
Controlling the XenoServer Open Platform
Steven Hand, Tim Harris, Evangelos Kotsovinos, Ian Pratt

University of Cambridge Computer Laboratory
J J Thomson Avenue, Cambridge, UK, CB3 0FD

ffirstname.lastnameg@cl.cam.ac.uk

Abstract— This paper presents the design of the XenoServer
Open Platform: a public infrastructure for wide-area computing,
capable of hosting tasks that span the full spectrum of distributed
programming. The platform integrates resource management,
charging and auditing. We emphasize the control-plane aspects
of the system, showing how it supports service deployment with
a low cost of entry and how it forms a substrate over which other
distributed computing platforms can be deployed.

I. I NTRODUCTION

The XenoServer1 project [1], [2] is building a public infras-
tructure for wide-area distributed computing, creating a world
in which XenoServer execution platforms are scattered across
the globe and available for any member of the public. This
allows users to run programs at points throughout the network
to reduce communication latency, avoid network bottlenecks,
and minimize long-haul network charges. Also, it can be used
to deploy large-scale experimental services, and to provide a
network presence for transiently-connected mobile devices.

Our approach is distinguished from existing work on mobile
agents, execution platforms, code hosting and the like by two
principles:

1) Tackling difficult problems at the same time.
Acceptable designs for execution environments, resource
management, resource discovery, authentication, privacy,
charging, billing, payment, and auditing are all crucial
to the success of our platform as an infrastructure
service open to and accepted by the public. Existing
work has tackled individual subsets of these problems,
but tensions between the issues concerned mean that
solutions proficient in some dimension are lacking in
another.

2) No brave new world.
Our platform will host applications written in today’s
programming languages against existing APIs – and, we
believe, those written with tomorrow’s languages and
libraries. We do not want to mandate a particular code
distribution format or a particular middleware toolkit for
distributed programming.

The XenoServer platform can be classed asopen in two
different ways. Firstly, as a service deployment infrastructure,
it provides an extremely low cost of entry when compared with
dedidicated-hosting facilities. This is both a low intellectual
cost, by supporting existing programming environments, and

1The name derives from the Greek word “�"�o&” (xenos), which means
foreign or unknown, much like the tasks that XenoServers accept and safely
execute.

a low monetary cost, by supporting fine-grained resource
management over flexible timescales, and at a level much
smaller than renting complete machines. Secondly, the system
is structured so that it can host new kinds of execution environ-
ments, new kinds of resource discovery systems, new models
for charging, new tradeoffs between privacy, performance, and
so on. Our open platform provides the mechanisms necessary
for its constituent servers and organisations to define the
policies for themselves.

Overview

In Section II we introduce the general architecture of the
XenoServer Open Platform, showing the entities involved and
the minimum requirements for deploying tasks, performing
authentication, and charging for resource consumption. Sec-
tions III–V then build on this to provide higher-level inter-
faces for publishing XenoServer status information, perform-
ing resource discovery and constructing flexible XenoServer
systems.

In companion papers, we focus on the technical aspects
of our current implementation of the XenoServer component
and the hardware virtualization it achieves [3]. This allows
authenticated clients to deploy tasks over a flexible, resource-
managed XenoServer, supporting Linux and Java execution
environments. Elsewhere, we introduce the XenoStore dis-
tributed file system, built over the foundations presented here,
to provide a shared global storage network [4], and propose a
trust management architecture for our platform [5].

Related work

Many research groups have been developing computational
grids [6]. These construct virtual supercomputers dynamically
from geographically dispersed and heterogenous resources
linked by high-speed networks. Such infrastructures include
Globus [7], NEOS and Condor [8], SNIPE [9], Javelin [10]
and Globe [11]. The PlanetLab project is following a similar
approach, which substantiates an overlay network to serve
as a testbed for a new class of widely distributed network
services [12]. GridBank [13] combines features found in com-
putational grids with accounting mechanisms. XenoServers are
fundamentally different from grids and overlay approaches, as
the latter provide application-level programming models and
interfaces for sharing existing resources rather than system-
level support in a large-scale, federated system with competing
users and tasks. In many ways, we share the goals of Public

Computing Platforms [14], although our architectural approach
is broader in scope.

Virtual machine (VM) technologies allow unmodified guest
operating systems to run in virtualized systems multiplexed
over a single physical machine. This approach is taken by
VMWare [15] and Virtual PC [16]. The vMatrix [17] project
is based on VMWare, building a platform for moving code
between different machines. However, hosting unmodified op-
erating systems usually has negative effects on both reliability
and performance. Moreover, vMatrix does not address the
issues related to a large-scale deployment of the system, like
authentication, discovery of participating machines, charging,
auditing, and so on – nor how to accommodate tasks that
require different kinds of execution environments.

