
Aggregate Queries in Peer-to-Peer OLAP

Mauricio Minuto Espil
Pontificia Universidad Catolica Argentina

mminuto@uca.edu.ar

Alejandro A. Vaisman
Universidad de Buenos Aires

avaisman@dc.uba.ar

ABSTRACT
A peer-to-peer (P2P) data management system consists es-
sentially of a network of peer systems, each maintaining
full autonomy over its own data resources. Data exchange
between peers occurs when one of them, in the role of a
local peer, needs data available in other nodes, denoted the
acquaintances of the local peer. No global schema is as-
sumed to exist for any data under this computing paradigm.
Henceforth, data provided by an acquaintance of a local
peer must be adapted, in a manner that answers to queries
posed by local peer users conform the view those users have
of their data. Because a multidimensional database nor-
mally consists in a collection of views of aggregated data,
a careful translation process is needed in this case, in order
to transform any summary concept that appears in a peer
acquaintance into a summary concept meaningful to the
requesting peer. We present a model for multidimensional
data distributed in a P2P network, and a query rewrit-
ing technique, that allows a local peer to propagate OLAP
queries among its acquaintances, obtaining a meaningful
and correct answer.

Categories and Subject Descriptors: H.2.4 [Systems]:
Distributed Databases, Query Processing

General Terms: Algorthms, Design, Theory.

Keywords: Data Warehousing, OLAP, P2P Computing.

1. MOTIVATION
Let us suppose a common situation nowadays, where

a company analyzes benefits and risks of acquiring shares
of other targeted companies. Before any decision can be
made, the investing company needs to have a good knowl-
edge about the critical factors of success and failure of all
the targeted companies, while adapting its goals to these
factors. An integrated decision-making information system
that reflects the state of business of the investor company
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that includes the state of business of all the targeted compa-
nies, is needed therefore. However, in this scenario, design-
ing an additional centralized warehouse clearly would not
be the best solution. Among other reasons, shares usually
change hands often enough for a centralized design to be
achieved on time, and, in addition, because any company
can invest in shares of any other, the role of investor may re-
sult interchangeable. Companies would rather continue op-
erating in an autonomous way therefore and provide infor-
mation for decision-making one to each other when needed,
in a flexible, cooperative way. An architecture for cooper-
ative interchange of decision-making information seems to
be a natural solution for this problem. Of course, this set-
ting could be extended to a more general scenario, where
organizations interchange summarized information. For ex-
ample, public offices at different levels of government, at the
state, province or country level, need to exchange summa-
rized information about, for instance, tax paying. A new
cooperative, distributed OLAP paradigm will fit properly
this necessity. Here, information in each node (a company
in our former example) will be organized in dimensions, fact
tables and cubes as usual, all designed according to its own
needs, and the system will operate in an autonomous fash-
ion, without the intervention of any central data warehouse.
This assumption implies that some dimensions modeled in
one node may not be present in some others, and the hierar-
chies of common dimensions, at the schema and/or instance
level, may differ one from each other. Data integration
must be thus performed, to reflect how each node views
the information of the others. In this work we propose a
Peer-to-Peer (P2P) data model for addressing this problem,
assuming that we are working within the boundaries of an
organization.

Throughout the paper we will be using the following
example. There are two nodes storing information about
two companies, shareholders one of each other. Each node
stores information about their dimensions of interest in di-
mension tables, conforming a hierarchy of levels [1, 9] and
one or more fact tables recording events from the company.
Node 1 holds information about products (in dimension
Product), and geographic organization (in dimension Geog-
raphy). There is a base fact table Sales with attributes item-
sold, and city, and a measure amnt, representing gross sales.
Node 2 holds information about lease-holds (in dimension
Lease-hold), customers (in dimension Customer), and geo-
graphic organization (in dimension Geography). There is a
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Figure 1: Dimension Schemas at Node 1, and Node
2

 

node 1: local  node 2: acq

Category: equipment Category: equipment

item−sold: i1

item−sold: 12

Category: peripheral Category: peripheral

item−leased: i1

item−sold: 13

item−sold: 14

item−leased: i2

item−leased: i3
item−leased: 14

Figure 2: The “equipment” mapping problem

base fact table Leases with attributes item-leased, cust-Id,
and city, and measure amnt. The hierarchies for dimensions
in node 1 and node 2, are depicted in Figure 1.

The Problem
Sales and leases are, in our example, similar transactions
that involve economic goods and produce income to a com-
pany. We can give them the common generic name of
trades. Integrating information on trades implies more than
a common name. It also supposes a common view of the
dimensions that describe sales with the dimensions that de-
scribe leases. In Figure 1, this is the case of dimensions
Product in node 1, and Lease-hold in node 2, that represent
information on the items subject of each type of trade, and
dimensions Geography in both nodes that represent infor-
mation on location. It is not the case of dimension Cus-
tomer in node 2, however, because there is no counterpart
for it in node 1. At the instance level, a unified view of
members of the integrated dimensions must be obtained;
members of one dimension must be mapped to members of
the other, and conversely. Unfortunately, this mapping is
not always trivial. Dimension hierarchies may differ, due
to different classification criteria (like dimensions Product
and Lease-hold in Figure 1). A more involved situation may
appear, as Figure 2 shows. Here, the concept “equipment”
is denoted on level category of dimension Product in node
1 and on level category of dimension Lease-hold in node 2.

However, the extension of both categories differ: for exam-
ple, the first one includes an item as a child in the hierarchy
(i3) that the other one misses.

