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ABSTRACT
Automated trust negotiation is an approach to estab-
lishing trust between strangers through the exchange of
digital credentials and the use of access control policies
that specify what combinations of credentials a stranger
must disclose in order to gain access to each local ser-
vice or credential. We introduce the concept of a trust
negotiation protocol, which defines the ordering of mes-
sages and the type of information messages will contain.
To carry out trust negotiation, a party pairs its nego-
tiation protocol with a trust negotiation strategy that
controls the exact content of the messages, i.e., which
credentials to disclose, when to disclose them, and when
to terminate a negotiation. There are a huge number of
possible strategies for negotiating trust, each with dif-
ferent properties with respect to speed of negotiations
and caution in giving out credentials and policies. In the
autonomous world of the Internet, entities will want the
freedom to choose negotiation strategies that meet their
own goals, which means that two strangers who negoti-
ate trust will often not use the same strategy. To date,
only a tiny fraction of the space of possible negotiation
strategies has been explored, and no two of the strate-
gies proposed so far will interoperate. In this paper, we
define a large set of strategies called the disclosure tree
strategy (DTS) family. Then we prove that if two par-
ties each choose strategies from the DTS family, then
they will be able to negotiate trust as well as if they
were both using the same strategy. Further, they can
change strategies at any point during negotiation. We
also show that the DTS family is closed, i.e., any strat-
egy that can interoperate with every strategy in the
DTS family must also be a member of the DTS family.
We also give examples of practical strategies that be-
long to the DTS family and fit within the TrustBuilder
architecture and protocol for trust negotiation.
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1. INTRODUCTION
With billions of users on the Internet, most interac-

tions will occur between strangers, i.e., entities that
have no pre-existing relationship and may not share
a common security domain. In order for strangers to
conduct secure transactions, a sufficient level of mu-
tual trust must be established. For this purpose, the
identity of the participants (e.g., their social security
number, fingerprint, institutional tax ID) will often be
irrelevant to determining whether or not they should be
trusted. Instead, the properties of the participants, e.g.,
employment status, citizenship, group membership, will
be most relevant. Traditional security approaches based
on identity require a new client to pre-register with the
service, in order to obtain a local login, capability, or
credential before requesting service; but the same prob-
lem arises when the client needs to prove on-line that
she is eligible to register with the service. E-commerce
needs a more scalable approach that allows automatic
on-line pre-registration, or does away entirely with the
need for pre-registration. We believe that automated
trust establishment is such a solution.

With automated trust establishment, strangers estab-
lish trust by exchanging digital credentials, the on-line
analogues of paper credentials that people carry in their
wallets: digitally signed assertions by a credential issuer
about the credential owner. A credential is signed using
the issuer’s private key and can be verified using the is-
suer’s public key. A credential describes one or more at-
tributes of the owner, using attribute name/value pairs
to describe properties of the owner asserted by the is-
suer. Each credential also contains the public key of the
credential owner. The owner can use the corresponding
private key to answer challenges or otherwise demon-
strate ownership of the credential. Digital credentials
can be implemented using, e.g., X.509 [10] certificates.

While some resources are freely accessible to all, many
require protection from unauthorized access. Access
control policies can be used for a wide variety of “pro-
tected” resources, such as services accessed through URLs,
roles in role-based access control systems, and capabil-
ities in capability-based systems. Since digital creden-
tials themselves can contain sensitive information, their
disclosure will often also be governed by access control
policies. For example, suppose that a landscape de-
signer wishes to order plants from Champaign Prairie



Nursery (CPN). She fills out an order form on the web,
checking an order form box to indicate that she wishes
to be exempt from sales tax. Upon receipt of the or-
der, CPN will want to see a valid credit card or her
account credential issued by CPN, and a current re-
seller’s license. The designer has no account with CPN,
but she does have a digital credit card. She is willing to
show her reseller’s license to anyone, but she will only
show her credit card to members of the Better Business
Bureau. Therefore, when protected credentials are in-
volved, a more complex procedure needs to be adopted
to establish trust through negotiation.