As explained in Section V-A, in the XenoServer Open
Platform there is no need to check for “safe” code, or for
guaranteed termination – the only person hurt is the client
deploying the code, not the hosting XenoServer or its other
clients. This allows XenoServers to accept a broad range of
existing code execution environments: the XenoServer Open
Platform immediately becomes the ideal testbed for wide-
scale deployment of research prototypes. This flexibility is,
we believe, unique to our platform. There is no requirement
for binaries to be digitally signed by a trusted compiler (as
in SPIN [18]), to be accompanied by a safety proofs (as
with PCC [19]), to be written in a particular language (as
in SafetyNet [20] or Java-based systems), or to rely on a
particular middleware (as with mobile-agent systems [21]).

II. GENERAL ARCHITECTURE

Figure 1 illustrates the high-level architecture of the
XenoServer Open Platform, distinguishing the various roles
and interfaces. On the left hand side we see a XenoServer,
on the right hand side a client, and at the top an entity
called XenoCorp. XenoServers host tasks that are submitted
by clients and XenoCorp acts as a trusted third party.

register_client
create_purchase_order

register_xenoserver

charge_from_purchase_order

create_session
query_xenoserver_status

XenoServer client

XenoCorp
validate_purchase_order

deploy_task

Fig. 1. The XenoServer Open Platform architecture

For exposition, it is easiest to assume a single XenoCorp.
However our architecture is designed to support multiple com-
peting entities, providing that they follow the same basic inter-
faces – much as the commercial world supports several banks.

However, to set the general scene, it is important to realize the
separation between a XenoCorp and the organizations running
XenoServers. The former provides authentication, auditing,
charging and payment, and has contractual relationships with
clients and with XenoServer operators – much as VISA or
MasterCard act as intermediaries between credit card holders
and the merchants from which they make purchases.

The XenoServers themselves may be run by disparate orga-
nizations much as server hosting facilities are currently oper-
ated. We expect XenoServers will operate on well-maintained
machines with long-term network presence – not in “spare
cycles” on users’ desktop systems.

A. Usage overview

The general operation of the XenoServer Open Platform
can be described by considering four successive stages: reg-
istration, advertisement & discovery, deployment, and man-
agement. These stages are analyzed further in the following
paragraphs. Following this we describe the operations depicted
in Figure 1 in more detail.

1) Registration:Registration is the process of establishing
an identity and obtaining credentials allowing participation in
the platform. Both XenoServers and clients must be registered
with a XenoCorp before they can host or submit tasks.
XenoCorps are discovered using external mechanisms – adver-
tising, word-of-mouth, and so on. Registration is an infrequent
operation; it is undertaken when a company launches a new
XenoServer or when a client wishes to use the platform for the
first time. The formats and inference rules of attribute-based
access control systems are ideal for representing and managing
registration credentials [22].

XenoCorps may differ in the charging model that they
enforce or in the privacy that they provide clients – perhaps
whether a XenoServer hosting a job knows the client’s “real
world” identity. XenoCorps may also differ in how XenoServer
operators receive payment; for instance, whether the amounts
XenoServer operators receive are guaranteed, or they whether
are a share in XenoCorp’s overall profit. This can shift
the exposure to fraud borne by XenoCorps and XenoServer
operators.

A XenoServer must be registered in order to be eligible to
claim payment for hosting jobs. XenoCorp may require that
the XenoServer’s operators enter into a contractual relationship
with it, for instance agreeing to correctly host the jobs placed
on it.

Clients register with XenoCorp in order to be able to place
jobs on XenoServers and to set up an account for the charges
incurred. The client must present some means of settling these
charges. For example, in our public wide-area deployment, by
providing a credit card number to bill.

2) Advertisement and Discovery:XenoServer operators
compete for the business of clients. Crucial to the success of
this is a way for XenoServers toadvertisetheir capabilities,
resources and prices, and for clients to discover servers which
match their requirements.

In designing the platform, we are faced with the choice
of how much support should be provided for these “match-
making” services. One extreme option is for XenoCorps to
be involved in XenoServer selection. However, aside from the
complexity of designing appropriate job-description formats
and scalable reqiurements-matching algorithms, this would
complicate the relationship that XenoCorps hold with their af-
filiated XenoServers. Retaining XenoCorp as simply a trusted
third party avoids accusations that it may favour particular
XenoServer operators.

Within the core architecture, all that is required is some
means by which a client may obtain the current capabilities
of a particular XenoServer. This interface is represented in
Figure 1 by thequeryxenoserverstatusoperation exported
by XenoServers.

It is unreasonable to expect that each client will individually
poll all of the XenoServers in order to assess their suitability.
Indeed, the core architecture does not in itself even provide a
mechanism for a client to enumerate the servers. Our view is
that this is rightly so; such a facility can be constructed over
the core architecture rather than being ingrained within it. We
return to this point in Section III when we introduce how a
XenoServer Information Service can be constructed.