Let us suppose that a user in node 1 poses the query
“Give me the total amount in trades by product category
and region”. According to the structure of the data ware-
house described above, nodes 1 and 2 may contribute with
information on the amount of their sales and leases respec-
tively. Nonetheless, while the information on sales and
dimensions stored in node 1 are understood for the user
posing the query, the information stored in node 2 does
not necessarily conform the nomenclature expected by this
user, who is not supposed to know (at least completely) the
meaning of concepts used there. For instance, members of
dimension lease-Hold on level category in node 2 must be
interpreted in the query result as if they were members of di-
mension Product on level category on node 1. Thus, a map-
ping mechanism for achieving this interpretation is needed.
As the “equipment” class problem shows, a mapping may
not suffice. Moreover, we must attend to missing levels.
For instance, what if the query asks for trades grouped by
product type instead of product category?. There is no
level with similar meaning to that of level Product-type in
dimension Lease-hold. At least two different semantics can
be adopted for the query: (a) we can return the result con-
sidering only the nodes where the requested levels appear
in the dimension schema (in this case node 1 only), clearly
the simpler, although incomplete solution; or (b) we can try
to infer the missing values for the absent levels whenever
possible.

Our proposal
We propose a model for the problem stated above, consid-
ering each node as a peer in a cooperative query system,
and allowing each peer a high degree of autonomy. Each
node involved in the system defines a context where it be-
comes the local peer, and all its dimensions and fact tables
are considered local henceforth. The rest of the nodes that
connect with the local peer, are considered acquaintances
of the local peer within this context. A LAV (Local As
View) integration approach is used, but it does not rely on
mapping exclusively. We propose a systematic revise and
map strategy for defining how an instance of a dimension in
an acquaintance is viewed from the local peer. Operators
for revising dimension instances, in the spirit of those de-
fined in Hurtado et al [10], are used to reclassify members
in order to redefine the extension of conflicting class mem-
bers (as “equipment” and ”peripheral” in node 2). A set
of redefinition rules is generated upon the operators, and
a revision of the instance with those rules is made, creat-
ing a separated revised instance [16]. Redefinition rules and
mappings are defined in the local peer, and propagated to
the acquaintances within a mapping acquisition phase, and
when activated, they generate mapping tables and revised
rollup functions in the acquaintances.

We also introduce the class of P2P-OLAP queries. Infor-
mally, a P2P-OLAP query over this data model, is a query
involving aggregate functions, defined over generalizations
of fact tables and dimensions that are distributed in a P2P
network. We characterize P2P OLAP queries as a set of
datalog rules with aggregation. Based on this characteriza-
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tion, we discuss an evaluation procedure for these queries.
Whenever a query is submitted to a node, that node fixes
a context where all its fact tables and rollup functions be-
come local. The posed query is then rewritten for propa-
gation to any of the acquaintances, introducing references
to the appropriate mapping tables and revised rollup func-
tions. Thus, the query result depends on the node where
the query is posed and may change as changes in the revi-
sion and mapping process occur. Moreover, if the mapping
is incomplete, our rewriting technique employs a bottom-up
homomorphism preserving completion approach that allows
the system to always produce a query result.

The remainder of this work is organized as follows: in
Section 2 we discuss related work. In Section 3 we present
the basic multidimensional model. Section 4 introduces the
notion of the multidimensional P2P data model. In Section
5 we present a P2P OLAP queries, and define a method
for query evaluation in this environment, based on query
rewriting. We conclude in Section 6.

2. RELATED WORK
Several models for integrating data distributed in a P2P

environment have been proposed. While Gribble et al in-
troduced the problem of data management in P2P networks
[6], Serafini et al [17] were the first ones to propose a logical
framework for maintaining consistency under updates in a
P2P network. In [11] the authors present a model based on
first order logic, for querying general P2P databases, intro-
ducing explicitly the notion of domain mappings. The same
notion, but in this case in the form of mapping tables is dis-
cussed in [12]. The use of variables instead of constants in
the domain is studied there. Halevy et al [7] and Tatari-
nov et al [18] present a general framework based on map-
pings, introducing the concept of certain answers of queries.
Complexity of query answering is also studied. In [5], the
role of first order logic for P2P data management system is
discussed. The authors claim that P2P data management
systems cannot be modeled after standard classical logic.
The role of mappings is confined, under their approach, to
data migration only. Results concerning answering datalog
queries is studied in this context. Calvanese et al [3] present
a general framework based in epistemic logic, extending the
classical framework, in order to deal with inconsistencies at
the conceptual level. In [15], a rule model for integration
based on graphs is presented. This model is strongly in-
spired in the LAV and GAV paradigms discussed in [14].
All of these works deal with data integration in a general
context. Nevertheless, the intractability of query answering
in the general case forces to study the problem in more con-
strained settings. To the best of our knowledge, the only
work we know approaching integration in a multidimen-
sional context is the one by Cabibbo and Torlone [2], but
confined exclusively to define conditions for integration of
dimensions on data marts. Our query model is is based on
datalog with aggregation, thus producing tractable results
when acyclic topologies are involved, and admits local views
of all data in the network. The main difference with the
approaches discussed above consists in the use of a revise
and map technique. This technique, based on the notion

of belief revision, allows producing concrete redefinitions of
concepts in the acquaintances, not mere views, triggered by
the local peer, in order to ease query answering.

3. DIMENSIONS AND FACT TABLES
REVISITED

In OLAP systems, aggregated data in the form of fact
tables is presented to analysts in a multidimensional way.
Facts are aggregated according to the dimensions of inter-
est. Dimensions are therefore structured in levels of gran-
ularity and a dimension instance is conformed by a col-
lection of parent-child relationships among level members
called roll-ups. For practical reasons, dimension instances
are usually presented in the form of tables. For the sake of
simplicity, we will consider in our model homogeneous di-
mensions only [13, 8]. The same concepts can be extended
to the treatment of heterogeneous dimensions.

