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ABSTRACT

Peer-to-peer file-sharing networks are currently receiving much at-
tention as a means of sharing and distributing information. How-
ever, as recent experience with P2P networks such as Gnutella
shows, the anonymous, open nature of these networks offers an al-
most ideal environment for the spread of self-replicating inauthentic
files.

We describe an algorithm to decrease the number of downloads
of inauthentic files in a peer-to-peer file-sharing network that as-
signseach peer auniqueglobal reputation val ue, based on the peer’s
history of uploads. We present a distributed and secure method to
compute global reputation values, based on Power iteration. By
having peers use these global reputation valuesto choosethe peers
from whom they download, the network effectively identifies mali-
cious peers and isolates them from the network.

In simulations, this reputation system has been shown to signifi-
cantly decreasethe number of inauthenticfiles onthe network, even
under avariety of conditionswhere malicious peerscooperatein an
attempt to deliberately subvert the system.

Categories and Subject Descriptors

C.2.4[Computer-Communication Networks]: Distributed Systems—
Distributed applications; H.3.3 [Information Systems]: Informa-
tion Storage and Retrieval | nformation Search and Retrieval [ Selection
process|; H.2.7 [Information Systems]: Database Management-
Database Administration[ Security, integrity and protection]

General Terms
P2P

Keywords
Peer-to-Peer, trust, distributed eigenvector computation

1. INTRODUCTION

Peer-to-peer file-sharing networks have many benefits over stan-
dard client-server approaches to data distribution, including in-
creased robustness, scal ahility, and diversity of availabledata. How-
ever, the open and anonymous nature of these networks leadsto a
complete lack of accountability for the content a peer puts on the
network, opening the door to abusesof these networksby malicious
peers.

Attacks by anonymous malicious peers have been observed on
today’s popular peer-to-peer networks. For example, malicious
Copyright is held by the author/owner(s).

WWW2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

Mario T. Schlosser
Stanford University

schloss@db.stanford.edu

Hector Garcia-Molina
Stanford University

hector@db.stanford.edu

users have used these networks to introduce viruses such as the
VBS.Gnutella worm, which spreads by making a copy of itself
in a peer's Gnutella program directory and then modifying the
Gnutellaini file to alow sharing of .vbsfiles[11]. Far more com-
mon have been inauthentic file attacks, wherein malicious peers
respond to virtually any query providing “decoy files’ that are
tampered-with or do not work.

It hasbeen suggested that the future devel opment of P2P systems
will depend largely on the availability of novel methods for ensur-
ing that peers obtain reliable information on the quality of resources
they arereceiving [2]. In this context, identifying malicious peers
as sources of inauthentic or bad quality files is a method superior
to attempting to track down inauthentic files themselves (a method
implemented on the KaZaA P2P network) - since malicious peers
can easily generateavirtually unlimited number of inauthentic files
if they are not banned from participating in the network. We present
such amethod wherein each peer : is assigned aunique global rep-
utation valuethat reflectsthe experiencesof all peersin the network
with peer ¢. In our approach, al peersin the network participatein
computingthesevaluesin adistributed and node-symmetric manner
with minimal overhead on the network. Furthermore, we describe
how to ensure the security of the computations, minimizing the
probability that malicious peersin the system can lie to their own
benefit. And finally, we show how to use these values to identify
peersthat provide material deemed inappropriate by the users of a
peer-to-peer network, and effectively isolatethem from the network.

2. DESIGN CONSIDERATIONS

There are six issues that are important to address in any P2P
reputation system.

1. Thesystem should beself-policing. That is, the shared ethics
of the user population are defined and enforced by the peers
themselves and not by some central authority.

2. The system should maintain anonymity. That is, apeer’srep-
utation shoul d be associ ated with an opaqueidentifier (suchas
the peer’'s Gnutella username) rather than with an externally
associated identity (such as a peer’s | P address).

3. The system should not assign any profit to newcomers. That
is, reputation should be obtained by consistent good behavior
through several transactions, and it should not be advanta-
geous for malicious peers with poor reputations to contin-
uously change their opaque identifiers to obtain newcomers
status.

4. The system should have minimal overheadin terms of com-
putation, infrastructure, storage, and message complexity.



5. Thesystem should berobust to malicious collectives of peers
who know one another and attempt to collectively subvert the
system.

3. REPUTATION SYSTEMS

An important example of successful reputation management is
the online auction system eBay [4]. In eBay’s reputation system,
buyersand sellers canrate each other after each transaction, and the
overall reputation of a participant is the sum of these ratings over
the last 6 months. This system relies on a centralized system to
store and manage trust ratings.

In adistributed environment, peers may still rate each other after
each transaction, asin the eBay system. For example, each time
peer ¢ downloads a file from peer j, it may rate the transaction
as positive (+1) or negative (-1). Some reasons why peer ¢ may
rate a download as negative if the file downloaded isinauthentic or
tampered with, or if the download is interrupted. Likein the eBay
model, we may define a local reputation value s;; as the sum of
theratings of theindividual transactionsthat peer : has downloaded
from peer ;.

Equivalently, each peer ¢ can store the number satisfactory trans-
actionsit has had with peer j, sat(s, ) and the number of unsatis-
factory transactionsit has had with peer j, unsat(s, j). Then, s;;
is defined:

sij = sat(1, §) — unsat(s, 5) Q)

Previous work in P2P reputation systems [2] [1] has al been
based on similar notions of local reputation values. Reference
[5] considers more complex pieces of information, yet does not
specify any algorithmson how to actually computereputation val ues
of peers. The challenge for reputation systems in a distributed
environment is how to aggregate the local reputation ratings s;;
without a centralized storage and management facility. While each
of the previous systems cited above addresses this issue, each of
the previous systems proposed suffers from one of two drawbacks.
Either it aggregatesthe ratings of only afew peersand doesn’t get a
wide view about a peer’s reputation, or it aggregatesthe ratings of
all the peersand congeststhe network with system messagesasking
for each peer'slocal reputation values at every query.

We present here a reputation system that aggregates the local
reputation ratings of al of the users in a natura manner, with
minimal overhead in terms of message complexity. Our approach
is based on the notion of transitive trust: A peer ¢ will have a
high opinion of those peers who have provided it authentic files.
Moreover, peer ¢ islikely to trust the opinions of those peers, since
peers who are honest about the files they provide are also likely to
be honest in reporting their local trust assessments.