3) Deployment:Once a client has selected a XenoServer
and determined that it is suitable for running a particular task,
the next step isdeployment. We have a fairly broad notion of
what might be meant by deploying a task, for example:

� starting a well-defined server (e.g. Quake-3 v1.07),
� instantiating a new execution environment on the

XenoServer, booting a particular operating system on it,
and then shipping binaries to it for execution,

� transferring a binary, or sources to be compiled, to an
existing virtual machine, and then running the executable.

This functionality is broken into two steps: firstly asessionis
created which establishes an agreement between a client and
a XenoServer regarding the resources to be provided, and the
payment to be made; secondly, a task or tasks aredeployedon
the XenoServer in the context of that session. In the following
we elaborate on the mechanisms used in the establishment of
sessions.

Session requirements:During deployment, a client must
come to agreement with the intended XenoServer regarding
the terms and conditions of their future cooperation – in other
words, the client needs to specify its expectations from the
XenoServer, and the latter has to acknowledge that those can
be met while the session is operating. A client is responsi-
ble for creating an appropriately-provisioned session before
deploying tasks within it.

In our design, resource requirements and availability
are represented using XML. At the deployment stage, the
client sends an XML description of its requirements to the
XenoServer. The XenoServer then tries to match them with
the available resources. The integrity and consistency of those
descriptions can be checked using the built-in XML Schema
mechanism [23]. An illustrative example of such a description
is shown below:

<?xmlversion="1.0" encoding="UTF-8"?>
<EnvironmentalRequirements>

<Basic>
<EnvName>MyEnvironment</EnvName>
<EnvType>Linux</EnvType>
<EnvKernel>2.4.18</EnvKernel>
...

</Basic>
<Network>

<EnvIPAddresses>1</EnvIPAddresses>
...

</Network>
<QoS>

<CPUmsps>150</CPUmsps>
<NetMbps>5</NetMbps>
....

</QoS>
...

</EnvironmentalRequirements>

In the above example, the client is asking for a Linux execution
environment, using the 2.4.18 kernel. Also, the XenoServer is
asked to allocate a globally-valid IP address to the execution
environment (rather than using network address translation),
and to provide it with a network bandwidth of 5 Mbps –this
is not a network-wide guarantee; it is similar to installing a
5Mbps network interface on that XenoServer. The session is
to receive 150 ms of CPU time for every second of real time.
Extensions to this basic format may specify the burstiness
of these allocations, or provide separate peak and mean-rate
requirements.

Purchase orders:Apart from the requirements specifica-
tions, the session creation request must be accompanied by
a purchase ordercreated by a XenoCorp with which the
XenoServer is registered and subsequently signed by the client
initiating the session. This identifies the account to charge for
running the session, and may contain limits imposed by the
XenoCorp, or constraints made by the client on the resources
that can be consumed, on the type of session that may be
requested, or on the XenoServers on which the purchase order
may be spent.

Before the session is created, the XenoServer mustvali-
date the purchase order with the issuing XenoCorp. Again,
XenoCorps will differ in how they implement this step. Order
validation represents the point at which the XenoServer’s
operator has accepted a session, has confirmed that it can
provide the requested execution environment, and has made a
positive admission control decision. Beyond this, the semantics
of order-validation are something that must be agreed contrac-
tually between each XenoCorp and its associated clients and
XenoServers.

At one extreme, the validation interface may be imple-
mented in a daemon task that the XenoCorp places on regis-
tered XenoServers – perhaps a simple check that the purchase
order was issued by that XenoCorp. At the other extreme,
the validation interface may be implemented remotely by
XenoCorp, and cause pre-payment of the maximum amount,
perhaps incorporating a digital coin into the purchase or-
der [24].

4) Management:Once a session is running, it is important
that both the client and the relevant XenoServer perform some
ongoing management. In the case of the client we allow any
management infrastructure desired – it may simply deploy
a management task alongside the others it places within a
session. For example, if the client requests a simple resource-
managed Linux environment then a management interface
may return the initial “boot time” messages produced as that
environment starts, before presenting the user with a shell.
Alternatively, the management interface might accept control
operations over some existing network protocol.

From the point of view of the XenoServer itself, the most
important ongoing task is to account for resource usage and
to make appropriate charges against the purchase orders that
fund those sessions. An interesting problem here relates to
the provision of an audit-trail – this is required in case a
task performs anti-social or illegal activities. In our current
model, XenoServers use the samechargefrom purchaseorder
interface to provide this log by annotating charges with infor-
mation about the current activities of the session, effectively
identifying what it is that is being paid for. If sufficiently
authorised, an enforcement agency may request XenoCorp to
correlate payments with purchase order creation.

B. Interfaces

We now consider in more detail the operations between each
of the core components of the XenoServer platform.

1) Operations exported by a XenoCorp:

1) Register client: Clients send registration requests to
the XenoCorp, specifying the details necessary for the
proposed account, such as name, address, and charging
information. For instance, in our prototype deployment
of XenoServers, the first XenoCorp will provide a simple
web-based form for performing registration.
The result of this is the production of unique credentials
for the clients, with which they can identify themselves
to XenoCorp or to XenoServer operators. XenoCorps
will vary according to the information revealed in the
credentials – while they must identify the issuing Xeno-
Corp, they may vary between indicating that “this is a
client known to me” and indicating the actual identity
of the client.