3.1 Dimensions
Let us consider the following sorts and their associated

finite non-empty sets: a sort D of dimension names, a sort
L of level names, and a sort C of coordinate values. Each
dimension name d in D is associated with a set of levels in
L by a relation : : D × L. We will denote d : l the pair
(d, l) being a member of relation : . Each level l in L is
associated with a set of coordinate values Iset(d : l) ⊆ C,
denoted the instance set of level l in d. A coordinate value
c is a member of level d : l; thus, the expression d : l : c
indicates that c is a member of Iset(d : l). The following
conditions hold:

• there is a distinguished level All ∈ L;

• level All ∈ d, for each dimension d ∈ D, ;

• Iset(d : All) = {all},∀d ∈ D;

• For each pair (d, l) such that d : l holds, l 6= All if and
only if all /∈ Iset(d : l);

• Iset(d1 : l1) ∩ Iset(d1 : l2) = φ, for all pairs (d1, l1) 6=
(d1, l2), such that d1 : l1, d1 : l2 holds, and l1, l2 6= All.

Definition 1 (Hierarchy). A hierarchy for L is a
structure (L,�L) where L ⊆ L is a non-empty finite set
of level names containing the distinguished level name All,
and �L is a binary relation on L such that:

• �∗L, the transitive and reflexive closure of �L, is a
partial reflexive order;

• there exists one level name linfL in L such that for
every level name l ∈ L, linfL �

∗
L l; we call level linfL ,

the bottom level of �L;

• l�∗LAll holds for every level name l in L;

• if la and lb are level names in L, and la �L lb, then
there not exist level names l1,..., lk in L such that
la �L l1 �L ... �L lk �L lb;

• if la is a level name in L, and la 6= All, then there
exists some level name lb in L such that la �L lb;
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In what follows �+
L will stand for the non- reflexive transi-

tive closure of �L.

Definition 2 (Dimension Schema). A dimension
schema is a named structure dname = (L,�L) where:

• dname ∈ D is the name of the dimension.

• L ⊆ L is a finite set of level names, which contains
the distinguished level name All.

• (L,�L) is a hierarchy for L;

Example 1. Let us consider the dimension Geography
at node 1 in our running example. A schema for dimension
Geography is the structure Geography = (G,�G), such
that G = {city, region, All}, and �G= {(city, region), (re−
gion, All)}.

Definition 3 (Dimension Instance). Let d = (L,�L

) be a dimension schema; Iset(d : l) the instance set of level
l of dimension d, for each level l ∈ L. A dimension instance
for d is a set of tuples with schema L, obtained substituting
each level l ∈ L by a member in Iset(d : l), and satisfies the
functional dependencies l→ l′, where (l, l′) ∈�L .

Definition 4 (Rollup Function). Let d = (L,�L)
be a dimension schema, I an instance of d, and l1 and l2
levels in L such that l1 �+

L l2 or l1 = l2 A rollup function

rupd
l1→l2 with signature C → C, is the set { t.l1 7→ t.l2 |

t ∈ I }, a function that results from projecting tuples in
the instance I of dimension d over the ordered pair of levels
(l1, l2). We call a member of a rollup function a rollup.

Definition 5 (Fact Table). Let us now define the
sort F, standing for fact tables. A fact table schema is a
structure f = (sp, ms), where f ∈ F is a fact table, sp
is a tuple (d1, ..., dt), where dj, j = 1, ..., t, are different
dimensions in D, called the space for f , and ms is the
name of a set of values, called the measure of the fact table.
Moreover, given a fact table schema f = (sp, ms), a cell for
f is a tuple resulting from mapping each bottom level in dj

that occurs in sp to a value in Iset(dj : lbottomj). Given a
fact table schema f = (sp, ms), a fact table instance over
it is a partial function which maps cells for f to values in
set ms.

4. A P2P MULTIDIMENSIONAL MODEL
In this section we present a model for multidimensional

databases operating in a Peer-to-Peer manner, where each
node holds only the dimensions of interest at that node, and
the structure of the fact tables is composed by the bottom
levels of the local dimensions. Each fact table is populated
locally, and queries are evaluated globally. We will base
the definition of the model in the environment presented in
Section 3.

4.1 Dimension Peers

Definition 6 (Set of Dimension Peers). A set con-
taining dimensions d1,...,dr representing the same semantic
concept d is called a set of dimension peers, denoted gener-
ically Pd. Each dimension di ∈ Pd is called a dimension
peer with respect to any other dimension dj ∈ Pd.

There is at most one dimension peer in one node. The
role of locality depends only on the node where a query
is posed, denoted a context. Hence, a context defines one
node among the peers that is considered local. The notion
of context is useful to represent nodes in a network. In
this paper we do not consider the problems related to the
network and its topology.

Notation. We denote N a set of names of nodes in a net-
work; R in D × N, is a relation such that each tuple (d, p)
in R means that a dimension d is assigned to node p. Given
a dimension di in a set Pd, and a node n ∈ N, a (partial)
function Peers with signature D ×N → D produces the
dimension dj ∈ Pd located in node n that is a peer of di.
A copy of this function must be present in every node.

Because the schema of the acquaintance dimension may
differ from the schema of the local dimension, mapping
members of the acquaintance dimension to members in the
local dimension requires the definition of a correspondence
between levels in both dimensions. This correspondence is
materialized with a function Levels

dlocal
dacq

, where dacq stands

for the acquaintance dimension, and dlocal stands for the lo-
cal dimension. We are only interested in correspondences
that preserve the order between levels; otherwise, we would
be able to roll-up members with higher granularity to mem-
bers with lower granularity.

