
One Torus to Rule them All: Multi-dimensional Queries in
P2P Systems

Prasanna Ganesan Beverly Yang Hector Garcia-Molina

Stanford University
{prasannag,byang,hector}@cs.stanford.edu

ABSTRACT
Peer-to-peer systems enable access to data spread over an
extremely large number of machines. Most P2P systems
support only simple lookup queries. However, many new ap-
plications, such as P2P photo sharing and massively multi-
player games, would benefit greatly from support for multi-
dimensional range queries. We show how such queries may
be supported in a P2P system by adapting traditional spatial-
database technologies with novel P2P routing networks and
load-balancing algorithms. We show how to adapt two pop-
ular spatial-database solutions – kd-trees and space-filling
curves – and experimentally compare their effectiveness.

1. INTRODUCTION
Peer-to-peer systems have become a key medium for pub-

lishing and finding information on the internet today. Their
popularity stems from their ease of use, self-administering
nature, scalable support for large numbers of users, and their
relatively anonymous, privacy-preserving content-publishing
model. Content in a P2P system can be modelled as a hor-
izontally partitioned relation, just as in a parallel database,
with the system possessing control over how data is parti-
tioned across nodes [17, 16, 7].

Most P2P systems thus far, both deployed and proposed
in literature, support only simple lookup queries over such a
relation, i.e., queries that retrieve all tuples with a particular
key value [17, 15, 16]. Some recent work has extended this
functionality to support efficient range queries over a single
attribute [7, 11]. However, many interesting P2P applica-
tions require more powerful multi-dimensional range queries,
i.e., conjunctive queries containing range predicates on two
or more attributes of the relation.

For example, consider a P2P photo-sharing application
where each user publishes photographs tagged with meta-
data such as GPS location information, the time the picture
was taken, keywords associated with the picture, and so
on. A typical query in such a system would contain range
predicates on multiple attributes; a user may request all
photographs taken within the last year, whose location is

Copyright is held by the author/owner.
Seventh International Workshop on the Web and Databases (WebDB 2004),
June 17-18, 2004, Paris, France.

within 100 metres of a specified place. As another exam-
ple, massively multi-player online games involve large sets
of users moving about in a “virtual space”. Each user con-
tinuously queries the P2P system to locate all objects, and
other users, within a certain distance of her own position in
a two-dimensional, or three-dimensional, world [12].

Many solutions for multi-dimensional queries are available
in the world of databases. However, adapting these solutions
to the P2P world presents four challenges:

Distribution Data needs to be partitioned across a large
number of nodes while ensuring both load balance across
nodes and efficient queries.

Dynamism Nodes in a P2P system may join and leave
frequently. Therefore, the data partitioning needs to be over
a dynamic set of nodes, while still retaining good balance
and efficient queries.

Data Evolution Data distributions may change over time,
and can cause load imbalance even if nodes remain stable.
Thus, data may need to be re-partitioned across nodes fre-
quently to ensure load balance.

Decentralization P2P systems do not have a central site
that maintains a directory mapping data to nodes. Instead,
a query submitted at any node must be efficiently transmit-
ted to the relevant nodes by forwarding the query along on
an overlay network of nodes. The overlay network is de-
signed to ensure that both the cost of forwarding queries,
and the cost of updating the network structure when nodes
join and leave, are low.

The problem of supporting multi-dimensional queries in a
P2P system can be broken into two components: partition-
ing and routing. A partitioning strategy distributes a rela-
tion R over a set of nodes S, supporting the insertion and
deletion of tuples from R, as well as the joining of new nodes
into S or the leaving of existing ones from S. Once a par-
titioning strategy is chosen to distribute data across nodes,
we require a routing strategy to transmit a query to the rel-
evant nodes. As discussed earlier, nodes are interconnected
in an overlay network, with each node having communica-
tion links to a small number of “neighbor” nodes; queries
are routed on this overlay network to be delivered to the
relevant nodes.