2) Register XenoServer:Potential XenoServers have to
subscribe to a XenoCorp in order to join the platform
and start servicing clients. To register, a XenoServer will
need to provide information about its owner, such as
name, address, and bank account or credit card details,
as well as the specifications of the machine, including
the hardware architecture family, type of CPU, available
memory, and network connectivity. The result of this is
the production of unique credentials for the XenoServer.

3) Create purchase order: A purchase order represents
a client’s commitment to funding a session, subject to
certain constraints. The creation of a purchase order
is a two stage process. First of all the client requests
that a XenoCorp issues it a basic purchase order up

to a certain amount. At that stage the XenoCorp may
check the credit-worthiness of the client, may ring-
fence the portion issued as a purchase order, and may
endorse the order with restrictions that must be met in
order for it to honour payment – for instance that the
purchase order must be properly validated before the
XenoServer selected to perform the session starts work.
The client, before using the order to fund deployment,
may then annotate it with further restrictions – for
instance specifying that only the XenoServer that it
selects may cash in the order.

4) Validate purchase order: The validation interface
provides an ahead-of-execution step with which a
XenoServer operator may check the correctness of a
payment order funding a job it has received. A purchase
order therefore flows from XenoCorp, to the client
to whom it is issued, to the XenoServer on which
it funds a session, and finally back to XenoCorp at
the point of validation. The validation policy will vary
between XenoCorps, but it provides a point at which the
XenoCorp can agree to each transaction – for instance
vetting that the purchase order has not already been
presented to another XenoServer. Note that although the
validation interface is conceptually part of a XenoCorp,
its implementation need not be centralized – XenoCorps
may rent space on XenoServers that they trust to perform
validation functions.

5) Charge from purchase order: XenoCorp receives re-
source consumption claims from XenoServers, request-
ing for charging a certain amount against particular
purchase orders. These requests are annotated with re-
source usage information to form an audit trail. The rate
and detail of these messages will again vary between
XenoCorps.

2) Operations exported by a XenoServer:

1) Query XenoServer status:Registered clients query the
XenoServer in order to obtain information about its sta-
tus. The XenoServer supplies its current resource usage
and availability information, along with its identification
credentials.

2) Create session:A registered client connects directly to
a selected XenoServer in order to create a session. This
request has to include the client’s expectations from the
XenoServer, such as Quality of Service requirements
(optional, like CPU percentage, minimum network band-
width), environmental needs (necessary, specifying a
version of an operating system or JVM needed to run
its tasks), and any other kind of general constraints (like
maximum amount to be spent on resource consumption).

3) Deploy task: A client deploys a task in the context of
an existing session — a handle describing the relevant
session is passed to the XenoServer along with an XML
description of the task to be deployed.

III. X ENOSERVER INFORMATION SERVICE

In Section II we introduced the three core components
of the XenoServer Open Platform. These provide the basic
functions of authentication, task deployment, and charging for
resource usage. However, in considering the core components,
we deferred the question of how a client of the system selects
an appropriate XenoServer.

One possibility would be to use a meta-directory service
such as MDS-2 [25] – an LDAP-based implementation of the
Grid Information Service (GRIS). However the strictly two-
level hierarchy and the fairly rigid schema means that another
solution may be preferable. This is particularly true since
we wish to support a broad range of execution formats and
capabilities – incorporating servers which can host only certain
operating systems, or which offer relatively more or fewer
resources at a variety of prices. Furthermore, we expect a large
and dynamically changing number of competing XenoServers.

Therefore, although clients can directly query individual
XenoServers to determine their status, it would be impractica-
ble for them to do so in any non-trivial deployment. Instead,
information about XenoServers is aggregated within a highly
available information service. We term this theXenoServer
Information Service(XIS); its role in the architectural picture
is shown in Figure 2.

lookup_xenoserver
advertise_xenoserver
update_specifications

register_client
create_purchase_order

register_xenoserver

charge_from_purchase_order

create_session
query_xenoserver_status

XenoServer client

XenoCorp
validate_purchase_order

deploy_task

XenoServer
Information

Service

Fig. 2. XenoServer platform with XIS

As illustrated, this acts as an intermediary between
XenoServers, who advertise information within it, and clients,
who perform queries on the service. There are no architectural
conventions requiring there be only one XIS although we en-
visage that this situation will develop naturally since it makes
sense for XenoServers to advertise as widely as possible, and
for clients to draw on the largest number of XenoServers
when performing lookups. By analogy, the vast majority of the
Internet prefers to use a single DNS hierarchy, even though
there is no technical restriction to the deployment of separate
namespaces (however, we note that alternatives which have
been attempted do not find currency).