2. RELATED WORK
Credential-based authentication and authorization sys-

tems fall into three groups: identity-based, property-
based, and capability-based. Originally, public key cer-
tificates, such as X.509 [10] and PGP [17], simply bound
keys to names, and X.509 v.3 certificates later extended
this binding to general properties (attributes). Such cer-
tificates form the foundation of identity-based systems,
which authenticate an entity’s identity or name and use
it as the basis for authorization. Identity is not a useful
basis for our aim of establishing trust among strangers.

Systems have emerged that use property-based cre-
dentials to manage trust in decentralized, distributed
systems [8, 11, 14]. Johnson et al. [11] use attribute cer-
tificates (property-based credentials) and use-condition
certificates (policy assertions) for access control. Use-
condition certificates enable multiple, distributed stake-
holders to share control over access to resources. In their
architecture, the policy evaluation engine retrieves the
certificates associated with a user to determine if the use
conditions are met. Their work could use our approach
to protect sensitive certificates.

The Trust Establishment Project at the IBM Haifa
Research Laboratory [8] has developed a system for es-
tablishing trust between strangers according to policies
that specify constraints on the contents of public-key
certificates. Servers can use a collector to gather sup-
porting credentials from issuer sites. Each credential
contains a reference to the site associated with the is-
suer. That site serves as the starting point for a collector-
controlled search for relevant supporting credentials. Se-
curity agents in our work could adopt the collector fea-
ture, and we could use their policy definition language.
Their work could use our approach to protect sensitive
credentials and gradually establish trust.

Capability-based systems manage delegation of au-
thority for a particular application. Capability-based
systems are not designed for establishing trust between
strangers, since clients are assumed to possess creden-
tials that represent authorization of specific actions with
the application server. In the capability-based KeyNote
system of Blaze et al. [2, 3], a credential describes the
conditions under which one principal authorizes actions
requested by other principals. KeyNote policies dele-
gate authority on behalf of the associated application
to otherwise untrusted parties. KeyNote credentials ex-
press delegation in terms of actions that are relevant

to a given application. KeyNote policies do not inter-
pret the meaning of credentials for the application. This
is unlike policies designed for use with property-based
credentials, which typically derive roles from credential
attributes. The IETF Simple Public Key Infrastructure
[9] uses a similar approach to that of KeyNote by em-
bedding authorization directly in certificates.

Bonatti et al. [4] introduced a uniform framework
and model to regulate service access and information
release over the Internet. Their framework is composed
of a language with formal semantics and a policy filter-
ing mechanism. Our work can be integrated with their
framework.

The P3P standard [13] focuses on negotiating the dis-
closure of a user’s sensitive private information based on
the privacy practices of the server. Trust negotiation is
generalized to base disclosure on any server property
of interest to the client that can be represented in a
credential. The work on trust negotiation focuses on
certified properties of the credential holder while P3P is
based on data submitted by the client that are claims
the client makes about itself. Support for both kinds of
information in trust negotiation is warranted.

SSL [7], the predominant credential-exchange mech-
anism in use on the web, and its successor TLS [5, 6]
support credentials exchange during client and server
authentication. In work not described in this paper, we
have extended SSL to serve as the substrate for private,
secure trust negotiation.

The first trust negotiation strategies proposed included
a naive strategy that discloses credentials as soon as
they are unlocked and discloses no policy information,
as well as a strategy that discloses credentials only af-
ter each party determines that trust can be established,
based on reviewing the other party’s policies [14]. Yu et
al. [15] introduced a new strategy that would succeed
whenever success was possible and had certain efficiency
guarantees. In [12], consideration was given for sensi-
tive policy information in several strategies that estab-
lished trust gradually through the introduction of policy
graphs. The fact that none of the strategies proposed in
this earlier work will interoperate demonstrates the need
for trust negotiation protocols and strategy families to
support interoperability between negotiation strategies.

