report [15], while the model for separation
constraint is defined below.

Definition A.1 (Model for Separation Constraint)

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v∗·κ∧π iff ∃ν∗·s[v∗ 7→ν∗], h |= κ and s[v∗ 7→ν∗]|=π
s, h |=κ1∗κ2 iff ∃h1, h2 · h1⊥h2 and h = h1·h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |=emp iff dom(h) = ∅
s, h |=p::c〈v1..n〉 iff data c {t1 f1, .., tn fn}∈P, h=[s(p) 7→r],

and r=c[f1 7→s(v1), .., fn 7→s(vn)]
or (c〈v1..n〉≡Φ)∈P and s, h |= [p/self]Φ

Note that h1⊥h2 indicates h1 and h2 are domain-disjoint, h1·h2 denotes the
union of disjoint heaps h1 and h2.

We intend to approximate each separation constraint by a formula of the form:
β ::= ex i · β |

∨
(∃v∗·π)∗ where ex i construct is being used to capture a dis-

tinct symbolic address i that has been abstracted from a heap node or predicate.
This abstraction has the following model s, h |= β, namely :

Definition A.2 (Model for Heap Approximation)

s, h |=
∨

(∃v∗·π)∗ iff s |=
∨

(∃v∗·π)∗

s, h |=ex i · β iff (p=i∧i>0)∈β and s, h−{s(p)}|=[p/i]β

Furthermore, we may soundly relate a separation constraint Φ and its ab-
straction β by the relation Φ |= β, defined as follows :

∀s, h · (s, h |=Φ =⇒ s, h |=β)

B Forward Verification

B.1 Forward Verification Rules

The complete set of forward verification rules are given in Fig. 7. Note that path-
sensitivity is captured by [FV−IF] rule, flow-sensitivity is captured by [FV−SEQ]
rule, and context sensitivity by the [FV−CALL] rule.

[FV−PRED]

XPure0(Φ) =⇒ [0/null](πinv)

` c〈v∗〉 = Φ inv πinv

[FV−IF]

` {∆∧v′} e1 {∆1} ` {∆∧¬v′} e2 {∆2}

` {∆} if v then e1 else e2 {∆1∨∆2}

[FV−CONST]

∆1 = (∆∧eqτ (res, k))

` {∆} kτ {S}

[FV−LOCAL]

` {∆} e {∆1}

` {∆} {t v; e} {∃ v, v′·∆1}

[FV−NEW]

∆1=(∆ ∗ res::c〈v′
1, .., v

′
n〉)

` {∆} new c(v1, .., vn) {∆1}

[FV−VAR]

∆1=(∆∧res=v′)

` {∆} v {∆1}

[FV−ASSIGN]

` {∆} e {∆1} ∆2=∃res·(∆1∧{v}v
′=res)

` {∆} v:=e {∆2}

[FV−SEQ]

` {∆} e1 {∆1}
` {∆1} e2 {∆2}

` {∆} e1; e2 {∆2}

[FV−CALL]

t0 m(t1 v1, .., tn vn) where Φpr ∗→ Φpo {..}
ρ=[v′

i/vi] ∆`ρΦpr ∗∆1 W = {v1, .., vn} ∆2=(∆1 ∗W Φpo)

` {∆}m(v1..vn) {∆2}

[FV−FIELD−READ]

∆`v′::c〈v1, .., vn〉 ∗∆1 fresh v1..vn

∆2 = ∃v1..vn·(∆1 ∗ v′::c〈v1, .., vn〉∧res=vi)

` {∆} v.fi {∆2}

[FV−FIELD−UPDATE]

∆`v′::c〈v1, .., vn〉 ∗∆1 fresh v1..vn

∆2 = ∃v1..vn·(∆1 ∗ v′::[v′
0/vi]c〈v1, .., vn〉)

` {∆} v.fi:=v0 {∆2}

[FV−WHILE]

W={v}∪vars(e) ∆`Φpr ∗∆1 ∆2=∆1 ∗W Φpo ∆3=Φpr∧nochange(W)
` {∆3∧v′} e {∆4} ∆4`Φpr ∗∆5 ∆6=∆5 ∗W Φpo (∆3∧¬v′)∨∆6`Φpo ∗∆7

` {∆} while v where Φpr ∗→ Φpo do e {∆2}

[FV−METH]

V ={v1..vn} W=prime(V) ∆=Φpr∧nochange(V) ` {∆} e {∆1} (∃W·∆1)`Φpo ∗∆2

` t0 mn(t1 v1, .., tn vn) where Φpr ∗→ Φpo {e}

Fig. 7. A Complete Set of Forward Verification Rules

B.2 Soundness of Verification

The soundness of our verification rules is defined with respect to a small-step dy-
namic semantics, which is defined using the transition relation 〈s, h, e〉↪→〈s1, h1, e1〉,
which means if e is evaluated in stack s, heap h, then e reduces in one step to e1

and generates new stack s1 and new heap h1. Full definition of the relation can
be found in the technical report [15]. We also need to extract the post-state of
a heap constraint by:

Definition B.1 (Poststate) Given a constraint ∆, Post(∆) captures the rela-
tion between primed variables of ∆. That is :

Post(∆) =df ρ (∃V·∆), where
V = {v1, .., vn} denotes all unprimed program variables in ∆
ρ = [v1/v′1, .., vn/v′n]

Theorem B.1 (Preservation) If

` {∆} e {∆2} s, h |= Post(∆) 〈s, h, e〉↪→〈s1, h1, e1〉

Then there exists ∆1, such that s1, h1 |= Post(∆1) and ` {∆1} e1 {∆2}.

Proof: By structural induction on e. Details are in the technical report [15].

Theorem B.2 (Progress) If ` {∆} e {∆1}, and s, h |= Post(∆), then either
e is a value, or there exist s1, h1, and e1, such that 〈s, h, e〉↪→〈s1, h1, e1〉.

Proof: By structural induction on e. Details are in the technical report [15].

Theorem B.3 (Safety) Consider a close term e without free variables in which
all methods have been successfully verified. Assuming unlimited stack/heap spaces
and that ` {true} e {∆}, then either 〈[], [], e〉↪→∗〈[], h, v〉 terminates with a
value v that is subsumed by the postcondition ∆, or it diverges 〈[], [], e〉6↪→∗.

Proof: Follows directly from Theorems B.2 and B.1.