We show that the idea of transitive trust leads to a system where
global reputation values correspondto theleft principal eigenvector
of amatrix of normalized local reputation values. We show how to
perform this eigenvector computation in a distributed manner with
just afew lines of code, where the message complexity is provably
bounded and empirically low. Most importantly, we show that this
systemishighly effectivein decreasing the number of unsatisfactory
downloads, even when up to 70% of the peersin the network form
amalicious collective in an attempt to subvert the system.

4. EIGENREP

In this section, we describe a system where the global reputation
of each peer 1 is given by the local reputation values assigned to
peer : by other peers, weighted by the global reputations of the as-
signing peers. In Section 4.1, we show how to normalize the local

reputation valuesin amanner that leads to an elegant probabilistic
interpretation and an efficient algorithm for aggregating these val-
ues. In Section 4.2, we discuss how to aggregate the normalized
reputation valuesin a sensible manner. In Section 4.3, we discuss
the probabilistic interpretation of the local and global reputation
values. |n Section 4.4 through Section 4.6, we present an algorithm
for computing the global reputation values. And in Section 6, we
discuss how to use the global reputation values.

4.1 Normalizing Local Reputation Values

In order to aggregate local reputation values, it is necessary to
normalize them in some manner. Otherwise, malicious peers can
assign arbitrarily high local reputation values to other malicious
peers, and arbitrarily low local reputation valuesto good peers, eas-
ily subverting the system. We define anormalized local reputation
value, ¢;;, asfollows:

max(s;j, 0)
Cij = =——————
J Z] max(sij;,0)

This ensures that all values will be between 0 and 1. (Notice
that if 3°, max(s:;) = 0, then ci; is undefined. We address this
case in Section 4.4.) There are some drawbacks to normalizing
in this manner. For one, the normalized reputation values do not
distinguish between a peer with whom peer ¢ did not interact and
a peer with whom peer i has had poor experience. Also, thesec;
values arerelative, and there is no absolute interpretation. That is,
if ci; = cix, weknow that peer j hasthe same reputation as peer &
in the eyes of peer 7, but we don’t know if both of them are very
reputable, or if both of them are mediocre. However, we choose
to normalize the local reputation valuesin this manner because it
leads to an elegant probabilistic model, and allows us to perform
the computation that we describe below without renormalizing the
global reputation values at each iteration (which is prohibitively
costly in alarge distributed environment). Furthermore, we are till
able to achieve substantially good results despite the drawbacks
mentioned above.

@

4.2 Aggregating Local Reputation Values

We wishto aggregatethe normalizedlocal trust values. A natural
way to do this in a distributed environment is for peer ¢ to ask its
acquai ntances about their opinionsabout other peers. It would make
senseto weight their opinions by the trust peer ¢ placesin them:

tig = Z CijCik ©)

J

where ¢, representsthe trust that peer : placesin peer £ based on
asking hisfriends.

We can write this in matrix notation: If we define C' to be the
matrix [c;;] and {; to be vector containing the values tx, then
f; = C"¢. (Notethat 3" t;; = 1 asdesired.)

Thisisauseful way to have each peer gain aview of the network
that is wider than his own experience. However, the reputation
values stored by peer ¢ still reflect only the experience of peer @
and his acquantainces. In order to get a wider view, peer ¢ may
wish to ask his friends’ friends (t = (CT)?¢;). If he continues
in this manner, (t = (C7)"¢;), he will have a complete view of
the network after » = large iterations (under the assumptionsthat
C isirreducible and aperiodic, which we guaranteein practice and
addressin Section 4.5).

Fortunately, if » islarge, the trust vector i; will convergeto the
same vector for every peer i. Namely, it will converge to the left
principal eigenvector of C. In other words, #'is aglobal reputation



710 — &
repeat
1) CTi(k);
§ = [t HD —F|);

until § < ¢;

Algorithm 1: Simple non-distributed algorithm

vector in thismodel. Its elements, ¢;, quantify how much trust the
system as awhole places peer ;.

4.3 Probabilistic Interpretation

Itisuseful to notethat there exists astraightforward probabilistic
interpretation of this method, similar to the Random Surfer model
of [7]. If an agent were searching for reputable peers, it can crawl
the network using the following rule: at each peer ¢, it will crawl to
peer j with probability ¢;;. After crawling for awhileinthismanner,
the agent is more likely to be at reputable peers than unreputable
peers. The stationary distribution of the Markov chain defined by
the normalized local reputation matrix C' is our global reputation
vector i.

4.4 Non-distributed Algorithm

In this section, we describe the basic trust algorithm, ignoring
for now the distributed nature of the peer-to-peer network. That is,
we assume that some central server knows all the ¢;; values and
performs the computation. In Section 4.6, we describe how the
computation may be performed in a distributed environment.

We simply wish to compute ¥ = (C7)"¢, for n =large, where
we define € to be the m-vector representing a uniform probability
distribution over all m peers, e, = 1/m. (In Section 4.2, we said
wewish to compute i = (C7)"¢;, where; isthe normalized local
reputation vector of somepeer . However, sincethey both converge
to the principal left eigenvector of C', we may use € instead.)

At the most basic level, the algorithm would proceed asin Algo-
rithm 1.

45 Practical |ssues

There are three practical issues that are not addressed by this
simple algorithm: a priori notions of trust, inactive peers, and
malicious collectives.

A priori notions of trust. Often, there are some peers in the
network that are known to be trustworthy. For example, the first
few peers to join a network are often known to be trustworthy,
since malicious peers generally don’t enter a peer-to-peer network
until later in the network’s development. It would be useful to
incorporate such notions of trust in anatural and seamless manner.
We do this by defining some distribution 7 over pre-trusted peers.
(For example, if some set of peers P are known to be trusted, we
may definep; = 1/|P|if ¢ € P, and p; = 0 otherwise.) We use
this distribution 7 in three ways. First of al, in the presence of
malicious peers, ¥ = (C'T)"§ will generally converge faster than
{=(CT)"& soweusej7asour start vector. We describethe other
two waysto usethis distribution 7 below.