A. Interface

In designing the XIS it is necessary to balance the clients’
desire for being able to perform expressive queries versus the

desire for a straightforward and scalable implementation of
the XIS. Crucially, we must identify (i) what information a
XenoServer may store into the XIS and (ii) what kinds of
query the XIS supports over this information. The approach
we take here follows the general techniques that we have used
in designing the XenoServer platform: the XIS is relatively
agnostic about what kinds of data it holds and it defers the
implementation of more advanced queries either to the clients
themselves or to specialized Resource Discovery Systems (see
Section IV).

1) Operations exported by XIS:

1) Advertise XenoServer:XenoServers advertise their sta-
tus within the XIS using an XML format as we did
for specifying task requirements. While the scheme
specifies some basic information that all XenoServers
must provide – such as the XenoCorps with which they
are registered – this can be augmented with informa-
tion about current location, server and network load,
average CPU utilization, number of clients connected,
available bandwidth, and execution environments that
are supported.

2) Update Specifications: XenoServers update their
records in the XIS regularly. In the absence of updates,
the XIS ages information and may ultimately discard it.

3) Lookup XenoServer:Clients view the XIS as providing
an inverted file which indexes the information received
by XenoServers. That is, as a mapping from each token
that can occur in the XML specification onto a list
of XenoServers which contained it. Clients perform
queries, passing as parameters the token to query and the
acceptable range for the token’s value –for example, “to-
ken=CPUmsps, values=100-150” would cause a lookup
for XenoServers that can provide 100 to 150 ms of CPU
time per second to the task. The operation returns a
number of matches and their corresponding places in
the result stream. This interface allows clients to perform
simple searches directly (perhaps specifying a token that
represents a particular kind of execution environment)
and to perform boolean searches by making several
“lookup” requests on different tokens and combining the
results.

B. Implementation

The initial XIS implementation is a distributed storage
service optimized under the assumptions that (i) writes are
always total rewrites (ii) XenoServers arrange that there is only
ever one writer for each piece of data, (iii) reads of stale data
are always either safe or can be verified, and (iv) information
held in the XIS is for use by tools rather than humans, allowing
inelegant internal design choices like explicit versioning.

The storage service comprises a number of distributednodes
which each hold some portion of the stored information; each
node will hold a portion of the inverted file mapping from
one or more tokens on to matching XenoServers. These nodes
export the XIS interface to users interacting with it. They
communicate with one another using a separate protocol. This

design builds on that of our Pasta distributed file system, using
the same techniques for replicating information between nodes
of the XIS, and “drawing out” and caching this information to-
ward the users that are requesting it. Self-certifying names [26]
are used to ensure the authenticity of retrieved information and
to allow clients to complain to the XenoServer’s XenoCorp
about inaccurate advertisements.

The initial deployment will place XIS nodes on constituent
XenoServers – as we shall see in Section V the prototype
XenoServer can host arbitrary isolated Linux environments.
The first XenoCorp will require, as part of the XenoServer
registration process, that the server identifies a node with
which it has arranged to have its advertisement information in-
jected into the XIS. This provides an incentive for XenoServer
operators to host XIS nodes.

Of course, placing XIS nodes on XenoServers introduces the
possibility that XenoServer operators may attempt to subvert
the system – particularly if they are hosting a node which
carries information about competitor XenoServers. This can
be addressed by a variety of mechanisms, some technical and
some contractual. Firstly, the XIS implementation will look as
an ordinary task to the XenoServer; it is not in a XenoServer
owner’s interest to get a reputation for interfering with tasks.
Secondly, the same part of the inverted file will be replicated
over multiple XIS nodes. This aids access to the data and
requires a larger conspiracy to lose part of it.

IV. RESOURCEDISCOVERY SYSTEM

In Section II we introduced the three core aspects of the
platform; XenoServers which hosts tasks, clients who submit
tasks, and XenoCorps which act as trusted third parties. In
that initial setting, clients needed an out-of-band mechanism
for introduction to appropriate XenoServers. We then showed,
in Section III how the XenoServer Information Service (XIS)
provides a basic mechanism for XenoServers to publish their
functionality, resource availability, and pricing. A low-level
interface, presenting these advertisements as an inverted file,
allowed clients to perform elementary searches.

We now introduce the higher-level Resource Discovery
(RD) Systems which provide a more effective means for
selecting XenoServers. Although the RD Systems build on the
primitive operations exported by the XIS, they implement in-
ternally more intelligent searching algorithms and with clearer
scope for differentiation between competing RD Systems.

A. Interface

An RD System is responsible for performing the match-
making process between clients and XenoServers. It receives
find xenoserverqueries from the clients containing specifica-
tions of the environmental and QoS requirements from the
interface to be deployed. For instance, these requirements
could be represented using XML, as was described in Section
II-A.3.