Definition 7 (Level Correspondence). Given a
pair of dimensions di and dj, both members of Pd, with
schemas di = (Li,�Li) and dj = (Lj ,�Lj ) respectively, a
level correspondence from di to dj is an injective partial

function Levels
dj

di
, with signature L → L, that maps levels

in Li onto levels in Lj. An order preserving level correspon-
dence between di and dj is a level correspondence between
di and dj , satisfying that, for each pair of levels l1 and l2 in
dimension di such that (a) l1 �+

Li
l2, and (b) l1 and l2 are

members of dom(Levels
dj

di
), Levels

dj

di
(l1) �+

Lj
Levels

dj

di
(l2)

holds. Moreover, Levels
dj

di
(All) = All.

Notice that the definition above does not imply a com-
plete correspondence. Some levels in the acquaintance di-
mension may not have corresponding levels in the local
dimension. Also, the correspondence given by function

Levels
dj

di
may be different from the correspondence given

by function Levelsdi
dj

. The first one is used when dimension

dj is the local dimension. The second one is used when
dimension di is the local dimension. Copies of both level
correspondence functions must be stored in both nodes.

4.2 Mappings
Once the correspondence among levels has been defined,

it is necessary to define mappings among members. The
following definition adapts the concept of mapping tables
[11] to the OLAP setting.

Definition 8 (Base Mapping Tables). Let dlocal be
a peer dimension in some set of dimension peers Pd, local in
some context and dacq be a dimension peer in Pd, different
from dlocal. Let llocal and lacq be levels in dlocal and dacq

respectively, such that Levels
dlocal
dacq

(lacq) = llocal. A partial
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Region: East                                                         Region: East

           

city: Toronto city: Toronto

node 1: local node 2: acq

Figure 3: Homomorphism between dimensions Ge-
ography in nodes 1 and 2

function map
dacq→dlocal

lacq→llocal
, with signature C → C, assigning

members in level llocal of dimension dlocal to members in
level lacq of dimension dacq, is denoted a base mapping ta-

ble. If function map
dacq→dlocal

lacq→llocal
is total the base mapping

table is said a complete mapping.

In an ideal situation, the union of all defined base map-
ping tables should operate as an homomorphism between
the dimension instances regarded as structures. Let us de-
scribe this situation formally.

Definition 9 (Consistent Mapping). Let a function

Levels
dlocal
dacq

be an order preserving level correspondence. A

base mapping table map
dacq→dlocal

lacq→llocal
is consistent if and only

if the following holds:
For each member m such that:

map
dacq→dlocal

lacq→llocal
(m) is defined,

if there exists some member m′ satisfying that:

rup
dacq

l′acq→lacq
(m′) = m

for some level l′acq ∈ dom(Levels
dlocal
dacq

), then

rup
dlocal

l′
local

→llocal
(map

dacq→dlocal

l′acq→l′
local

(m′)) = map
dacq→dlocal

lacq→llocal
(m),

where l′local = Levels
dlocal
dacq

(l′acq).

This (ideal) situation is depicted in Figure 3. Ideal situ-
ations, however, are not likely to occur in real cases (except
when mapping bottom levels). Figure 4 shows a case where
defining a mapping that implies an homomorphism is not
possible, referring to our running example. City “Ottawa”
in dimension Geography at node 2 rolls up to region “east”.
When the dimension becomes an acquaintance of dimen-
sion Geography at node 1, region “east” at node 2 cannot
be mapped, because “Ottawa” rolls up to region “north
east” at node 1.

Definition 10 (Conflicting Members). Let a table

map
dacq→dlocal

lacq→llocal
be a consistent mapping table. We call a

member m ∈ dom(map
dacq→dlocal

lacq→llocal
) a mappable member. If

a member m is not mappable we call it a conflicting mem-
ber.

We will present a revise and map approach for solving the
problem introduced by conflicting members.

 City: Toronto

 

City: Toronto

Region: North East

Region: South East

node 1: local  node 2: acq

City: OttawaCity: Ottawa

Region: East

Figure 4: Impossibility of Mapping Definition

4.3 Revise and Map Approach
A revise and map approach (RAM), consists in revising

the instance of the acquaintance dimension, adapting it to
the meaning of members of the local dimension, and then
mapping members, using the revised instance. A revision
process of an acquaintance dimension d is accomplished by
the systematic application of revision operators to the in-
stance Id of d, specified by a user at the local node. In our
setting, a user can apply two operators for revising a dimen-
sion: revise by reclassifying and revise by splitting. These
operators, applied to the original instance Id, produce a new
instance rev Id containing a set of revised tuples. Then,
the union of all unmodified tuples in the instance Id with
the modified tuples in instance rev Id is used for deriving
a set of revised rollup functions, denoted rev rup. These
functions are stored in the acquaintance node and will be
later used for evaluation of queries submitted from the local
node. The revision operators revise by reclassifying and re-
vise by splitting are based on the update operators reclassify
and split, as described in [10]. Succinctly, update operators
like reclassify and split, modify a given instance of a rollup
function by replacing a set of its pairs (old rollups) with
another set of new pairs (new rollups). We slightly change
the semantics of these operators. In our approach, we see
dimension instances as derived from conclusions of a proof
system. In this setting, an old rollup ls : a 7→ lt : b consti-
tutes a default rule of aggregation, stating that all facts that
aggregate on member a of level ls aggregate on member b of
level lt. We derive a redefinition rule from each new rollup
specified in the revision operation, and redefinition rules
operate as exceptions to defaults, when concluding where
facts aggregate. From a theoretical perspective, a priori-
tized default theory is built, adding all redefinition rules
derived from the specified revision operations to the set of
rules obtained from old rollups in the original dimension. A
priority policy that prefers redefinition rules over ordinary
roll-ups rules is defined as a component of the theory, in
the form of an ordering relation among rules, and the set
of aggregations inferred from this theory defines the revised
dimension instance. An efficient algorithm exists for com-
puting a dimension instance, revised with redefinition rules.
The reader is referred to [16] for a detailed treatment.