In this paper, we adapt two different database approaches
for multi-dimensional queries – space-filling curves and kd-
trees – to the P2P setting while tackling the above challenges
(Sections 3 and 4). We then compare the two resulting so-
lutions in order to understand the strengths and weaknesses
of each approach in the P2P context (Section 5).



1.1 Desiderata
Any P2P solution for supporting multi-dimensional queries

should ideally have certain properties. First, a good parti-
tioning strategy should have the following characteristics:
(1) Locality The cost of executing a query in a P2P system
is often proportional to the number of nodes that need to
process the query; hence, each query should ideally execute
at as few nodes as possible. For multi-dimensional range
queries, this implies that the partitioning must have locality,
i.e., tuples nearby in the data space should ideally be stored
at the same node.
(2) Load Balance The amount of data stored by each node
should be roughly the same, to ensure load balance1. This
load balance should be ensured even as (a) data evolves with
tuple insertions and deletions, and (b) nodes join and leave
the system.
(3) Minimal Metadata We define partition metadata as
a directory that maps each data point to the node manag-
ing the partition containing the point. In a P2P system,
there is no central site that can maintain this directory, and
metadata will be distributed across the participant nodes
themselves. The more the metadata, the more work that
needs to be performed in updating it across multiple nodes
when nodes join and leave the system. Therefore, we wish
to keep the metadata as small and simple as possible.

We note that these properties are desirable even when par-
titioning data in a parallel database. The P2P environment
merely makes them even more crucial.

In addition, the routing algorithm and overlay network
should have the following characteristics:
(1) Low per-node state: The number of links maintained
by each node should be small. This is necessary since links
need to be updated every time a new node joins, or an old
node leaves.
(2) Efficient Routing: The number of messages required
to send a query to the relevant nodes should be small.
(3) Routing Load Balance: The number of routing mes-
sages forwarded per second should be roughly equal across
nodes. This rules out the use of tree-like overlay networks,
since much traffic would have to pass through the root of
the tree.

2. RELATED WORK
Partitioning Single-Dimensional Data Hash partition-
ing can be used to distribute tuples across a set of disks.
When using a relational key as the hash attribute, this ap-
proach ensures load balance, and minimal meta-data (just
the hash function). However, hashing destroys data locality,
and range queries are very expensive [2].

Range partitioning designates each node responsible for
one contiguous range of attribute values, and thus provides
good locality. The amount of meta-data is fairly small, re-
quiring just the attribute values at the partition boundaries.
However, ensuring load balance across partitions as data
evolves is a non-trivial problem. Recently, we have shown
how such load balance may be achieved efficiently [7].

Partitioning Multi-Dimensional Data When data is
multi-dimensional, one could still partition it based on just

1
More generally, we may require the number of queries executing

at each node to be equal, when access patterns are not uniform
across data. Our subsequent discussion and algorithms generalize
directly to this case.

one dimension; this approach becomes very expensive when
queries involve ranges on a non-partitioning attribute, since
the query would have to be forwarded to a large number of
nodes. The BERD declustering strategy used in the Bubba
parallel machine [5] improves on this idea by enhancing
range partitioning with secondary indexes, but even short
range queries continue to be expensive [8].

The MAGIC declustering strategy [8] fragments the data
space into a grid of rectangular fragments, using a set of
partitioning values on each dimension. Each fragment is
allocated to a node, while ensuring that all nodes manage
roughly the same number of fragments. The strategy re-
quires prior knowledge of the total number of nodes, and it is
unclear whether it can be adapted to support dynamic node
joins and leaves. Moreover, there are serious load-balancing
issues when the data distribution is not uniform [8].

Reference [6] partitions data using space-filling curves, as
does our approach in Section 3. However, our use of space-
filling curves is very different from [6], where the objective
was to destroy data locality rather than to preserve it.

Routing As we will discuss later, our solutions are adap-
tations of routing structures used in distributed hash ta-
bles [17, 15, 9, 3], but have to deal with added complexities
arising from the multi-dimensional nature of the data space,
and non-uniformity of node partitions in the data space.