Inactive Peers. If peer : doesn’t download from anybody else, or
if it assignsazero scoreto all other peers, ¢;; from Equation 1 will
be undefined. Inthis case, weset ¢;; = p;. Soweredefinec,; as:

ma.r(s,j,O) . . .
ciy =< i max(siy) if32, max(siy, 0) # 0;
Dy otherwise

4

That is, if peer ¢ doesn’t know anybody, or doesn't trust anybody,
he will chooseto trust the pre-trusted peers.

o =,
repeat
D = T
A+ — (1- a)t_(k‘H) + ap;
§ = ||t(k+1) _ t(k)||;

until § < ¢;

Algorithm 2: Non-distributed algorithm

Malicious Collectives. In peer-to-peer networks, there is poten-
tial for malicious collectives to form. A malicious collective is a
group of malicious peerswho know each other, who give each other
high local reputation valuesand give al other peerslow local trust
values in an attempt to subvert the system and gain high global
reputation values. We addressthis issue by taking

) = (1= )T TP 4 ap (5)

where ¢ is some constant less than 1. Thisis equivalent to setting
the opinion vector for all peersto beé; = (1 — a)é; + ap, breaking
collectives by having each peer place at least some trust in the
peers P that are not part of a collective. Probabilisticaly, thisis
equivalent to saying that the agent that is crawling the network
by the probabilistic model given in Section 4 is less likely to get
stuck crawling amalicious collective, becauseat each step, hehasa
certain probability of crawling to apre-trusted peer. Noticethat this
also makesthe matrix C isirreducible and aperiodic, guaranteeing
that the computation will converge.
The modified algorithm is given in Algorithm 2.

4.6 Distributed Algorithm

Here, we present an algorithm where al peersin the network
cooperateto computeand store the global trust vector, and the com-
putation, storage, and message overhead for each peer areminimal.

In adistributed environment, thefirst challengethat arisesis how
to store C' and 7. In previous sections, we suggested that each peer
could storeitslocal trust vector ¢;. Here, we also suggest that each
peer storeits own global trust value ¢;. (For presentation purposes,
weignoreissuesof security for the moment and allow peersto store
their own trust values. We addressissues of security in Section 5.)

In fact, each peer can computeit’s own global trust value:

tEkH) =(1- a)(clit(lk) +...4 cmt(nk)) ~+ ap; (6)
Inspection will show that this is the component-wise version of
{5+ = (1 — a)CT#*® 4 4. Notice that, since peer i has had
limited interaction with other peers, many of the components in
equation 6 will be zero. Thislendsitself to the simple distributed
algorithm shown in Algorithm 3. It is interesting to note two
things here. First of all, only the pre-trusted peers need to know
their p;. Thismeansthat pre-trusted peers may remain anonymous;
nobody else needs to know that they are pre-trusted®. Therefore,
the pre-trusted peers maintain anonymity as pre-trusted peers.

Secondly, in most P2P networks, each peer haslimited interaction
with other peers. There are two benefitsto this. First, the compu-
tation tEkH) =(1- a)(clit(lk) + chtgk) +... 4+ cmt(nk)) + ap;
is not intensive, since most ¢;; are zero. Second, the number of
messages passed is small, since A; and B; are small. In the case
whereanetwork isfull of heavily active peers, we can enforcethese
benefits by limiting the number of local trust values ¢;; that each
peer can report.

! Recall that, for the moment, we assumethat peers are honest and
may report their own trust values, including whether or not they are
apre-trusted peer. The secureversion is presented in Section 5



Definitions:
e A;: set of peerswhich have downloaded files from peer ¢
e B;: set of peersfrom which peer ¢ has downloaded files

Algorithm:
Each peer 7 do {
Query all peers; € A, for tgo) =p;;
repeat
Computet\* ) = (1—a)(criti™ +eaitd +. . 4 enitl )+
ap:;
Send c;; 1" to all peers; € B;;
Compute s = [t — ¢#));
Wait for all peers;j € A; to return c;;t(**";
until § < €.;

}

Algorithm 3: Distributed Algorithm incorporating a priori notions
of trust
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Figure 1: Algorithm convergence

4.7 Algorithm Complexity

The complexity of the agorithm is bounded in two ways. First,
the algorithm converges fast: For a network of 1000 peers after
100 query cycles (refer to Section 7.1 for a description of how
we simulate our system), Figure 1 depicts the residual ||¢(*+%) —
#*)||,. Clearly, the agorithm has converged after less than 10
iterations, i.e., the computed global reputation valuesdo not change
significantly any more after a low number of iterations. In the
distributed version of our algorithms, this correspondsto less than
10 exchangesof updated reputation values among peers.

Second, we can specifically limit the number of local reputation
valuesthat apeer reports. In the modified version of our algorithm,
each peer reports a subset of its total set of local reputation values.
Preliminary simulations have shown this scheme to perform com-
parably well asthe algorithm presented here, where peersreport all
of their local reputation values.

5. SECURE ALGORITHM

In the algorithm presented in the previous section, each peer i
computes and reports its own trust value ¢;. Malicious peers can
easily report false trust values, subverting the system.

We combat this by implementing two basic ideas. Firdt, the
current trust value of a peer must not be computed by and reside at
the peer itself, whereit can easily become subject to manipulation.

pos; = {{1D @

OO A
O O

Figure 2: Two-dimensional CAN hash space

Thus, we have a different peer in the network compute the trust
value of apeer. Second, it will bein the interest of malicious peers
to return wrong results when they are supposed to compute any
peer's trust value. Therefore, the trust value of one peer in the
network will be computed by more than one other peer.

In the secure version of the distributed trust computation algo-
rithm, M peers (dubbed 'mother peers' of a peer ¢) compute the
trust value of a peer :. If a peer needs the trust value of peer s, it
can query al M mother peers for it. A majority vote on the trust
valuethen settlesconflictsarising from anumber of maliciouspeers
being among the mother peers and presenting faulty trust values as
opposed to the correct one presented by the non-malicious mother
peers.

To assign mother peers, we use a distributed hash table (DHT),
such as CAN [8] or Chord. DHTSs use a hash function to deter-
ministically map keys such as file names into points in a logical
coordinate space. At any time, the coordinate spaceis partitioned
dynamically among the peers in the system such that every peer
covers aregion in the coordinate space. Peers are responsible for
storing (key, value) pairs the keys of which are hashed into a point
that is located within their region.