After receiving the client’s requirements and applying the
search algorithms, the RD System suggests a number of

RD System

find_xenoservers

lookup_xenoserver

lookup_xenoserver
advertise_xenoserver
update_specifications

register_client
create_purchase_order

register_xenoserver

charge_from_purchase_order

create_session
query_xenoserver_status

XenoServer client

XenoCorp
validate_purchase_order

deploy_task

XenoServer
Information

Service

Fig. 3. XenoServer platform with XIS and RD System

suitable XenoServers to the client. This has to include infor-
mation about all suggested XenoServers’ pricing scheme, load,
location, and so on. As with the XIS, the information returned
is based on the advertisements received; clients may query the
suggested XenoServers directly to obtain a spot price.

1) Operation exported by RD System:
1) Find XenoServers:Given a resource requirement spec-

ification, the Resource Discovery System performs a
search in the XenoServer Information Service on behalf
of the client in order to find a number of suitable
XenoServers.

B. Implementation

There may be multiple such RD Systems, either for simple
competition (as exists between online search engines) or for
specialisation to particular kinds of client, XenoServer or task.
The algorithm with which the mapping is performed is entirely
dependent on the RD mechanism. For example, different RD
Systems may answer queries of the form:

� “Suggest 10 XenoServers with approximately equal
network latency to the machines 131.111.202.88 and
141.163.61.250.” This might be implemented using a
distributed multi-dimensional search algorithm.

� “Suggest pairs of XenoServers which appear to have
separate network links to 128.232.8.50”.

� “Find a XenoServer which may run a job with these
resource requirements at a total cost of£10”.

We envisage many Resource Discovery Systems being
implemented over the XenoServer foundations – as with
networked services in general, XenoServers will provide an
incremental deployment platform from which more resources
can be acquired as the service grows (or from which only a
low up-front cost is made if the service does not prosper).

There is no single platform-wide implementation of the
matching algorithms, as the co-existence of several indepen-
dent RD Systems will offer choice and diversity in resource
discovery mechanisms and charging models. Some RD Sys-
tems might provide intelligent searching capabilities – such
as finding a XenoServer that will minimize the total round-
trip time for a given set of clients, while others will offer

just basic searching functionality. Also, some RD Systems
might be configured to charge clients for using the search
mechanisms or to charge XenoServers for putting them higher
in the suggestions list. Others can offer free services.

V. X ENOSERVER CONTROL ARCHITECTURE

In Sections II–IV we have presented the core architecture of
the XenoServer Open Platform and shown how, over that, we
structure services for advertisement and resource discovery.
For the final part of this paper, we turn our attention to the
XenoServers themselves and their internal structure. We do
so at two levels. First of all, Section V-A introduces the pro-
totype XenoServer. Secondly, in Section V-B we present the
decomposition of this system into a number of components,
to extract common functionality and to aid the deployment
of XenoServers based on existing platforms for mobile agents
and code execution.

A. The Xen-based XenoServer

Figure 4 shows the general structure of our prototype
XenoServer. This is based on a low-level component, termed
the Xen hypervisor, which virtualizes the physical resources
of the machine, apportioning them between the various en-
vironments that it hosts, by creating a virtual machine for
each one. Each of these environments is called adomain, and
is isolated from the other domains in terms of security and
resource consumption. The hypervisor accounts the resource
usage that each domain makes.

Thus, unsafe and unverified tasks can only be mischievous
inside their execution domain, harming no one but the client
who instantiated them. Each domain runs an instance of a
guest operating system. These operating systems are specially
ported to operate over Xen, accessing the virtualized hardware
through appropriate device drivers. The companion paper
describes Xen and its interfaces in detail, and shows the
benefits of eschewing full virtualization of the underlying hard-
ware [3]. Currently, we have developed one guest operating
system providing a complete Linux environment, and have
two further systems in progress to provide NetBSD and Win32
environments.

There can be multiple concurrent domains running the same
guest operating system and so creating a resource-guaranteed
session on a Xen-based XenoServer corresponds to booting a
fresh domain for it.
In addition to supporting guest operating systems, Xen exports
a privileged control interface to the initial “Domain0” environ-
ment that it starts at boot-time. This domain’s role is to run
the control plane aspects of the system and, in particular, to
export the session creation, deployment, and status interfaces
seen earlier. Depending on their requirements, other domains
may host code supplied by the XenoCorps with which the
XenoServer has entered into a relationship – for instance
performing validation of credentials locally if the security
implications are deemed acceptable.