3. TRUST NEGOTIATION
We establish trust incrementally by exchanging cre-

dentials and requests for credentials, an iterative pro-
cess known as trust negotiation. While a trust negoti-
ation protocol defines the ordering of messages and the
type of information messages will contain, a trust ne-
gotiation strategy controls the exact content of the mes-
sages, i.e., which credentials to disclose, when to disclose
them, and when to terminate a negotiation. Figure 1
introduces our TrustBuilder architecture for trust ne-
gotiation. Each participant in the negotiation has an
associated security agent (SA) that manages the nego-
tiation. The security agent mediates access to local pro-
tected resources, i.e., services and credentials. We say
a credential or access control policy is disclosed if it has



been sent to the other party in the negotiation, and that
a service is disclosed if the other party is given access
to it. Disclosure of protected resources is governed by
access control policies. Once enough trust has been es-
tablished that a particular credential can be disclosed to
the other party, a local negotiation strategy must deter-
mine whether the credential is relevant to the current
stage of the negotiation. Different negotiation strate-
gies will use different definitions of relevance, involving
tradeoffs between computational cost, the length of the
negotiation, and the number of disclosures.

It is clear that there are endless possible variations
in how to negotiate trust. In this paper we character-
ize a broad class of strategies (section 6) and design
a strategy-independent, language-independent trust ne-
gotiation protocol (section 5) that ensures their inter-
operability within the TrustBuilder trust negotiation ar-
chitecture.

4. ACCESS CONTROL POLICIES
We assume that the information contained in access

control policies (policies, for short) and credentials can
be expressed as finite sets of statements in a language
with a well-defined semantics. XML or logic program-
ming languages with appropriate semantics may be suit-
able in practice [8, 1]. For convenience, we assume that
the language allows us to describe the meaning of a set
X of statements as the set of all models that satisfy X,
in the usual logic sense. We say that X satisfies a set of
statements P if and only if P is true in all models of X.
For purely practical reasons, we require that the lan-
guage be monotonic, i.e., if X satisfies policy P , then
any superset of X will also satisfy P ; that way, once
a negotiation strategy has determined that the creden-
tials disclosed by a participant satisfy the policy of a
resource, the strategy knows that the same policy will
be satisfied for the rest of the negotiation.

In this paper, we will treat credentials and services as
propositional symbols. Each of these resources has one
access control policy, of the form C ← FC(C1, . . . , Ck),
where FC(C1, . . . , Ck) is a Boolean expression involving
only credentials C1, . . . , Ck that the other party may
possess, Boolean constants true and false, the Boolean
operators ∨ and ∧, and parentheses as needed. Ci is
satisfied if and only if the other party has disclosed cre-
dential Ci. We assume that we can distinguish between
local and remote resources (by renaming propositional
symbols as necessary). Resource C is unlocked if its
access control policy is satisfied by the set of creden-
tials disclosed by the other party. A resource is unpro-
tected if its policy is always satisfied. The denial policy
C ← false means that either the party does not possess
C, or else will not disclose C under any circumstances.
A party implicitly has a denial policy for each creden-
tial it does not possess. If the disclosure of a set S of
credentials satisfies resource R’s policy, then we say S
is a solution set for R. Further, if none of S’s proper
subsets is a solution set for R, we say S is a minimal
solution set for R. The size of a policy is the number of
symbol occurrences in it.