In our approach, a peer’s mother is located by hashing a unique
ID of the peer, such asits IP address and TCP port, into a point in
the DHT hash space. The peer which currently coversthis point as
part of its DHT region is appointed as the mother of that peer. All
peers in the system which know the unique ID of a peer can thus
locate its mother peer. We can modify our initial algorithm such
that it can be executed by mother peers.

Asanexample, consider the CAN inFigure 2. Peer 1'suniquelD
1 D1 ismappedinto pointscovered by peers2, 3and 6, respectively,
by hash functions k1, k2 and k3. Thus, these peers become peer
1's mother peers.

To cope with the inherent dynamics of a P2P system, we rely
on the robustness of a well-designed DHT. For example, when
a mother peer leaves the system, it passes on its state (i.e., trust
values or ongoing trust computations) to its neighbor peer in the
DHT coordinate space. DHTs also introduce replication of datato
prevent loss of data (in this case, trust values) in casea mother peer
fails.

5.1 Algorithm Description

In the following, we describe the secure algorithm to compute
a global trust vector. We will use these definitions: Each peer
has a number M of mother peers, whose DHT coordinates are
determined by applying a set of one-way secure hash functions
ho, h1,... ,har—1 to the peer's unique identifier. pos; are the



coordinates of peer ¢ in the hash space. Since each peer also actsas
amother peer, it isassigned a set of daughters D ; - the set contains
the indexes of peers whose trust value computation is covered by
the peer. Asamother peer, peer ¢ also maintains the opinion vector
cy Of its daughter peer d (where d € D) at some point in the
algorithm. Also, peer ¢ will learn A which is the set of peers
which downloaded files from its daughter peer d: It will receive
trust assessmentsfrom these peers referring to its daughter peer d.
Finally, peer « will get to know the set B which denotes the set
of peers which its daughter peer d downloaded files from: Upon
kicking off aglobal trust value computation, its daughter peer d is
supposedto submit its trust assessmentson other peersto its mother
peer, providing the mother peer with By.

foreach peer ¢ do
Submit local trust ratings ¢; to all mother peers at positions
hm(posi),m=1... M —1; ‘
Collect local trust ratings ¢; and sets of acquaintances B ; of
daughter peersd € Dy;
Submit daughter d’s local trust ratings cq; to mother peers
hm(posa)ym=1...M —1,Vj € By;
Collect acquaintances Ay of daughter peers;
foreach daughter peer d € D; do
Query al peerS] S AZZ for C]dttrusted];
repeat
Compute [t = (1 —a)(crat’™ +coatt® +. . .+
Cndt(nk)) + attrustedd;
Send ¢4t ! toall peers; € BY;
Wait for al peersj € A? toreturn cjdtgk“);

(k+1) _
d

until |¢ 1P < e

end
end

Algorithm 4: Secure algorithm

Upsides of the secure algorithm in terms of increased security
and reliability include:

Anonymity. It is not possible for apeer at a specific coordinate
to find out which peer ID exactly it computesthe trust for - hence
malicious peers cannot increase the trust of other malicious peers.

Randomization. Peers that enter the system cannot select at
which coordinates in the hash space they want to be located (this
should be a property of a well-designed DHT) - hence it is not
possible for a peer to, for example, compute the hash value of its
own ID and locate itself at precisely this position in the hash space
to be able to computeits own trust value.

Redundancy. Several mothers compute the trust value for one
peer. To assign several mothers to a peer, we use several multi-
dimensiona hash functions. Peersin the system still take over a
particular region in the coordinate space, yet how there are sev-
eral coordinate spaces, each of which is created by one multi-
dimensional hash function. A peer’suniquelD isthusmappedinto
adifferent point in every multi-dimensional hash space.

6. USINGGLOBAL REPUTATIONVALUES

Thereare two clear waysto use these global reputation valuesin
a peer-to-peer system. The first is to isolate malicious peers from
the network by biasing users to download from reputable peers.
The second is to incent peersto share files by rewarding reputable
peers.

Isolating MaliciousPeers. When peer i issuesaquery, the system
may usethe reputation valuest ; to biasthe user towards downl oad-

ing from morereputable peers. Oneway to do this would beto have
each peer download from themost highly trusted peer who responds
to itsquery. However, suchapolicy leadsto the most highly trusted
peers being overloaded, as shown in Section 7. Furthermore, since
trust isbuilt upon sharing authenticfiles, this policy doesnot enable
new peersto build up trust in the system.

A different strategy is to select the peers from whom to down-
load probabilistically based on their trust values. In particular, we
can make type probability that a peer will download a file from
responding peer 5 be directly proportiona to the reputation value
t; of peer j.

Such a palicy limits the number of unsatisfactory downloadson
the network, while balancing the load in the network and allowing
newcomers to build trust. The experiments in Section 7 validate
this.

Incenting Freeridersto Share. Secondly, the system may reward
peerswith high reputation values. For example, reputable peersmay
be rewarded with increased connectivity to other reputable peers, or
greater bandwidth. Rewarding reputable peers hasatwofold effect.
It gives users an incentive to share files, since a good trust rating
may only be achieved by sharing authentic files. In the current
Gnutellanetwork, lessthan 7% of the peersare responsiblefor over
50% of thefiles, and as many as 25% of peerson the network share
no filesat all [10]. Incentives based on trust ratings should reduce
thenumber of freeriders on peer-to-peer networks. Also, rewarding
highly trusted peersgives non-maliciouspeersanincentiveto del ete
inauthentic files that they may have accidentally downloaded from
malicious peers, actively keeping the network tidy. This makes it
more difficult for inauthentic files to replicate in the system.

7. EXPERIMENTS

In this section, we will assessthe performance of our scheme as
compared to a P2P network where no trust model isimplemented.
We shall demonstrate the scheme’s performance under a variety of
threat models.

7.1 Simulation

Our findings are based on simulations of a P2P network model
which we shall explain briefly in the following.

Network model. We consider atypical P2P network: Intercon-
nected, file-sharing peersare ableto issuequeriesfor files, peerscan
respond to queries, and files can be transferred between two peers
to conclude a search process. When a query is issued by a peer, it
is propagated by broadcast with hop-count horizon throughout the
network (in the usual Gnutellaway), peerswhich receive the query
forward it and check if they are able to respondto it. We intercon-
nect peers by a power-law network, atype of network prevalentin
real-world P2P networks[9].