3. SCRAP: SPACE-FILLING CURVES WITH
RANGE PARTITIONING

Our first approach to supporting multi-dimensional queries,
SCRAP, uses a two-step solution to partition the data: (a)
Data is first mapped down into a single dimension using a
space-filling curve; (b)This single-dimensional data is then
range-partitioned across a dynamic set of participant nodes.

For the first step, we may map multi-dimensional data
down to a single dimension using a space-filling curve such
as z-ordering [14] or the Hilbert curve (e.g., [10]). For exam-
ple, say we have two-dimensional data that consists of two
4-bit attributes, X and Y . A two-dimensional data point
〈x, y〉 can be reduced to a single 8-bit value z, by inter-
leaving the bits in x and y. Thus, the two-dimensional point
〈0100, 0101〉 would be mapped to the single-dimensional value
00110001. (This mapping corresponds to the use of z-ordering
as the space-filling curve.) Note that this mapping is bi-
jective, i.e., every two-dimensional point maps to a unique
single-dimensional value and vice versa.

In the second step, once data has been reduced to one
dimension using the space-filling curve, relation R can then
be range partitioned across the available S nodes; i.e., each
node manages data in one contiguous range of z values.
Maintaining this range partitioning when nodes join and
leave is easy: When a new node joins, it simply splits the
range of some existing node; when a node leaves, one of its
“neighbors” takes over its range2.

Routing To execute queries over a SCRAP network, the
multi-dimensional query must be sent to the set of nodes
that contain data relevant to the query. We may again visu-
alize routing as a two-step process: (In an actual implemen-
tation, the two steps are interleaved for efficiency.) (a) The

2
Since nodes may not leave gracefully, data may need to be repli-

cated to avoid loss. We will ignore this issue here as standard
P2P techniques take care of this problem.



multi-dimensional range query is first converted to a set of
1-d range queries, which together are guaranteed to contain
all query answers. (b) We route each of the 1-d range queries
acquired in step (a) to the appropriate nodes for that query,
i.e., those nodes whose ranges intersect the query range.

Step (a) is performed using well-known algorithms for
query-mapping with space-filling curves, e.g., [14, 4]. We
note that the query mapping algorithms use simple heuris-
tics to ensure that the number of 1-d ranges returned is not
too large. These heuristics may result in “false positives”
– portions of the resulting 1-d ranges that do not actually
map to a point in the native query range. For example, if the
correct set of 1-d ranges is {[0,4), [6,9)}, the algorithm may
return {[0,9)}. False positives may result in a non-relevant
node receiving and processing the query.

Step (b) is performed using a well-known routing network
known as the Skip graph [3, 9]. A skip graph is a circu-
lar linked list of nodes, arranged in order of their partition
boundaries, enhanced with additional skip pointers to enable
faster routing. The pointers are constructed using a ran-
domized protocol by which each node establishes O(log n)
pointers (n is the number of nodes) at exponentially increas-
ing distances from itself on the list, i.e., the ith skip pointer is
expected to point to a node that is 2i positions away on the
list. With a normal doubly-linked list, locating the node
containing a specific data point will take O(n) messages.
With skip pointers, only O(log n) messages are required.

Finding all relevant nodes for a query consists of first find-
ing the node containing the minimum point in the query
range, via the skip-graph routing protocol; all remaining
relevant nodes can then be reached via neighbor links to the
successor nodes on the list.

Discussion The SCRAP approach meets many of our
desiderata defined earlier. Locality is achieved since the
space-filling curve attempts to ensure that nearby data points
in the multi-dimensional space are also adjacent in the sin-
gle dimension. However, as the number of dimensions in-
creases, locality becomes worse since space-filling curves are
afflicted by the curse of dimensionality. Load Balance

in SCRAP can be achieved using recent techniques we have
developed for single-dimensional range partitioning [7]. The
key idea behind the techniques is to perform “local” alter-
ations to the range partitioning using two operations: (a)
NbrAdjust adjusts the partition boundary between two
nodes managing neighboring ranges, to transfer load from
one node to the other; (b) Reorder uses a node with an
empty partition to split the range of a heavily loaded node.
We show in [7] that a judicious use of these two operations
leads to guaranteed load balance, while guaranteeing that
the cost of achieving load balance is very small. The meta-

data required to describe the partitioning is also small: all
that is required for each node is the partition boundaries of
itself and its neighbors.