Given sequence G = (C1, . . . , Cn) of disclosures of
protected resources, if each Ci is unlocked at the time it
is disclosed, then we say G is a safe disclosure sequence.
The goal of trust negotiation is to find a safe disclo-
sure sequence where Cn = R, the resource to which
access was originally requested. When this happens, we
say that trust negotiation succeeds. If Ci = Cj and
1 ≤ i < j ≤ n, then we say G is redundant. Language
monotonicity allows us to remove the later duplicates
from a redundant safe disclosure sequence and the re-
sulting sequence is still safe. Figure 2 shows a safe dis-
closure sequence for the landscape designer’s purchase
from CPN (section 1). A more complex example can
be found in the full version of this paper [16]. Recall
that this example, and our algorithms that follow, rely
on lower levels of software to perform the functions as-
sociated with disclosure of a credential: verification of
its contents, checks for revocation as desired, checks of
validity dates, authentication of ownership, etc.

5. TRUSTBUILDER PROTOCOL AND
STRATEGY FAMILIES

Previous work has not explicitly proposed any trust
negotiation protocols, instead defining protocols implic-
itly by the way each strategy works. This is one reason
why no two different previously proposed strategies can
interoperate – their underlying protocols are totally dif-
ferent.

We remedy this problem by defining a simple proto-
col for TrustBuilder. Formally, a message in the Trust-
Builder protocol is a set {R1, . . . , Rk} where each Ri is a
disclosure of a local credential, a local policy, or a local
resource. When a message is the empty set ∅, we call it
a failure message. To guarantee the safety and timely
termination of trust negotiation no matter what poli-
cies and credentials the parties possess, the TrustBuilder
protocol requires the negotiation strategies used with it
to enforce the following three conditions throughout ne-
gotiations:

1. If a message contains a denial policy disclosure
C ← false, then C must appear in a previously
disclosed policy.

2. A credential or policy can be disclosed at most
once.

3. Every disclosure must be safe.

Before the negotiation starts, the client sends the orig-
inal resource request message to the server indicating
its request to access resource R. This request triggers
the negotiation, and the server invokes its local secu-
rity agent with the call TrustBuilder handle disclosure-
message(∅, R). Then the client and server exchange
messages until either the service R is disclosed by the
server or one party sends a failure message (figure 3).

In the remainder of this paper, we discuss only strate-
gies that can be called from the TrustBuilder protocol
and satisfy the three conditions above. A formal defini-
tion of a negotiation strategy is given below.
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Figure 1: An architecture for automated trust negotiation. A security agent that manages local
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A access control policy specifies what resources the other party needs to disclose in order to gain access
to a local resource, as indicated by the dotted lines in the figure. Trust negotiation middleware enables
negotiation strategy interoperability.
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Figure 2: An example of access control policies and a safe disclosure sequence which establishes trust
between the server and the client.

Definition 5.1. A strategy is a function f : {G, L, R} →
Sm, where R is the resource to which the client origi-
nally requested access, G = (m1, . . . , mk) is a sequence
of disclosure messages such that mi 6= ∅ and R /∈ mi

for 1 ≤ i ≤ k, L is the set of local resources and poli-
cies, and Sm is a set of disclosure messages. Further,
every disclosure in a message in Sm must be of a lo-
cal resource or policy, as must be all the disclosures in
mk−2i, for 1 ≤ k − 2i < k. The remaining disclosures
in G are of remote resources and policies.

Note that a strategy returns a set of possible disclo-
sure messages, rather than a single message. Practical
negotiation strategies will suggest a single next message,
but the ability to suggest several possible next messages
will be very convenient in our formal analysis of strategy
properties, so we include it both in the formal definition
of a negotiation strategy and also in the protocol pseu-
docode in figure 3.

Definition 5.2. Strategies fA and fB are compati-
ble if whenever there exists a safe disclosure sequence
for a party PA to obtain access to a resource owned by

party PB, the trust negotiation will succeed when PA

uses fA and PB uses fB. If fA = fB, then we say that
fA is self-compatible.

Definition 5.3. A strategy family is a set F of mu-
tually compatible strategies, i.e., ∀f1 ∈ F , f2 ∈ F , f1

and f2 are compatible. We say a set F of strategies
is closed if given a strategy f ′, if f ′ is compatible with
every strategy in F , then f ′ ∈ F .