Nodemodel. Our network consistsof good nodes(normal nodes,
participating in the network to download and upload files) and
malicious nodes (adversarial nodes, participating in the network
to undermine its performance). In our experiments, we consider
different threat models, where athreat model describesthe behavior
of amaliciouspeer in the network. Threat modelswill be described
in more detail later on. Note also that, based on the considerations
in Section 4.5, some good nodes in the network are appointed as
highly trusted nodes.

Content distribution model. Interactions between peers —i.e,,
which queries are issued and which queries are answered by given
peers — are computed based on a probabilistic content distribution
model. Thedetailedmodel will not be describedhere, itispresented
in [6]. Briefly, peers are assumed to be interested in a subset of
the total available content in the network, i.e., each peer initially



picks a number of content categories and sharesfiles only in these
categories. Reference [3] has shown that files shared in a P2P
network are often clustered by content categories. Also, we assume
that within one content category files with different popularities
exist, governed by aZipf distribution. When our simul ator generates
aquery, it does not generate a search string. Instead, it generates
the category and rank (or popularity) of thefile that will satisfy the
query. The category and rank are based on Zipf distributions. Each
peer that receives the query checksif it supports the category and
if it sharesthefile. The latter is determined probabilistically: No
distinct files are modelled, yet the probability of a query hit at a
peer is computed based on the number of files the peer stores and
the rank of thefile that is searched for, i.e., peers are more likely
to share popular files, even if they do not have alot of filesin the
category searched for. The number of files shared by peers and
other distributions used in the model are taken from measurements
in real-world P2P networks[10].

Simulation execution. The simulation of a network proceedsin
simulation cycles: Each simulation cycleis subdividedinto a num-
ber of query cycles. In each query cycle, a peer : in the network
may be actively issuing a query, inactive, or even down and not
responding to queries passing by. Upon issuing a query, a peer
waits for incoming responses, selects a download source among
those nodes that responded and starts downloading the file. The
latter two steps are repeated until a peer has properly received a
good copy of the file that it has been looking for2. Upon the con-
clusion of each simulation cycle, theglobal trust value computation
iskicked off. Statistics are collected at each node, in particular, we
are interested in the number of authentic and inauthentic up- and
downloads of each node. Each experiment is run several times and
theresults of all runs are averaged. We run an experiment until we
see convergenceto a steady state (to be defined in the descriptions
of the experiments), initial transient states are excluded from the
data.

Thebase settingsthat apply for most of the experiments are sum-
marized in Table 1. The settings represent afairly small network to
make our simulations tractable. However, we have experimented
with larger networks in some instances and our conclusions con-
tinue to hold. That is, schemesthat do well in a small setting, do
proportionately aswell as the network is scaled up. Also note that
our settings describe a pessimistic scenario with a powerful adver-
sary: Malicious peers connect to the most highly connected peers
when joining the network (see Section 7.3), they respond to the top
20% of queries received and thus have alarge bandwidth, they are
able to communicate among themselvesin most of our threat mod-
els, and they make up a significant fraction of the network in most
of our experiments. Yet, our experiments indicate that our scheme
workswell in this hostile a scenario, and thuswill alsowork in less
hostile environments.

Asmetrics, weare particularly interestedin the number of inauthen-
tic file downloads versus the number of authentic file downloads:
If the computed global trust values accurately reflect each peer’'s
actual behavior, the number of inauthentic file downloads should be
minimized.

Before we consider the strengths of our scheme in suppressing
inauthentic downloadsin a P2P network, we examineif it leadsto
unwanted load imbalance in the network. In the following section,
we also give a precise definition on how we use global trust values

2In Section 7.2 we will consider two different ways of choosing
download sources from those nodes that respond to a query and
comparetheir performancein one of our experiments.

@ Random download source selection B Deterministic trust-based download source selection
0.8 4

0.7 4

0.6 4

Peer load share
o o o o
N w -~ (52

o

LI IR AN,
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Peer

o

Figure 3: Load distribution in anetwork using deterministic down-
load source selection versus a non-trust based network. The load
distribution isheavily skewed, peer 2 will eventually accumulateall
trust in the network.
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Figure 4: Load distribution in a network using probabilistic down-
load source selection versus a non-trust based network. The load
distribution does not deviate too much from the load distribution in
a network based on random, non-trust based download source se-
lection and is thus close to the natural 1oad distribution in anormal
Gnutella network.

in downloading files.

7.2 Load Distribution in a Trust-based Net-
wor k

In P2P networks, anatural 1oad distributionisestablished by peers
with more content and higher bandwidth being able to respond to
more queries and thus having a higher likelihood of being chosen
asdownload sourcefor afiletransfer. In our scheme, ahigh global
trust ranking of apeer additionally contributesto apeer’slikelihood
of being chosenasdownload source. Possibly, thismight lead apeer
into avicious circle of accumulating trust by responding to many
queries, thusbeing chosen even morefrequently asdownl oad source
inthefuture, thusaccumulating evenmoretrust. Inanon-trust based
system, this situation does not occur: From responding peers, a
peer usually is randomly picked and selected as download source,
somewhat balancing the load in the network. In the following, we
are interested in integrating load-distributing randomization into
our scheme. In the experiment in Figures 3 and 4, we study the
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# of good peers

# of malicious peers

# of pre-trusted peers

# of initial neighborsof good peers

# of initial neighbors of malicious peers
# of initial neighborsof good peers
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7

Content Distribution || # of distinct filesat good peer ¢

filesmalicious peersrespond to

files pre-trusted peers respond to

set of content categories supported by good peer ¢
# of distinct filesat good peer ¢ in category j

top % of queriesfor most popular categoriesand | 20%
top % of queriesfor most popular categoriesand | 5%

% of time peer ¢ is up and processing queries
% of time pre-trusted peer ¢ isup and processing | 1

file distribution in [10]

Zipf distribution over 20 content categories
uniform random distribution over peer i's
total number of distinct files

uniform random distribution over [0%, 100%]

queries
% of up-time good peer ¢ issues queries uniform random distribution over [0%, 50%]
% of up-time pre-trusted peer i issues queries 1
Peer Behavior % of download requestsin which good peer 5%
returns inauthentic file
% of download requestsin which malicious peer ¢ | 0% (varied in Section 7.3)
returns inauthentic file
download source selection algorithm probabilistic algorithm (varied in Section 7.2)
probability that peer with global trust value O is 10%
selected as download source
Simulation # of simulation cyclesin one experiment 30

# of query cyclesin one simulation cycle 50
# of experiments over which resultsare averaged | 5

Table 1: Simulation settings

load distribution performance of a network in which our scheme
is activated. We consider two different trust-based algorithms for
selecting download sources among peers responding to a query, a
deterministic algorithm and a probabilistic algorithm.