For the overlay network, low state is achieved with only
O(log n) links per node. Routing load balance is achieved
due to the symmetric nature of skip graphs. Query rout-

ing for a single 1-d range is efficiently performed in O(log n)
hops. However, as the native dimensionality of the data
increases, the number of “relevant” nodes for the original
multi-dimensional query may increase dramatically, leading
to an increased routing cost.

1 1 1

2 2
3

?

x

(a) (b)

Figure 1: (a) Evolution of partitions as nodes join the

network. Each partition represents a node in the net-

work. (b) Routing example over a MURK network.

4. MURK: MULTI-DIMENSIONAL RECT-
ANGULATION WITH KD-TREES

Our second approach, MURK, partitions the data in situ
in the high-dimensional space, breaking up the data space
into “rectangles” (hypercuboids in high dimensions), with
each node managing one rectangle. One way to achieve this
partitioning is to use kd-trees, in which each leaf corresponds
to a rectangle being stored by a node.

We illustrate this partitioning in Figure 1(a). Imagine
there is initially one node in the system that manages the en-
tire 2-d space, corresponding to a single-node kd-tree. When
a second node arrives, the space is split along the first dimen-
sion into two parts of equal load, with one node managing
each part; this corresponds to splitting the root node of the
kd-tree to create two children. As more nodes arrive, each
node splits the partition managed by an existing node, i.e.,
an existing leaf in the kd-tree. The dimensions are used
cyclically in splitting, to ensure that locality is preserved in
all dimensions.

When a node leaves, its space needs to be taken over by
existing nodes. The simple case is when the node’s sibling in
the tree is also a leaf, e.g., node 3 in figure; in this case, the
sibling node 2 takes over 3’s space. The more complex case
arises when the node’s sibling is an internal node, e.g., node
1 in figure. When node 1 leaves, a lowest-level leaf node in
its sibling subtree, say node 2, hands over data to its sibling
node 3, and takes over the position of node 1.

We note that the above means of partitioning is very
similar to that employed in an existing P2P system called
CAN [15], with one crucial difference: CAN hashes data into
a multi-dimensional space and, since data is expected to be
uniformly distributed, a new node splits an existing node’s
data space equally, rather than splitting the load equally. At
a philosophical level, another key difference in CAN is that
the number of dimensions used by CAN is governed not by
the dimensionality of the data, but by routing considera-
tions. We will see (Section 5) that for low dimensionality
(e.g., 2-d), routing in CAN performs very poorly.

Routing First, we must interconnect nodes so that a multi-
dimensional range query can be sent along to all the relevant
nodes. One simple way to interconnect nodes is to create a
link between all “neighboring” nodes, i.e., nodes that share
a boundary, resulting in a grid-like structure. (CAN [15]
uses this very structure for routing, albeit with all rectangles
being roughly the same size.) Observe that this structure is
the multi-dimensional analogue of the linked list.

Routing over these “grid” links proceeds by the use of
greedy routing. Say the multi-dimensional query requires
data in the “rectangle” Q. We define the distance from a
node N to rectangle Q as the minimum Manhattan distance
(L1 distance) from any point in N ’s rectangle to any point
in Q. The routing protocol forwards the query from a node



to its grid neighbor that reduces the Manhattan distance
to Q by the largest amount. An example of query routing
is shown in Figure 1(b), where a query is routed from the
node labeled ‘?’ to its destination marked ‘X’. Once the
query has reached one of the nodes with relevant data, say
D, node D sends the query along to those of its neighbors
that also have relevant data, proceeding recursively until all
relevant nodes are reached. Note that each node must know
the partition boundaries of each of its neighbors.