One obvious advantage of strategy families is that a
security agent (SA) can choose strategies based on its
needs without worrying about interoperability, as long
as it negotiates with other SAs that use strategies from
the same family. As another advantage, under certain
conditions, an SA does not need to stick to a fixed strat-
egy during the entire negotiation process. It can adopt
different strategies from the family in different phases of
the negotiation. For example, during the early phase,
since the trust between two parties is very limited, an
SA may adopt a cautious strategy for disclosing creden-
tials. When a certain level of trust has been established,
the SA may adopt a less cautious strategy. Without the



TrustBuilder handle disclosure message (m, R)
Input: m is the last disclosure message received from the remote party.

R is the resource to which the client originally requested access.
TrustBuilder check for termination(m, R). //Stop negotiating, if appropriate.
TrustBuilder next message(m, R).
End of TrustBuilder handle disclosure message.

TrustBuilder next message(m, R)
// First, let the local strategy suggest what the next message should be.
Let G be the disclosure message sequence so far.
Let L be the local resources and policies.
Sm = Local strategy(G, L, R).
// Sm contains the candidate messages the local strategy suggests.
Choose any single message m′ from Sm.
Send m′ to the remote party.
TrustBuilder check for termination(m′, R). //Stop negotiating, if appropriate.
End of TrustBuilder next message.

TrustBuilder check for termination(m, R)
If m is the empty set ∅ and this is not the beginning of the negotiation,

Then negotiations have failed. Stop negotiating and exit.
If m contains the disclosure of R,

Then negotiations have succeeded. Stop negotiating and exit.
End of TrustBuilder check for termination.

Figure 3: Pseudocode for the TrustBuilder protocol. The negotiation is triggered when the client
asks to access a protected resource owned by the server. After rounds of disclosures, either one party
sends a failure message and ends the negotiation, or the server grants the client access.

closure property, a family may be too small for practical
use. As an extreme example, given any self-compatible
strategy f , {f} is a strategy family. The closure prop-
erty guarantees the maximality of a strategy family.

The notions of strategy families and closed sets of
strategies are incomparable, in the sense that neither of
them implies the other. For example, if a strategy f ’s
output is {m}, where m is a message containing all the
undisclosed local policies and unlocked credentials, then
it is easy to prove that f is self-compatible. Then {f}
is a family, but not closed. On the other hand, consider
the strategy f ′ whose output is always {∅}. Obviously
f ′ is not compatible with any strategies. The strategy
set {f ′} is not a family but is closed.

We end this section with two simple propositions.

Proposition 5.1. Any subset of a strategy family is
also a family.

Proposition 5.2. If a strategy family F is a proper
subset of another family, then F is not closed.

6. CHARACTERIZING SAFE DISCLO-
SURE SEQUENCES

In this section, we define the concepts that we use to
describe the progress of a negotiation and to character-
ize the behavior of different strategies. In the remainder
of the paper, we use R to represent the resource to which
access was originally requested.

6.1 Disclosure Trees

Definition 6.1. A disclosure tree for R is a finite
tree satisfying the following conditions:

1. The root represents R.

2. Except for the root, each node represents a creden-
tial. When the context is clear, we refer to a node
by the name of the credential it represents.

3. The children of a node C form a minimal solution
set for C.

When all the leaves of a disclosure tree T are unprotected
credentials, we say T is a full disclosure tree. Given a
disclosure tree T , if there is a credential appearing twice
in the path from a leaf node to the root, then we call T
a redundant disclosure tree.

Figure 4 shows example disclosure trees. Note that
T3 is redundant and T4 is a full disclosure tree.

The following theorems state the relationship between
disclosure trees and safe disclosure sequences that lead
to the granting of access to resource R. Proofs are in-
cluded in the full version of this paper [16].