When {to, t1, ... ,tr—1} arethetrust valuesof peersresponding
to aquery:

Deterministic algorithm Choose the peer with the highest trust
valuet,,., among the peers responding to a query as down-

load source.
Probabilistic algorithm Choose peer ¢ as download source with
probability ER“ —. With a probability of 10%, select a
j=0"°7

peer j which hasatrust valueof ¢; = 0.

If adownload returns an inauthentic file, delete the peer from the
list of responding peers and repeat the algorithm.

To give new peers in the network — which start with a global
trust value of 0 — the chance of building up trust, the probabilistic
algorithm assigns a fixed 10% chance to download from the group
of responding peerswith trust value 0. Otherwise, new peerswould
maybe never be chosen as download source, depriving them of the
chance to become a trusted member of the network. Based on our
experience, aprobability of 10% strikes abal ance between granting
malicious peers (which might also have atrust value of 0) too high
a chance of uploading inauthentic files and allowing new peersto
prove themsel ves as downl oad sources of authentic files.

We compare these download source selection algorithms to a
network where no trust system is deployed, i.e., anong peers re-
sponding to a query apeer is picked as download source entirely at

random. We examinetheload distribution in these networks. We do
not assumethe existenceof any malicious peersin thisexperiment.

Setup. We simulateanetwork consisting of 20 good peers, no pre-
trusted peers and no malicious peers. Other than that, the standard
settings in Table 1 apply. After running queries on the system for
20 query cycles, the load distribution is measured in Figures 3 and
4: For each peer 1—20in the network, we depictitsload share, i.e.,
the fraction of its uploadsafter afull run of the experiment divided
by the total number of uploads in the entire network. The load
distribution in a network using the deterministic download source
selection algorithm iscomparedto theload distribution in anetwork
using no trust system at all in Figure 3, whereasa system employing
the probabilistic download source selection algorithm is compared
to the non-trust based network in Figure 4.

Discussion. Alwayschoosing the responding peer with the high-
est global trust value as download source leadsto avast load imbal -
ancein the network: Popular peers do not stop accumulating trust
valueand gainfurther popularity. In Figure 3, peer 2 will eventually
become the download source for virtualy all queriesthat it is able
to answer. Also note that in each experiment we ran another peer
turned out to be the most trusted peer. Choosing download sources
probabilistically yieldsonly aslight deviationin termsof individual
load shareof each peer from the casewhereno trust is used to select
download sources among responding peers, therefore leading to a

*Malicious peers would not impact the load distribution among
good peers since downloading peers keep trying until they have
found an authentic copy of afile—hencemalicious peerswould add
inauthentic uploadsto the network, but not change anything about
the number of authentic uploads from good peers.



much better natural load distribution in the network. In Figure 4,
peer 2 becomes the download source for 8% of al queriesin the
system, and many other peersparticipatein sharingtheload, mainly
determined by the number of and popularity of filesthe peersshare.
Our measurements also show that the efficiency in suppressing in-
authentic downloads does not vary between the two approaches.
Thus, for the remaining experiments we use the probabilistic peer
selection algorithm.

7.3 Strategiesfor Malicious Peers

We now evaluate the performance of our system in suppressing
inauthentic downloads. We will consider several strategies of ma-
licious peers to cause inauthentic uploads even when our scheme
isactivated. In short, malicious peers operating under threat model
A simply try to upload inauthentic files and assign positive trust
ratings to any other malicious peer they get to interact with while
participating in the network. In threat model B, malicious peers
know each other upfront and deterministically distribute positive
trust ratings among each other. In threat model C, malicious peers
try to get some positive trust ratings from good peers by providing
authentic files in some cases when selected as download sources.
Under threat model D, one group of malicious peersin the network
providesonly authentic filesand usesthe trust they gain to boost the
trust values of another group of malicious peersthat only provides
inauthentic files.

We start our experiments considering the simplest threat model,
where malicious peers are not initially aware of other malicious
peers and simply upload inauthentic files.

Threat model A. Malicious peers aways provide an inauthentic
file when selected as download source. Malicious peers set their
local trust values to be s;; = inauth(y) — auth(y), i.e., mali-
cious peers value inauthentic file downloads instead of authentic
file downloads.

Setup. We simulate a network consisting of 63 good nodes, 3
of which are highly trusted nodes, applying the standard settings
from Table 1. In each experiment, we add a number of malicious
peers to the network such that malicious nodes make up between
0% and 70% of al nodes in the network. For each fraction in
stepsof 10% we run experiments and depict theresultsin Figure 5.
Upon joining the network, malicious peers connect to the 10 most
highly connected peers already in the network in order to receive
as many queries travelling through the network as possible. In
practice, P2P protocols such as the Gnutella protocol enable nodes
to crawl the network in search of highly connected nodes. We run
the experiments on a system where download sources are selected
probabilistically based on our global trust values and on a system
where download sourcesare chosen randomly from the set of peers
responding to a query. Bars depict the fraction of inauthentic files
downloaded in one simulation cycle versusthe total number of files
downloaded in the same period of time. The results are averaged
over the last 10 query cyclesin each experiment.

Discussion. If no trust schemeis present, malicious peers suc-
ceed ininflicting many inauthentic downloadson the network. Yet,
if our scheme is activated, malicious peers receive positive trust
ratings only from other malicious peers, and even that only occe
sionally — since malicious peers have to happen to get acquainted
with each other through afile exchange. Because of their low trust
values, maliciouspeersarerarely chosenas download sourcewhich
minimizesthe number of inauthentic file downloadsin the network.
Mostly sincegood nodes make mistakes oncein awhile and upload
inauthenticfiles (e.g., by not deleting adownloaded inauthentic file
from their shared folders), we observed a 10% fraction of inau-
thentic downloads. Even if no malicious peers are present in the
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Figure 5: Reduction of inauthentic downloads by basing download
source selection on global trust values in a network where inde-
pendent malicious peers are present. Upon activation of our trust
scheme, the number of inauthentic downloadsin the network issig-
nificantly decreased to around 10% of all downloadsin the system,
malicious peersin the network arevirtually banned from uploading
inauthentic files.

network, downloads are evaluated as inauthentic in 5% of all cases
—thisaccountsfor mistakesusersmakewhen creating and sharing a
file, e.g., by providing the wrong meta-data or creating and sharing
an unreadablefile.