The problem with members “equipment” in dimensions
”Product” and ”Lease-hold” discussed in section 1 can be
easily solved with a RAM approach. In the first case, we
can reclassify the items in dimension Lease-hold such that
“equipment” means the same thing for both dimensions.
Both revised fragments of those dimensions are shown in
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node 1: local  node 2: acq

Category: equipment Category: equipment

item−sold: i1

item−sold: 12

Category: peripheral Category: peripheral

item−leased: i1

item−sold: 13

item−sold: 14

item−leased: i2

item−leased: i3
item−leased: 14

Figure 5: Revised instances of dimensions Product,
and Lease-hold

Figure 5. Once the revised dimension instance without con-
flicting members is available, consistent and complete base
mapping tables can be defined, and complete and consistent
answers for queries can be produced. A RAM specification
may be submitted by a local node user at any time, in-
dependently of query submission, and activates the firing
of a set of processes that we denote a mapping acquisition
phase. A mapping acquisition phase always forces a check
of consistency for every mapping produced, with respect to
the resulting revised instance. It only admits the definition
of consistent mappings. Operational details of a mapping
acquisition phase are beyond the scope of this paper.

4.3.1 Handling Conflicting Members
The RAM technique described above, allows eliminating

potential conflicting members, producing consistent map-
pings. Nevertheless, because query submission is indepen-
dent of the activation of mapping acquisition phases, map-
ping tables may be incomplete when a query is posed. A
result for the query should be produced anyway. Therefore,
we need a method for producing query answers even when
information in mapping tables is incomplete.

Our method is based on the notion of homomorphism
described earlier: if a member m′ on level l′acq of dimension
dacq is not consistently mapped to any member in level llocal

of dimension dlocal, we can drill-down m′ and consider the

set Drill = {m|m′ = rup
dacq

lacq→l′acq
(m), mappable(m)}, for

a level lacq �+
L l′acq, lacq the closest to l′acq down in the hi-

erarchy. Because each mappable member m ∈ Drill has a
consistent mapping defined, we can compute at query time

a set of the form rup
dlocal

llocal→l′
local

(map
dacq→dlocal

lacq→llocal
(m)), that

is, the set of members of dimension dlocal on level llocal

that the mappable members m (children of m′) happen to
map. This procedure is repeated, varying level lacq, down
in the hierarchy, while there exist descendants of member
m′ in level lacq that are not mappable, ending when all
descendants are mappable or, there is no level left for con-
sideration. In this case, there exists a path in the members
hierarchy that reaches member m′ with no mappable de-
scendants of m′; any answer for a query involving level l′acq

will be incomplete therefore.

In our approach, the process described above occurs at
the mapping acquisition phase. We maintain two tables

non conflict
dacq

l′j
and conflict rup

dacq

→l′j
, for each level l′j in

dack. The unary relation non conflict
dacq

l′j
contains all map-

pable members on level l′j in dimension dacq. The ternary

relation conflict rup
dacq

→l′j
contains a tuple (l′i, mi, mj), for

all pairs (l′i : mi, l
′
j : mj) such that:

• mi and mj are members of levels l′i and l′j , respec-
tively, in dimension dacq;

• member mj does not have a mapping defined onto the
local dimension;

• member mi is the last consistently mapped member
in the revised instance of dimension dacq, that is a
descendant of member mj ;

4.4 Facts
Let us consider again the example presented in Section

1. Facts tables (in our example, Sales and Leases) have a
meaning in the nodes where they are stored. In a global
setting, they are meaningless, unless we abstract them as
members of some common class, like trades in the exam-
ple. Let us define the sort G, standing for generic fact
tables. Let us suppose in our example, that a generic fact
table Trades is a member of G. As an ordinary fact table,
a generic fact table f has a schema f = (space, measure).

Definition 11 (Fact Table Peers). A set {f1, . . .,
fr} of fact tables, all with a same measure and all corre-
sponding to the same generic fact table f ∈ G, is called a set
of fact table peers. A fact table fi ∈ {f1, . . . , fr} is called
a fact table peer that specializes f . The set of all dimen-
sions dk, k = 1, ..., n, in the space for f , must be included
in the set of all dimensions in the space for every fact table
peer that specializes f . As in the case of dimensions, the
role of local, and acquaintance of the local can be assigned
to fact tables peers, depending on a given context. In our
running example, Sales and Leases are both fact table peers
specializing the generic fact table Trades.

Notation. F in F × N, is a relation such that each tuple
(f, n) in F means that a fact table f is assigned to node n.
Given a fact table fi in a set {f1, . . . , fr} of fact table peers,
we have a (partial) function FtoG with signature F → G
that maps a fact table fi to its generic fact table f . Given a
generic fact table f , and a node n ∈ N, we have a (partial)
function GtoF with signature G×N→ F that returns the
fact table peer fi in node n that is generalized by generic
fact table f .

When a query is posed to a node, a context is set. Within
this context the fact table peer that belongs to the node and
specializes the generic fact table appearing in the query
is considered the local fact table. In order to propagate
the query to any other node, an acquaintance fact table in
such node must be determined, if it exists. Functions FtoG
and GtoF provide this information. Thus, a copy of both
functions must be present in both nodes. The maintenance
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of functions FtoG and GtoF is accomplished at a phase that
we call publish-subscribe generalization phase. As in the
case of the mapping acquisition phase, we do not consider
here details on generalization phases.