Theorem 6.1. Given a non-redundant safe disclo-
sure sequence G = (C1, . . . , Cn = R), there is a full
non-redundant disclosure tree T such that both of the
following hold:

1. The nodes of T are a subset of {C1, . . . , Cn}.

2. For all credential pairs (C′
1, C

′
2) such that C′

1 is an
ancestor of C′

2 in T , C′
2 is disclosed before C′

1 in
G.

Theorem 6.2. Given a full disclosure tree for R, there
is a non-redundant safe disclosure sequence ending with
the disclosure of R.

From theorems 6.1 and 6.2, we have:

Corollary 6.1. Given a safe disclosure sequence G =
(C1, . . . , Cn = R), there is a full non-redundant disclo-
sure tree T such that:
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Figure 4: Example disclosure trees for a set of policies

1. T ’s credential nodes are a subset of {C1, . . . , Cn}.

2. For all credential pairs (C′
1, C

′
2) such that C′

1 is an
ancestor of C′

2 in T , the first disclosure of C′
2 in

G is before the first disclosure of C′
1.

Without loss of generality, from now on, we consider
only non-redundant disclosure sequences.

Since there is a natural mapping between safe dis-
closure sequences and disclosure trees, during the ne-
gotiation, theoretically one could determine whether a
potential credential or policy disclosure is helpful by ex-
amining all the disclosure trees for R. At the beginning
of a negotiation, before disclosures begin, the only rele-
vant disclosure tree for the client contains a single node
R. As the negotiation proceeds, other trees may become
relevant. The following definitions help us describe the
set of relevant trees.

Definition 6.2. Given a disclosure tree T and a set
of credentials Sc, the reduction of T by Sc, reduction(T, Sc),
is the disclosure tree T ′ which is obtained by removing
all the subtrees rooted at a node representing resource
C ∈ Sc. Given a set St of disclosure trees,

reduction(St, Sc) = {reduction(T, Sc) | T ∈ St}.

If Sc is the set of credential disclosures made so far,
then reducing T by Sc prunes out the part of the ne-
gotiation that has already succeeded. Intuitively, if a
credential C has been disclosed, then we already have
a safe disclosure sequence for C. We do not need to
disclose additional credentials or policies in order to get
a full disclosure tree rooted at C. An example of a dis-
closure tree reduction is shown in figure 5(a).

Definition 6.3. Given a disclosure tree T and a pol-
icy set Sp containing no denial policies, the expansion
of T by Sp, expansion(T, Sp), is the set of all disclosure
trees Ti such that

1. T is a subgraph of Ti, i.e., there exists a set S of
credentials such that reduction(Ti, S) = T .

2. For each edge (C1, C2) in Ti, if (C1, C2) is not an
edge of T , then C1’s policy is in Sp.

3. For each leaf node C of Ti, either Sp does not con-
tain C’s policy, or Ti is redundant.

Given a set of disclosure trees St,

expansion(St, Sp) =
⋃

T∈St
expansion(T, Sp).

A disclosure tree can expand when a party receives
new policy disclosures. An example of a disclosure tree
expansion is shown in figure 5(b).

Definition 6.4. Given a set St of disclosure trees
and a set Sdp of denial policies, the denial pruning of
St by Sdp, denoted prunedenial(St, Sdp), is the set

{T | T ∈ St and T contains no resource
whose policy is in Sdp}.

Since a full disclosure tree contains only credentials
that the two parties possess, if a disclosure tree node
represents a credential with a denial policy, that tree
cannot evolve into a full disclosure tree, and is irrele-
vant.

Definition 6.5. Given a set St of disclosure trees,
the redundancy pruning of St, denoted pruneredundant(St),
is the set

{T | T ∈ St and T is not a redundant disclosure tree}.

The rationale for redundancy pruning will be shown
after we introduce more operations on disclosure trees.
Examples of denial and redundancy pruning are shown
in figure 5(c).