However, note that due to the fact that our current secure algo-
rithm usesmaj ority vote to keep malicious peersfrom manipulating
the global trust value computation, a cooperating fraction of more
than 40% of malicious peersin the network will be ableto influence
the assignment of trust values in the network during their compu-
tation. Thisis not represented in Figure 5 which assumesthat the
trust values are computed correctly. If malicious peerswere ableto
manipulate the global trust value computation on alarge scalein a
coordinated effort, the number of inauthentic downloadswould be
higher when we have more than 40% peersin the network. Yet, we
believe that we will usually have less than 40% malicious peersin
the network. Also, more efficient secure versions of our algorithm
can be given (e.g., by having only peers with fair trust values par-
ticipating in the global trust value computation), we defer thisto a
later paper.

Thus, in knowing that our schemeis present in a system, mali-
cious peers know that they have to gain a somewhat positive trust
rating in order to be considered asdownload sources. Therefore, we
will examine strategies on how malicious peers can increase their
global trust rating despite uploading inauthentic files.

Since malicious peers cannot expect to receive any positive trust
ratingsfrom non-maliciouspeers, they cantry to gain somesystem-
wide trust by teaming up as a so-called malicious collective. In the
experiment depicted in Figure 6, we vary the number of malicious
peers in the network to assess their impact on the network’s per-
formance when they are aware of each other and form a malicious
collective.

Threat model B. Malicious peers always provide an inauthentic
file when selected as download source. Malicious peers form a
malicious collective by assigning asingletrust value of 1 to another
malicious peer in the network. Precisely, if M denotes the set of



Threat Model || File Upload Behavior Local Trust Behavior Figure
A Always upload inauthentic files. Assigntrust to peerswhich upload inauthentic files. 5
B Always upload inauthentic files. Assigntrust to previously known malicious 6
peer to form malicious collective.
C Upload inauthentic filesin % of all cases. | Assigntrust to previously known malicious 7,8
peer to form malicious collective.
D Upload authentic files. Assign equal trust shareto al type B nodesin the network. | 9

Table2: Threat models and associated experiments
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Figure 6: Trust-based reduction of inauthentic downloadsin anet-
work where a fraction of peers forms a malicious collective and
alwaysuploadsauthenticfiles. Forming amalicious collective does
not boost the trust values of malicious peers significantly, they are
still virtually banned from uploading inauthentic files, similar to
Figure 5.

malicious peersin the network, each peer; € M sets

1 ifj=i+1
Speer,peerj = [1) gll = |M| and] =0
se

which resemblesamalicious’chain’ of mutual positivetrust assess-
ments. In terms of the probabilistic interpretation of our scheme,
malicious peers form a collective out of which arandom surfer or
agent, onceit has entered the collective, will not be able to escape,
thus boosting the trust valuesof all peersin the collective.

Setup. We proceed exactly asin the previously described exper-
iment, a beit with malicious nodes operating under threat model B.
As shown in Figure 6, we run the experiments on a system where
download sources are selected based on our global trust valuesand
on a system where download sourcesare chosenrandomly from the
set of peers responding to a query.

Discussion. Our system performs well even if a mgjority of
malicious peers is present in the network at a prominent place.
The experiment clearly shows that forming a malicious collective
does not decisively boost the global trust values of malicious peers:
These peersare tagged with alow trust valueand thusrarely chosen
as download source. The system managesto 'break up’ malicious
collectives through the presence of pre-trusted peers (see Section
4.4): If pre-trusted peers were not present in the network, form-
ing a malicious collective in fact heavily boosts the trust values of
malicious nodes. Under the presence of pre-trusted peers, the trust
ratings of malicious peersare significantly lower than those of good
peers aready after one simulation cycle. This minimizes the num-

ber of inauthentic downloads, and the numbers are virtually equal
to the numbersin Figure 5 when peers do not form a malicious
collective. For example, with 40% of all peersin a network being
malicious, around 87% of all file downloadswill end up in down-
loading an inauthentic version of the file in a normal, non-trusted
network. Upon activation of our scheme, around 10% of al file
downloadsreturn an inauthentic file.

Forming a malicious collective obviously does not increase the
trust ranking of malicious peers sufficiently in order for them to
have impact on the network. This leaves malicious peers with
one choice: They have to increase their trust ratings by receiving
positive trust ratings from at least some good and trusted peersin
the network. In the experiment in Figure 7, we consider a strategy
for malicious peersthat is built on the ideathat malicious peerstry
to get some positive trust ratings from good peers.

Threat model C. Mdlicious peers provide an inauthentic file in
F% of all caseswhen selected asdownload source. Malicious peers
form amalicious collective as described above.

Setup. We simulate a network consisting of 53 good peers,
3 of which are pre-trusted peers, and 20 type C malicious peers
applying the standard settingsin Table 1. In each experiment, we
apply a different setting of parameter f in threat model B such
that the probability that malicious peers return an authentic file
when selected as download source varies from 0% to 90%. We
run experiments for each setting of parameter f in steps of 10%.
Running the experiments on both a non-trust based system and on
our system yields Figure 7. Bars depict the fraction of inauthentic
filesdownloaded in onesimulation cycle divided by thetotal number
of files downloaded in the same period of time.

Discussion. Malicious peersthat operate under threat model C
attempt to gain positive trust ratings from some peers in the net-
work by sometimes providing authentic files. Thus, they will not
be assigned zero trust valuesby all peersin the network since some
peerswill receive an authentic file from them. Thisin turn provides
them with higher global trust rankings and more uploads— a frac-
tion of which will be inauthentic. Figure 7 shows that malicious
peers have maximum impact on the network when providing 50%
authentic files: 28% of all download requests return inauthentic
files then. However, this strategy comes at a cost for malicious
peers: They haveto provide some share of authenticfiles, whichis
undesirable for them. First of al, they try to prevent the exchange
of authentic files on the network, and in this strategy they haveto
participate in it; second, maintaining arepository of authentic files
requires a certain maintenance overhead.