5. QUERIES
Let N = {n1, ..., nr} be a subset of N, and there is a

context where node nl ∈ N is local.
A P2P-OLAP query q, over a (multidimensional) space

(d1, . . . , dn), posed over node nl is an expression of the form:

q(Z1, . . . , Zn, aggr(M),N ) ← Fact(X1, . . . , Xn, M),

rupd1
lbottom1→lt1

(X1, Z1),

. . . ,

rupdn
lbottomn→ltn

(Xn, Zn);

where:

• di, i = 1, ..., n are dimensions in node nl, different
one from each other, with schemas di = (Li,�Li),
lbottomi ∈ Li, the bottom level of dimension di, and
lti ∈ Li,

• Fact ∈ G is a generic fact table such that there exists
a fact table baseFact = GtoF (Fact, nl) with schema
Fact = (space, measure), and space = (d1, ..., dn),

• aggr is a distributive aggregate function, compatible
with measure,

• rupdi
lbottomi→lti

, i = 1, ..., n, are roll-up functions.

Example 2. The expression:

q(Z1, Z2, SUM(M),{n1, n2}) ←
Trades(X1, X2, M),

rupGeography
city→region(X1, Z1),

rupProduct
item−sold→category(X2, Z2);

is a P2P-OLAP query over the multidimensional space
(Geography, Product). Query q asks for the total amount
of trades by region and category.

In what follows, we will present the semantics for P2P-
OLAP queries, based on a rewriting technique.

5.1 Query Rewriting
Fact tables and dimensions in a P2P-OLAP query q are

meant to comprehend all their peers distributed among the
nodes in set N . We must rewrite q as a query computable
in the local node, that integrates the result of a set of
queries, computable each on a distinct node p, that refer
to fact tables and dimensions distributed along the net-
work. Some syntax and some semantics must be chosen for
the queries; we choose those of non-recursive Datalog with
aggregation as defined in [4]. In what follows, we call gener-
ically d′1, ..., d

′
n the dimensions in node p that are peers of

dimensions d1, ..., dn in the schema of Fact.
Before any rewriting can be accomplished, we must deter-
mine whether a node p is relevant for query q or is not.

Definition 12 (Relevant node). A node p ∈ N is
relevant for a P2P-OLAP query q if and only if:

• there exists a fact table baseFactp in p such that:

baseFactp = GtoF (Fact, p),

• for each dimension dk, k = 1, ..., n, in the schema of
Fact, there exists a level lsk in dk such that a pair

(l′sk
, lsk ) exists in Levels

dk

d′
k
, d′k is the peer dimension

of dk in node p, and level lsk precedes or is equal to
level ltk in query q.

We rewrite query q as the following datalog program (we
use capital letters, eventually subscripted, as variables):

q(Z1, . . . , Zn, Ag({..., Mj , ...})) ← . . . ,

qp(Z1, . . . , Zn, Mj),

. . . ; (1)

where a query qp, for any node p relevant to query q, is
defined as:

qp(Z1, . . . , Zn, Ag(M)) ← qp(B1, Y1, . . . , Bn, Yn, M),

rupd1
B1→lt1

(Y1, Z1),

. . . ,

rupdn
Bn→ltn

(Yn, Zn); (2)

where Ag = aggr, except in the case of aggr = COUNT
where Ag = SUM , Bk, k = 1, ..., n, are level variables, and
atoms rup

dk
Bk→ltk

(Yk, Zk) are considered true for all roll-ups

to level ltj in dimension dk with origin in the level that sub-
stitutes Bk.

Queries qp and query q, as defined in (2) and (1) re-
spectively, can be safely evaluated in node nl, the node
where the query is posed, providing that the result of ev-
ery query qp is known and predicate qp is considered ex-
tensional. Queries qp constitute the distributed portions
in the evaluation process of query q. Thus, each query qp

must be consistently defined for evaluation on each node
p, and must refer exclusively to fact tables and dimensions
available on that node.

Example 3. If the query in example 2 is submitted to
node n1, the following datalog program is generated, for
evaluation on node n1.

q(Z1, Z2, SUM({M1, M2})) ← qn1(Z1, Z2, M1),
qn2(Z1, Z2, M2);

qn1(Z1, Z2, SUM(M)) ← qn1(B1, Y1, B2, Y2, M),

rupGeography
B1→region(Y1, Z1),

rupProduct
B2→category(Y2, Z2);

qn2(Z1, Z2, SUM(M)) ← qn2(B1, Y1, B2, Y2, M),

rupGeography
B1→region(Y1, Z1),

rupProduct
B2→category(Y2, Z2);

Here, predicates qnk , k = 1, 2, are considered extensional,
and correspond to the results of two distributed queries, one
for node n1 and the other for node n2.
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5.1.1 Propagating Queries
We concentrate in what follows on the definition of que-

ries qp. Because node p is relevant for query q, a table
baseFactp = GtoF (Fact, p), the fact table peer that spe-
cializes generic fact table Fact, must exist on every node p.
Nonetheless, baseFactp may have dimensions in its schema
not present in the schema of Fact. Those dimensions are
simply suppressed from the query.

If node p is the local node nl, we define query qp as:

qp(B1, Y1, . . . , Bn, Yn, M) ← baseFactnl(Y1, . . . , Yn, M),

B1 = lbottom1,
. . . ,
Bn = lbottomn; (3)

where baseFact = GtoF (Fact, nl).

If p is an acquaintance, according to the RAM approach,
references to mappings and roll-ups applied on the revised
dimension instances must be introduced in the query. We
thus define a query qp for an acquaintance as:

qp(B1, Y1, . . . , Bn, Yn, aggr(M)) ←
baseFactp(X ′

1, . . . , X
′
n, M),

rev rup
d′
1

lbottom′
1→l′s1

(X ′
1, Y

′
1 ),

map
d′
1→d1

l′s1
→B1

(Y ′
1 , Y1),

B1 = ls1 ;
. . . ,

rev rup
d′

n
lbottom′

n→l′sn
(X ′

n, Y ′
n),

map
d′

n→dn

l′sn
→Bn

(Y ′
n, Yn),

Bn = lsn ; (4)

where, for each k = 1, ..., n, Bk are level variables, level
lsk is the closest level that precedes level ltk in query q,
down in the hierarchy, such that the pair (l′sk

, lsk ) is a mem-

ber of Levels
dk

d′
k
. Atoms rev rup

d′
k

lbottom′
k
→l′sk

are considered

true on all roll-ups derived from the revised instance of di-
mension d′k, as it is left by the last mapping acquisition

phase, and atoms map
d′

k→dk

l′sk
→Bk

(Y ′
k , Yk), are considered true

for all mappings from level l′sk
in dimension d′k to the level

that substitutes variable Bk in dimension dk, as they were
defined in that phase.