Optimized Routing The above “naive” approach is sim-
ple; however, it has two major shortcomings: (1) Non-

uniformity: The number of grid neighbors that a node has
is no longer uniform, unlike in a linked list where each node
has two neighbors. Unless the distribution of data points
is uniform, nodes will have to manage partitions of unequal
space. Nodes that manage partitions covering a large space
are likely to have more grid neighbors, compared to nodes
managing small spaces. This is a problem because we would
like the number of neighbors to be balanced among peers,
and because it may translate into unbalanced routing load.
(2) Inefficiency: “Grid” pointers are not very effective in
improving query efficiency, especially when dimensionality
is low. For example, in a uniform 2-d grid of n nodes, with
each node having 4 neighbors, query routing still requires
Θ(

√
n) messages. On the other hand in a linked list with

each node having just one skip pointer in addition to its
two list pointers, routing requires only Θ(log2 n) messages.
Therefore, despite the presence of grid pointers, additional
skip pointers are necessary to ensure efficient routing.

We do not attempt to combat the first problem of non-
uniform numbers of grid pointers; it is unclear whether it
can be overcome while preserving routing load balance. For
the second problem, we can have each node maintain “skip
pointers” to a few other nodes in order to speed up routing.
Note that we maintain the same greedy routing protocol:
each node would forward the query to the neighbor closest to
the destination, whether the neighbor be a “grid” neighbor,
or a neighbor through a skip pointer.

The key is to determine how skip pointers are chosen for
each node. In the 1-d case, we simply used skip graphs to
assign these skip pointers. However, there is no obvious ana-
logue of skip graphs in higher dimensions3. Our approach,
therefore, is to develop heuristic methods for establishing
skip pointers, and evaluate their performance through ex-
periments. We consider two different approaches for estab-
lishing skip pointers:

(a) Random: Each node maintains skip pointers to s nodes
chosen at random from the set S of all nodes. In practice,
finding a random node is implemented using random walks
on the overlay network. Such random skip pointers allow
the same kind of query efficiency and routing robustness as
multiple realities in CAN, without requiring that data be
replicated [15].

(b) Space-filling Skip graph: Recall that the key idea in a
skip graph was to ensure that each node maintained skip
pointers at exponentially increasing distances from it. To
emulate such an exponential distribution of skip pointers,
we use the following strategy: a linear ordering of nodes is

3
Note that when node distribution is uniform, it is indeed possible

to obtain exactly the same routing performance irrespective of the
number of dimensions, using a generalization of skip graphs. We
do not discuss this here.

created, such that the distance between nodes in the linear
ordering approximates the grid distance between nodes in
the native space.

This linear ordering is achieved as follows: The ID of a
node is defined to be the coordinate of the centroid of its
partition, mapped down to one dimension using a space-
filling curve, such as the z-curve. Nodes are ordered linearly
using this node ID, and a skip graph is built on this linear
ordering of nodes, i.e., nodes maintain a linked list sorted by
node ID along with additional skip pointers just as dictated
in the skip graph. (Note that the skip graph construction
continues to occur in a completely decentralized fashion.)
Intuitively, this structure is a multi-dimensional approxima-
tion of the skip graph, and the skip pointers of nodes are
distributed in an exponential fashion.

Discussion The MURK solution offers good data local-

ity, since it partitions the data space into exactly as many
rectangles as there are nodes. The metadata necessary to
describe the partitioning is simply the kd-tree itself, whose
size is fairly small (proportional to the number of nodes in
the system).

However, load balancing across partitions is tricky. If
the data distribution is static, and does not change over
time, it is possible to also obtain good load balance across
nodes, using simple techniques developed for load balancing
in distributed hash tables, e.g. [1, 13]. When the data
distribution is itself dynamic, however, the insertion and
deletion of tuples can make the partitions unbalanced even
if the set of nodes is fixed. As ongoing work, we are investi-
gating the use of the NbrAdjust and Reorder primitives
discussed in Section 3 to achieve dynamic load balancing.

Since the routing properties of MURK are difficult to for-
malize, we defer a discussion of routing performance to our
evaluation in Section 5.

5. EVALUATION
We now evaluate the effectiveness of our proposed solu-

tions for multi-dimensional queries in P2P systems.

Setup Our experiments compare the following approaches:

• SCRAP – A SCRAP network using the z-ordering space-
filling curve [14].