Figure 8 depictsthe trade-off between authentic (horizontal axis)
and inauthentic (vertical axis) downloads. Each scenario from Fig-
ure 7 is represented by one data point in Figure 8. For example,
consider the fourth dark bar in Figure 7, correspondingto f = 30%
and our trust scheme in place. In this scenario, malicious peers
provide 1850 authentic downloads and 5000 inauthentic onesin a
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Figure 7: Trust-based reduction of inauthentic downloadsin anet-
work where a fraction of peers forms a malicious collective and
returns authentic files with certain probabilities. When malicious
peers partly provide authentic uploads, they receive more positive
trust ratings and will be selected as download sources more often,
also increasing their chances to upload inauthentic files. Yet, up-
loading authentic files may be associated with a cost for malicious
peers.

particular run.* The value (1850,5000) is plotted in Figure 8 as
the fourth data point (left to right) on the lower curve, representing
the case when our trust schemeis used. The points on each curve
represent increasing f values, from |eft to right.

In Figure 8, malicious nodes would like to operate in the up-
per left quadrant, with as high as possible number of inauthentic
downloads, and aslow as possible number of authentic downloads.
However, the file sharing mechanismin place constrains malicious
nodesto operate along one of the curves shown. Without our trust
scheme (top curve), malicious nodes can set f to a small value
and move to the upper left quadrant. On the other hand, with our
scheme, malicious peers have no good (for them) choices. In par-
ticular, increasing f beyond 20% does not make much sense to
malicious peers since the incremental authentic uploads they have
to host outnumber the increase in inauthentic downloads. More-
over, for al settings of parameter f below 50%, malicious peers
will loseadll positivetrust assignmentsby other peersinthelong run
— since on average they do provide more inauthentic than authentic
files.

The previous experiment has shown that malicious peers can
increase their impact by partly concealing their malicious identity.
Yet over time, their malicious identity will be uncovered and they
losetheir impact on the network. Inthe experiment in Figure 9, we
consider ateam effort strategy that malicious peers can useto work
around this drawback. Two different types of malicious peers are
present in the network: Malicious nodes of type B and of type D.

Threat model D. Malicious peers answer 0.05% of the most pop-
ular queries and provide a good file when selected as download
source. Malicious peers of type D assign trust values of 1 to all
malicious nodes of type B in the network. Precisely, if M s and
Mp denotethe set of malicioustype B peersresp. type D peersin

*More precisely, we run 30 query cycles, excludethe first 15 query
cycles, and count the number of inauthentic and authentic down-
loads. We execute a second run, and add the numbers form both
runs.
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Figure 8: Inauthentic downloadsversus authentic uploads provided
by malicious peerswith trust-based and non-trust based download
source selection. When malicious peers provide authentic files in
more than 20% of the caseswhen selected as download source, the
increase in authentic files uploaded by malicious peers exceedsthe
increase in inauthentic downloads in the network, hence possibly
coming at a higher cost than benefit for malicious peers.
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Setup. We simulate a network consisting of 63 good peers, 3 of
which are pre-trusted peers, and 40 (39%) malicious peers, divided
into two groups of malicious type B and type D peers. Otherwise,
the standard settings from Table 1 apply. In each experiment, we
consider a different number of type B and type D peers. Configu-
rations considered are: 1. 40 type B, 0 type D peers|l. 39 type B,
1 type D peer 111. 36 type B, 4 type D peers|V. 35 type B, 5 type
D peers V. 30 type B, 10 type D peers VI. 25 type B, 15 type D
peers VIl. 20 type B, 20 type D peers VIII. 15 type B, 25 type D
peers|X. 10 type B, 30 type D peers X. 5 type B, 35 type D peers.
From left to right, we plot these data pointsin a graph that depicts
the number of inauthentic file downloads versus the number of au-
thentic file uploads provided by malicious peers, asin the previous
experiment.

Discussion. Malicious peers establish an efficient division of la-
bor inthis scheme: TypeD peersact asnormal peersin the network
and try to collect global trust, which they will in turn assign to ma-
licious nodes of type B providing inauthentic files. The malicious
nature of type D peerswill not be uncovered over time since these
peers do not provide inauthentic files — hence they can continue
to increase the global trust ratings of type B peersin the network.
An interesting configuration for malicious peers would be configu-
ration I: Malicious peers provide afairly low number of authentic
downloads(around 100), yet achieve almost the same number of in-
authentic downloadsin the network asin other configurationswith
a higher share of authentic downloads by malicious peers. In any
configuration though, our scheme performs better than a system
without trust-based download source selection. Also, this strat-
egy would probably be the strategy of choice for malicious peers
in order to attack a trust-based network: For example, by hosting
500 authentic file uploadsin this strategy malicious peers achieve
around 5000 inauthentic file downl oads— as opposed to about 2500
inauthentic file downloadsin the previous strategy, given the same
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Figure 9: Inauthentic downloadsversus authentic uploads provided
by malicious peers with trust-based and non-trust based download
sourceselectionin anetwork populated by type D and type B peers.
Aswiththreat model C, maliciouspeershaveto provideanumber of
authentic uploadsin order to increasetheir global trust values. Yet,
as compared to Figure 8, less authentic uploads by malicious peers
are necessary to achieve equal numbers of inauthentic downloads
in the network: 5000 inauthentic downloads cost 400 authentic
uploadswith this strategy as compared to more than 1000 authentic
uploadswith threat model C.

effort on providing authentic uploads.

8. CONCLUSION

We have presented amethod to minimizetheimpact of malicious
peers on the performance of a P2P system. The system computes
a global reputation value for a peer by calculating the left princi-
pa eigenvector of a matrix of normalized local reputation values,
thus taking into consideration the entire system’s history with each
single peer. We also show how to carry out the computationsin a
scalable and distributed manner. In P2P simulations, using these
trust values to bias downloads has shown to reduce the number of
inauthentic files on the network under a variety of threat scenarios.
Furthermore, rewarding highly reputable peers with better quality
of service incents non-malicious peers to share more files and to
self-police their own file repository for inauthentic files.
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