Program (4) will compute, for each member m′ that ap-
pears as a coordinate of a cell in the acquaintance fact ta-
ble, a member m according to the path: d′k : lbottom′

k 7→
d′k : l′sk

7→ dk : Bk, for some level Bk in dimension dk.
Program (2) will in turn compute the targeted member on
level dk : ltk that corresponds to m.

An optimization can be introduced in (2) because of (3)
and (4): if the level that substitutes variable Bk coincides
with level ltk in (2), there is no need of any roll-up for
dimension dk; the roll-up reference in (2) can be omitted
and atom:

qp(B1, Y1, . . . , Bk, Yk, . . . , Bn, Yn, M),

replaced by atom:

qp(B1, Y1, . . . , Zk, . . . , Bn, Yn, M) (Variable Bk is omitted).

Example 4. For the query in the example 3, two queries
are generated and distributed: a query qn1 for node n1:

qn1(B1, Y1, B2, Y2, M) ← Sales(Y2, Y1, M),
B2 = item− sold,
B1 = city;

and a query qn2 for node n2:

qn2(B1, Y1, B2, Y2, SUM(M)) ←
Leases(X ′

2, V
′, X ′

1, M),

rev rupLease−hold
item−leased→category(X ′

1, Y
′
1 ),

mapLease−hold→Product
category→B2

(Y ′
1 , Y1),

B2 = category,

rev rupGeography
city→region(X ′

2, Y
′
2 ),

mapGeography→Geography
region→B1

(Y ′
2 , Y2),

B1 = region;

Notice the presence of variable V ′ standing for the absent
for dimension Customer. Notice also that an optimization
can be made; the fragment:

qn2(B1, Y1, B2, Y2, M),

rupGeography
B1→region(Y1, Z1),

rupProduct
B2→category(Y2, Z2);

in the definition of qn2 in example 3 can be replaced by:

qn2(Z1, Z2, M),

because B1 = region and B2 = category.

5.1.2 Bottom-Up Completion
Substituting roll-up predicates and introducing map-

pings in the query does not suffice, because we need to pro-
duce the most complete result under incomplete mappings.
The result of queries qp would not include the aggregation
of the measure of facts in the acquaintance that roll-up to

a conflicting member. We use the relations non conflict
d′

k
l′sk

and conflict rup
d′

k
→l′sk

, maintained during mapping acqui-

sition phases, for defining expanded rollup functions that
blur the distinction of reached levels, so ensuring that the
ranges of the expanded functions do not include conflict-
ing members but their closest mappable antecessors in-

stead. We then replace atoms rev rup
d′

n

lbottom′
k
→l′sk

(X ′
k, Y ′

k)

in the definition of queries qp in (4) by atoms of the form

exp − rup
d′

k

lbottom′
k
→l′sk

(X ′
k, B′

k, Y ′
k), with predicates exp −

rup
d′

k

lbottom′
k
→l′sk

defined as follows:
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exp− rup
d′

k

lbottom′
k
→l′sk

(X ′
k, B′

k, Y ′
k) ←

rev rup
d′

k

lbottom′
k
→l′sk

(X ′
k, Y ′

k),

non conflict
d′

k
l′sk

(Y ′
k)

B′
k = l′sk

;

exp− rup
d′

k

lbottom′
k
→l′sk

(X ′
k, B′

k, Y ′
k) ←

rev rup
d′

k

lbottom′
k
→l′sk

(X ′
k, W ′

k),

conflict rup
d′

k
→l′sk

(B′
k, Y ′

k , W ′
k); (5)

The second argument B′
k in exp− rup

d′
k
→l′sk

(Xk, B′
k, Zk)

is a level variable.

Example 5. For dimension Geography in node n2, we
have a conflict with the region where member “Ottawa” rolls
up. If we do not reclassify “Ottawa”, we would need to
generate the following:

exp− rupGeography
city→region (X ′

1, B
′
1, Y

′
1 ) ←

rev rupGeography
city→region(X ′

1, Y
′
1 ),

non conflictGeography
region (X ′

1)
B′

1 = region;

exp− rupGeography
city→region (X ′

1, B
′
1, Y

′
1 ) ←

rev rupGeography
city→region(X ′

1, W
′
1),

conflict rupGeography
→region (B′

1, Y
′
1 , W ′

1);

In this case, the pair (“Ottawa′′, “central′′) is a roll-up

in function rev rupGeography
city→region and conflict rupGeography

→region

contains the tuple (city, “Ottawa′′, “central′′); thus exp−
rupGeography

→region contains the tuple (“Ottawa′′, city, “Ottawa′′).