• MURK-Ran – A MURK network in which each node
maintains 2 log n skip pointers, chosen at random.

• MURK-SF – A MURK network in which skip pointers
are determined by a space-filling skip graph over nodes’
partition centroids.

• MURK-CAN – As a baseline for comparison, we will
evaluate multi-dimensional range queries over a standard
CAN [15] (grid) network with no skip pointers.
We evaluate each approach via simulation. For each high-

level action, such as a query, we simulate the messages that
are sent between nodes. We measure the performance of an
approach with the following two metrics:
• Locality – the average number of nodes across which the

answer to a given query is stored.
• Routing Cost – the average number of messages ex-

changed between nodes in order to route a given query.
Due to space constraints, we omit a description of our

evaluation on other metrics, such as data and routing load
distribution across nodes, and comment on these metrics in
Section 6.



1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

Lo
ca

lit
y

Dimensionality

SCRAP
MURK

1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

R
ou

tin
g 

C
os

t

Dimensionality

SCRAP
MURK−Can
MURK−sf
MURK−Ran

Figure 2: Performance as di-

mensionality of data is varied

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

Lo
ca

lit
y

Network Size

SCRAP
MURK

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

R
ou

tin
g 

C
os

t
Network Size

SCRAP
MURK−Can
MURK−sf
MURK−Ran

Figure 3: Performance as size

of network is varied

0 0.002 0.004 0.006 0.008 0.01
0

200

400

600

800

1000

1200

Lo
ca

lit
y

Query Selectivity

SCRAP
MURK

Uniform: solid line
Skew: dotted line 

0 0.002 0.004 0.006 0.008 0.01
0

10

20

30

40

50

60

R
ou

tin
g 

C
os

t

Query Selectivity

SCRAP
MURK−Can
MURK−sf
MURK−Ran

Uniform: solid line
Skew: dotted line 

Figure 4: Performance as selec-

tivity of range query is varied

Note that when a query is sent out to the network, some
nodes process the query to “route” it to nodes with answers,
while other nodes process it because their partitions overlap
with the query (and hence, potentially have answers to the
query). We differentiate between these two types of work –
the first type is captured by Routing Cost, while the second
is captured by Locality.

Our workload consists of hypercubic region queries of a
given selectivity s over the entire data space. We define the
selectivity to be s, 0 ≤ s ≤ 1, if a fraction s of the entire data
space is covered by the query region. Note that selectivity
does not determine the number of data points in the re-
gion, if data distribution is not uniform. Selectivity may be
varied to study how each approach performs under various
range sizes. We evaluate queries over two types of data: (1)
uniformly random data (UNIFORM) which we generate in
any dimensionality desired, and (2) highly skewed/clustered
data (CLUSTERED), consisting of 2-d GPS coordinates
over a real-life digital photo collection.

We present experiments on a static network, constructed
by initially inserting all data into a single node, and pro-
gressively allowing nodes to join the system to expand it to
the desired size. Experiments with dynamic networks are
omitted due to space constraints.

5.1 Results
Locality Our first set of experiments compares the merits
of the SCRAP and MURK partitioning strategies, in terms
of the locality obtained for queries, as the following parame-
ters are varied: (a) the number of dimensions, (b) the num-
ber of nodes (c) query selectivity, and (d) data skew. Each
experiment varies one of the above four parameters, while
holding the others fixed. Locality results are shown in the
upper set of graphs in Figures 2, 3, and 4. We will later dis-
cuss routing cost results, shown in the lower set of graphs.
Recall that the total number of nodes that handle the query
is equal to routing cost and locality added together.

Figure 2 depicts performance of each approach as the
number of dimensions increases. All queries are of a fixed
selectivity of 10−5, executed on a network of 8192 nodes.
As we can see, locality (top) degrades very little with in-

creasing dimensions in MURK. However, query locality in
SCRAP becomes very poor even for three dimensions; i.e.,
queries will have to visit many nodes to find all relevant data.
Locality suffers in SCRAP because of the curse of dimen-
sionality. As dimensionality increases, nearby points in na-
tive space become increasingly far apart in the mapped 1-d
space. In addition, because the approximate query-mapping
algorithms returns a fixed number of 1-d intervals in which
the native region is contained (see Section 3 for discussion),
the number of false positives introduced by the algorithm in-
creases with dimensionality. With false positives, nodes that
are not actually relevant will process the query; therefore,
locality suffers.