Xen
(hypervisor)

H/W (SMP x86, phy mem, enet, SCSI/IDE)

virtual
network

virtual
blockdev

virtual
x86 CPU

virtual
phy mem

Control
Plane

Software

GuestOS
(XenoLinux)

GuestOS
(XenoBSD)

GuestOS
(XenoXP)

User
Software

User
Software

User
Software

GuestOS
(XenoLinux)

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Domain0
control

interface

Domain 0 Domain 1 Domain 2 Domain 3

Fig. 4. The Structure of the Xen XenoServer

B. XenoServer Control Architecture structure

We will now introduce how the control aspects of a
XenoServer can be structured. This is motivated by two exam-
ples. Firstly, we expect that most installations of XenoServers
will co-locate groups of machines. For such clusters it is
worthwhile to aggregate the session deployment and query
interfaces to act over the cluster as a whole rather than
distinguishing each machine individually. Secondly, clients
may wish to use the platform to deploy tasks other than
complete operating system instances over Xen – for instance,
a XenoServer could host Enterprise JavaBeans (EJB) or .NET
components using existing application-server packages. Our
design reduces the effort necessary to deploy new kinds of
execution environment.

These observations lead us to introduce an additional level
of indirection between the system that ultimately hosts tasks
and the interface with which clients interact. Figure 5 illus-
trates this structure, showing a configuration in which the
deployment interface is exported by anenvironment manager
which in turn starts and manages tasks through internaltask
managementinterfaces which control particular execution en-
vironments.

The figure shows a XenoServer configuration in which one
task manager is responsible for tasks running directly over
the Xen hypervisor, and another is responsible for controlling
tasks within a particular application server that is hosted in
one of the domains.

The environment manager, if implemented as a Linux pro-
cess, could itself execute within Domain0 – perhaps over this
same Xen hypervisor, or over another in the same cluster. It is
responsible for interacting with clients during session creation
and task deployment – for instance activating the appropriate
execution environment, or selecting which particular machine
in a cluster should host a given task.

VI. CONCLUSION

In this paper we have introduced the XenoServer Open Plat-
form with a particular focus on the control-plane aspects of its
architecture. Only a core part of this must be fixed across the
system; the basic interfaces presented in Section II to enable
the exchange of security credentials, charging information, and

Xen (hypervisor)

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Task
management

GuestOS
(XenoLinux)

Xeno-Aware
Device Drivers

GuestOS
(XenoLinux)

Application
server

Xeno-Aware
Device Drivers

Task
manage-

ment

Task Task

Environment
manager

create_session

register_xenoserver
validate_purchase_order

charge_from_purchase_order

query_xenoserver_status

deploy_task

Fig. 5. The environment manager

deployment functions. At this level we aim to specify only
the minimum that is required; decisions on charging policies
are left to the individual XenoCorps and decisions on task
execution formats are deferred to the individual XenoServers.
In both cases this promotes scalability, flexibility, robustness,
and competition. We introduced one way of building on these
foundations in Sections III–V.

Looking beyond these facilities, many other components
are desirable for a full-service public platform. We have not
discussed our ideas about data storage and replication – for
example how a XenoServer aquires the code and data from
which to instantiate a new task or a new kind of execution
environment; techniques for secure boot are of interest here.
Similarly, we have not discussed how clients name their
deployed tasks, or how they ensure that XenoServers adhere
to their contracts. Broadly, as with the XIS and resource dis-
covery services, we consider these to be components that can
and should be implemented over the core XenoServer Open
Platform – recent research has had no shortage of innovative
schemes for solving such problems; what it has lacked is
the global substrate that will allow them to be evaluated and
deployed “in the large”. This is what the XenoServer project is
providing. Please contact us if you would like to be involved
with the initial public deployment of the XenoServer Open
Platform.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable comments while preparing the final version of this
paper. Also, we would like to thank Jon Crowcroft, Tim
Deegan, Alex Ho, Sugih Jamin and Andrew Warfield for their
valuable suggestions, as well as Marconi PLC for the financial
support of Evangelos Kotsovinos’ research.

REFERENCES

[1] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford, “Xenoservers:
accounted execution of untrusted code,” inProceedings of the fifth
Workshop on Hot Topics in Operating Systems (HotOS-VII), 1999.

[2] K. A. Fraser, S. M. Hand, T. L. Harris, I. M. Leslie, and I. A. Pratt,
“The Xenoserver computing infrastructure,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-552, Jan. 2003.
[Online]. Available: http://www.cl.cam.ac.uk/TechReports/UCAM-CL-
TR-552.pdf

[3] P. R. Barham, B. Dragovic, K. A. Fraser, S. M. Hand, T. L. Harris,
A. C. Ho, E. Kotsovinos, A. V. Madhavapeddy, R. Neugebauer, I. A.
Pratt, and A. K. Warfield, “Xen 2002,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-553, Jan. 2003.
[Online]. Available: http://www.cl.cam.ac.uk/TechReports/UCAM-CL-
TR-553.pdf

[4] I. A. Pratt, T. Moreton, and T. L. Harris, “Storage, mutability and naming
in pasta,” in2002 International Workshop on Peer-to-Peer Computing,
Apr. 2002.

[5] B. Dragovic, S. Hand, T. Harris, E. Kotsovinos, and A. Twigg, “Manag-
ing trust and reputation in the XenoServer Open Platform,” Jan. 2003,
submitted for publication.

[6] J. N. I. Foster, C. Kesselman and S. Tuecke, “The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration,” The Global Grid Forum, Tech. Rep., Jan. 2002.