A similar technique for blurring levels in the origin of
mappings is needed, enforcing only mappable members in
their domains. We replace all occurrences of atoms of the

form map
d′

k→dk

l′sk
→Bk

(Y ′
k , Yk), in the bodies of queries qp defined

in (4), by atoms of the form exp−map
d′

k→dk

l′sk
→Bk

(B′
k, Y ′

k , Yk),

that bottom-up completes the mapping in the case of con-

flicting members. We define predicate exp − map
d′

k→dk

l′sk
→Bk

as:

exp−map
d′

k→dk

l′sk
→lsk

(Y ′
k , Bk, Yk) ←

map
d′

k→dk

l′sk
→lsk

(Y ′
k , Yk);

non conflict
d′

k
l′sk

(Y ′
k)

Bk = lsk ;

exp−map
d′

k→dk

l′sk
→lsk

(Y ′
k , Bk, Yk) ←

conflict rup
d′

k
→l′sk

(B′
k, Y ′

k , W ′
k),

map
d′

k→dk

B′
k
→Bk

(Y ′
k , Yk); (6)

Example 6. For dimension Lease−hold in node n2, we
have a conflict with category “equipment”. If we do not re-
classify leased items, we need to generate:

exp−mapLeases→Sales
category→category(Y ′

2 , B2, Y2) ←
mapLeases→Sales

category→category(Y ′
2 , Y2);

non conflictLease−hold
category (Y ′

2 )
B2 = category;

exp−mapLeases→Sales
category→category(Y ′

2 , B2, Y2) ←
conflict rupLease−hold

→category (B′
2, Y

′
2 , W ′

2),

mapLeases→Sales
B′

2→B2
(Y ′

2 , Y2);

Theorem 1. Any component m′ of a tuple (m′
b, l

′, m′)

in relation exp− rup
d′

k

lbottom′
k
→l′sk

that results from applying

the datalog program defined in (5) on relations conflict

rup
d′

k
→l′sk

, non conflict
d′

k
l′sk

, and the revised instance of di-

mension dk, as generated at the mapping acquisition phase,
is a mappable member.

Proof. Let us analyze the first datalog rule of the dat-

alog program that defines predicate exp − rup
d′

k
→l′sk

. The

constant l′sk
that equals variable B′

k in the head of the first
rule indicates that any member m′ that substitutes variable
Y ′

k is a member of level l′sk
. This member m′ must satisfy

the formula non conflict
d′

k
l′sk

(m′) in order to appear as the

third component of a tuple in the result. This is the same
that asserting that member m′ is mappable.
In the second rule, the situation is slightly different; the
second argument in the head is variable B′

k, also appearing

as an argument of predicate conflict rup
d′

k
→l′sk

. According

to the definition of relation conflict rup
d′

k
→l′sk

in subsection

4.3.1, the member m′ that substitutes variable Y ′
k , must be

a mappable member of level B′
k.

Theorem 2. Any component m′ of a tuple (m′, l, m) in

relation exp − map
d′

k→dk

l′sk
→lsk

that results from applying the

datalog program defined in (6) on the extensions of predi-

cates conflict rup
d′

k
→l′sk

, mapping tables and revised rollup

functions, generated at the mapping acquisition phase, is a
mappable member.

Proof. Let us analyze the first datalog rule of the dat-

alog program (6) that defines predicate exp−map
d′

k→dk

l′sk
→lsk

.

Any member m′ of level l′sk
that substitutes variable Y ′

k

must satisfy the formula non conflict
d′

k
l′sk

(m′) in order to

appear in the second argument of any tuple satisfying the
head. This is the same that asserting that member m′ is
mappable.

In the second rule, the first argument in the head is
variable B′

k, also appearing as an argument for predicate

conflict rup
d′

k
→l′sk

. In this case, the substitution of variable

B′
k by a level l′ varies on a level by level basis; it depends on

the path reaching the conflicting member that substitutes
variable Y ′

k .
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Any member m′ that substitutes variable Y ′
k is a member

of level l′, and, by definition of relation conflict rup
d′

k
→l′sk

in subsection 4.3.1, m′ is mappable.

Theorems 1 and 2 ensures that, for every mappable bot-
tom member lbottom′

k in the acquaintance dimension d′k
there is a path to some member in a level Bk in the local
dimension dk, such that level Bk precedes or is equal to
level ltk in the query. Because roll-up functions are com-
plete (we have assumed homogeneity), there is always a
path from member lbottom′

k to some member in level ltk ,
that is to a coordinate for a cell in the query result. This
configures the best attempt to complete a query result when
mappings are not complete.

5.1.3 Complexity
The following theorem shows a bound for the time com-

plexity of our query rewriting method.

Theorem 3. The time complexity of the method for que-
ry rewriting presented above is proportional to O(η, δ, λ),
where η = |(N ) |, δ is the maximal number of dimensions
a fact table peer has in its schema, λ is the maximal number
of levels in the schema of any dimension peer.

Proof. (Sketch) It is easy to see that the time complex-
ity of the method is proportional to η, because query q is
expanded in queries qp, which in turn expand to a query qp

each, for each p ∈ (N ). For each query qp the method gen-
erates bodies in the defining rule, one for each dimension,
thus deriving the proportionality to δ. Finally, the method
searches for a level lsk in dimension dk that is closest to
level ltk , down in the hierarchy of levels of dk. The worst
case of this search entails the proportionality to λ in the
complexity.

6. CONCLUSION
We have presented a model for answering multidimen-

sional queries in a P2P OLAP setting. In this environment,
a peer receiving the query is considered local and the rest of
the peers are considered acquaintances of the former. We
have proposed and discussed two integration principles:

• revise and map (RAM) for integrating dimensions un-
der the common view of the local peer. This process
occurs in a mapping acquisition phase, and

• specialization of generic fact tables for conciliating
facts, defined and maintained at a fact generalization
phase.

Finally, a method for rewriting and propagating queries
has been proposed, in order that all peers can understand
P2P-OLAP queries.

Several questions have not been tackled, like: (a) the defini-
tion of a protocol for metadata interchange in both phases
of integration; (b) deciding how redundant views of aggre-
gated data are stored and maintained in the different peers.
This question is extremely important when considering is-
sues like performance and response time.
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