Figure 3 depicts performance as the number of nodes in
the system increases, for two-dimensional data and a fixed
query selectivity. In the locality graph (top), we see that
MURK scales well with increasing numbers of nodes; the
query almost always hits just one node. SCRAP, on the
other hand, does somewhat worse with the locality increas-
ing roughly linearly with the number of nodes. (Note that
the x-axis is in logarithmic scale.)

Finally, Figure 4 shows the impact of query selectivity and
data skew on performance. The solid lines correspond to
experiments with the UNIFORM dataset, while the dotted
lines correspond to the CLUSTERED dataset. Along the
x-axis we vary the selectivity of the query, executed over
2-dimensional data on a network of 8192 nodes. In the lo-
cality graph (top), we see that locality in MURK increases
linearly with increasing query selectivity, even for clustered
data, which suggests that the data is well balanced across
nodes. Locality of SCRAP is much worse than for MURK,
with some additional degradation being induced by clustered
data. Locality degrades in SCRAP because of the imperfect
ability of space-filling curves to map nearby points in native
space to nearby points in the mapped 1-d space. As the
query covers an increasingly large region in native space,
a proportionally larger number of disjoint 1-d intervals can
be needed to express this native region. We see in Figure 4
(top) that locality is in fact sublinear, largely due to the fact
that many of the disjoint intervals map to the same node.

In summary, MURK far outperforms SCRAP in terms
of locality, especially as dimensionality, selectivity, and net-



work size increase.

Routing Our second set of experiments compares the rout-
ing costs in SCRAP and MURK, while varying the same four
parameters as in the earlier experiments.

In Figure 2 (bottom), we see the routing cost of each ap-
proach as the number of dimensions is varied. Not surpris-
ingly, the cost of SCRAP routing is independent of the num-
ber of dimensions, since SCRAP routes in a 1-d space, and
the number of 1-d intervals output by the query-mapping
algorithm is fixed. For MURK, we see that both MURK-sf
and MURK-ran are much better than MURK-CAN in low
dimensions. For example, MURK-CAN requires over 2 or-
ders of magnitude more messages to route a query in 1-d,
compared to MURK-sf and MURK-ran. (Note that the y-
axis is in logarithmic scale.) In high dimensions, there are so
many grid pointers per node that the improvement obtained
from skip pointers becomes marginal.

Figure 3 (bottom) plots the routing cost for 2-d data as
the number of nodes is varied, with a fixed-selectivity query.
We observe that MURK-CAN performs very poorly, which
is expected since the routing cost is Θ(

√
n). The routing

cost of SCRAP increases logarithmically with the number
of nodes, just as expected. MURK-sf performs consistently
better than SCRAP, suggesting that the space-filling skip
graph heuristic is an effective one; it performs better than
SCRAP because nodes also have additional grid pointers in
MURK, and because only a single query needs to be routed.
In SCRAP, we must route one 1-d query for each 1-d interval
output by the query-mapping algorithm.

Intriguingly, MURK-Ran outperforms MURK-sf for small
network sizes. This is because many skip-graph pointers
in small networks are “too close” and do not aid efficient
routing as much as in large networks. In fact, it turns out
that the “threshold” network size at which MURK-sf out-
performs MURK-ran increases with dimensionality. In 1-d,
the threshold is at around 1000 nodes, in 2-d around 8000,
and even higher values for higher dimensions. Similarly, as
queries select more and more data, the threshold size in-
creases; a query selecting lots of data only needs to reach
one of the many relevant nodes through routing, which is
intuitively akin to routing in a network with fewer nodes.