[7] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115–128, Summer
1997. [Online]. Available: citeseer.nj.nec.com/foster96globu.html

[8] M. C. Ferris, M. P. Mesnier, and J. J. Mor, “NEOS and Condor:
solving optimization problems over the internet,”ACM Transactions on
Mathematical Software (TOMS), vol. 26, no. 1, pp. 1–18, Mar. 2000.

[9] G. E. Fagg, K. Moore, J. J. Dongarra, and A. Geist, “Scalable networked
information processing environment (SNIPE),” inProceedings of the
1997 ACM/IEEE Conference on Supercomputing (CDROM). ACM
Press, 1997, pp. 1–13.

[10] M. Neary, A. Phipps, S. Richman, and P. Cappello, “Javelin 2.0: Java-
based parallel computing on the internet,” inProceedings of European
Parallel Computing Conference (Euro-Par 2000). IEEE Computer
Society Press, August 2000.

[11] M. van Steen, P. Homburg, and A. S. Tanenbaum, “Globe: A wide-area
distributed system,”IEEE Concurrency, vol. 7, no. 1, pp. 70–78, March
1995.

[12] L. Peterson, D. Culler, and T. Anderson, “PlanetLab: A Testbed for
Developing and Deploying Network Services,” June 2002, technical
white paper, available at http://www.planet-lab.org/pubs/vision.pdf.

[13] A. Barmouta and R. Buyya, “GridBank: A Grid Accounting Services
Architecture (GASA) for distributed systems sharing and integration,”
2002, technical white paper, University of Melbourne.

[14] T. Roscoe and B. Lyles, “Distributed Computing without DPEs: Design
Considerations for Public Computing Platforms,” inProceedings of the
9th ACM SIGOPS European Workshop, Kolding, Denmark, September
17-20 2000.

[15] “VMware Inc. The VMWare virtual platform. Technical white paper,”
1999. [Online]. Available: http://cl.cam.ac.uk/ ek247/vmware.pdf

[16] “Connectix Corp. The technology of Virtual PC,” 2000, technical
white paper, available from http://www.connectix.com/ downloadcen-
ter/pdf/vpcwwp/vpcw overviewwpsep1301.pdf.

[17] A. Awadallah and M. Rosenblum, “The vMatrix: A network of virtual
machine monitors for dynamic content distribution,” inProceedings of
the 7th International Workshop on Web Content Caching and Distribu-
tion (WCW 2002), Aug. 2002.

[18] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski,
D. Becker, S. Eggers, and C. Chambers, “Extensibility, safety and
performance in the SPIN operating system,” inSymposium on Operating
Systems Principles (SOSP ’95), ser. Operating Systems Review, vol.
29(5), Dec. 1995, pp. 267–284. [Online].

[19] G. C. Necula, “Proof-carrying code,” inConference Record
of POPL ’97: The 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Paris,
France, 15–17 Jan. 1997, pp. 106–119. [Online]. Available:
http://www.cs.cmu.edu/afs/cs/usr/necula/papers/popl97.ps

[20] A. Jeffrey and I. Wakeman, “A survey of semantic techniques for active
networks,” Nov. 1997, available from the SafetyNet Project web site,
http://www.cogs.susx.ac.uk/projects/safetynet/.

[21] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman,
K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,
and J. White, “MASIF: The OMG Mobile Agent System Interoperability
Facility,” in Proceedings of the 2nd International Workshop on Mobile
Agents, ser. Lecture Notes in Computer Science, K. Rothermel and
F. Hohl, Eds., vol. 1477. Springer-Verlag: Heidelberg, Germany, 1998,
pp. 50–67.

[22] Ninghui Li and John C. Mitchell and William H. Winsborough, “Design
of a Role-Based Trust-Management Framework,” inProceedings of the
2002 IEEE Symposium on Security and Privacy, May 2002.

[23] D. Fallside, “XML Schema Part 0: Primer,” May 2001, w3C
Recommendation, World Wide Web Consortium. Available at
http://www.w3.org/TR/xmlschema-0/.

[24] D. Chaum, A. Fiat, and M. Naor, “Untraceable Electronic Cash
(Extended Abstract),” in Advances in Cryptology – CRYPTO
’88 Proceedings, ser. Lecture Notes in Computer Science, vol.
403. Springer-Verlag, June 1989, pp. 319–327. [Online]. Available:
citeseer.nj.nec.com/chaum89untraceable.html

[25] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
“Grid information services for distributed resource sharing,”
in Proceedings of the 10th IEEE Symposium on High
Performance Distributed Computing, Aug. 2001. [Online]. Available:
citeseer.nj.nec.com/czajkowski01grid.html

[26] K. Fu, M. F. Kaashoek, and D. Mazieres, “Fast and secure distributed
read-only file system,”Computer Systems, vol. 20, no. 1, pp. 1–24, 2002.