Figure 4 (bottom) depicts routing costs for uniform and
clustered data, as the selectivity of the query is varied. Once
again, solid lines depict the cost for uniform data, and dot-
ted lines the cost for clustered data. The cost of SCRAP
routing remains flat irrespective of the query range or data
clustering, showing that it adapts well to data distribution
skew. The cost of MURK-CAN is much higher than that of
the other approaches, confirming the need for skip pointers
in MURK. Both MURK-sf and MURK-ran perform better
for uniform data than for clustered data. For clustered data,
we see that MURK-sf performs considerably better than
MURK-ran (by about a factor of 2), for all query ranges.
This confirms once again that the space-filling skip graph
heuristic used by MURK-sf performs well in practice, and is
better than using random skip pointers.

In summary, we find that routing in the baseline MURK-
CAN network is very expensive and unscalable. Skip point-
ers are effective in reducing routing cost in MURK, espe-
cially as network size increases. In particular, MURK-sf
tends to outperform MURK-ran when network size is large,
or data is skewed or in low dimensionality. SCRAP routing
is also efficient; however, when looking at locality and rout-

ing costs together, we find that MURK-sf and MURK-ran
are superior approaches across all the variables studied.

6. CONCLUSIONS AND FUTURE WORK
We have presented two approaches for supporting multi-

dimensional queries. The first approach, SCRAP, uses space-
filling curves with range partitioning, and performs well in
low dimensions. It also allows for efficient load balancing
across nodes even as tuples are inserted and deleted [7]. The
second approach, MURK, partitions data into rectangles in
the native space. In combination with a space-filling skip
graph, MURK proves much more efficient than SCRAP, es-
pecially in high dimensions.

Preliminary experiments suggest that both SCRAP and
MURK offer good data and routing load balance when data
distribution is static. However, achieving efficient load bal-
ance in MURK under dynamic data distributions is poten-
tially expensive, and is the subject of current research. In
future work, we plan to investigate the use of SCRAP and
MURK for the specific application of P2P photo sharing.

7. REFERENCES
[1] M. Adler, E. Halperin, R. M. Karp, and V. V. Vazirani. A

stochastic process on the hypercube with applications to
peer-to-peer networks. In Proc. STOC, pages 575–584, June
2003.

[2] A.Silberschatz, H.F.Korth, and S.Sudarshan. ”Database
System Concepts”, chapter 17. McGraw-Hill, 1997.

[3] J. Aspnes and G. Shah. Skip graphs. In Proc. SODA, 2003.

[4] C. Bohm, G. Klump, and H. Kriegel. Xz-ordering: A
space-filling curve for objects with spatial extension. In Proc.
Symposium on Large Spatial Databases, 1999.

[5] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data
placement in Bubba. In Proc. SIGMOD, 1988.

[6] C. Faloutsos and P. Bhagwat. Declustering using fractals. In
Proc. Intl. Conf. on Parallel and Distributed Information
Systems, 1993.

[7] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing
of range-partitioned data with applications to peer-to-peer
systems. Technical report, Stanford University, 2004.

[8] S. Ghandeharizadeh and D. J. DeWitt. A performance analysis
of alternative multi-attribute declustering strategies. In Proc.
SIGMOD, 1992.

[9] N. J. A. Harvey, M. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with practical
locality properties. In Proc. USITS, 2003.

[10] H. Jagadish. Linear clustering of objects with multiple
attributes. In Proc. SIGMOD, 1990.

[11] D. R. Karger and M. Ruhl. Simple efficient load-balancing
algorithms for peer-to-peer systems. In Proc. IPTPS, 2004.

[12] G. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer
support for massively multiplayer games. In Proc. INFOCOM,
2004.

[13] M. Naor and U. Wieder. Novel architectures for P2P
applications: The continuous-discrete approach. In Proc. 15th
ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA 2003), pages 50–59, June 2003.

[14] J. Orenstein and T. Merrett. A class of data structures for
associative searching. In Proc. PODS, 1984.

[15] S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp. A
scalable Content-Addressable Network. In Proc. SIGCOMM,
2001.

[16] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location, and routing for large-scale
peer-to-peer systems. In Proc. Middleware, 2001.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proc. SIGCOMM, 2001.