Definition 6.6. Given a disclosure tree T and a set
Sdp of denial policies, Sp of non-denial policies, and Sc

of credentials, let S = Sdp ∪ Sp ∪ Sc. The evolution of
T by S, denoted evolution(T, S), is

pruneredundant(prunedenial(reduction(
expansion(T, Sp), Sc), Sdp).

Given a set St of disclosure trees,

evolution(St, S) =
⋃

T∈St
evolution(T, S).
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Figure 5: Examples of operations on disclosure trees

As a special case, when T is the disclosure tree contain-
ing only a root node R, then we say evolution(T, S) is
the view of S, denoted view(S).

During the negotiation, let S be the set of credentials
and policies disclosed so far and L be the local policies
of a negotiation party. Then view(S∪L) contains all the
relevant disclosure trees that can be seen by this party.
An example view is shown in figure 5(d). Sometimes
even though a tree may evolve into a full tree later in
the negotiation, it is nonetheless redundant and can be
removed by redundancy pruning, whose correctness is
guaranteed by the following theorem.

Theorem 6.3. Let T be a full but redundant disclo-
sure tree. Then there is a full disclosure tree T ′ that is
not redundant.

Suppose S is the current set of disclosed credentials
and policies. By theorem 6.3, if a redundant tree may
evolve into a full tree, then the corresponding non-redundant
tree is already included in view(S), and the redundant
trees can be ignored.

To ensure negotiations succeed whenever possible, a
negotiation strategy cannot overlook any possible full
disclosure trees. A disclosure tree also tells a party
what may contribute to the success of a negotiation.
As an example, suppose party PB requests service R
from party PA. Sd, the set of disclosures so far, and
view(Sd) are shown in figure 6. Suppose now it is PA’s
turn to send a message to PB . From the disclosure
tree, it is clear to an outside observer that credentials
CA1 and CA2 must be disclosed if the negotiation is to
succeed. So PA’s negotiation strategy can now disclose



CA1’s and/or CA2’s policy. This shows that to let party
P know what might be the next appropriate message,
a disclosure tree should have at least one leaf node that
is a credential that the other party wants P to disclose.
We have the following definition:

Definition 6.7. Disclosure tree T ’s evolvable leaves
for PA, denoted evolvable(T,PA), are the set of leaf
nodes C of T such that either C = R and PA is the
server, or C appears in a policy that PB disclosed to
PA. If evolvable(T,PA) 6= ∅, T is evolvable for PA.

The disclosure tree in figure 6 is evolvable for both
PA and PB .

If a negotiation reaches a point where every leaf node
of some disclosure tree is unlocked, then the tree is a
full tree and corresponds to a safe disclosure sequence.

Definition 6.8. Let PA be a negotiation party, T be
a disclosure tree, and S be a set of policies and creden-
tials. If every resource in evolvable(T,PA) is unlocked
by credentials in S, then we say T is semi-full with S
for PA. Further, we say T is full with S iff every leaf
node of T is unlocked by credentials in S.

6.2 Strategy Caution and Strategy Set Gen-
erators

If F is a strategy family, then intuitively, every strat-
egy in F always discloses enough information to keep the
negotiation moving towards success, if success is possi-
ble. If F is also closed, then F must also contain those
strategies that disclose only the minimal amount of in-
formation needed to continue negotiations. Therefore
it is helpful to formally define a relationship between
strategies based on the information they disclose.

Definition 6.9. Given two negotiation strategies f1

and f2, if for all possible inputs G, L, and R to f1 and
f2, we have

∀m ∈ f2(G, L, R) ∃m′ ∈ f1(G, L, R) m′ ⊆ m

then we say f1 is at least as cautious as f2, denoted
f1 ¹ f2 or f2 º f1.

Caution defines a partial order between strategies. In-
tuitively, if f2 º f1 then f2 always discloses at least as
much information as f1 does.

Definition 6.10. Given a strategy f , the set of strate-
gies generated by f , denoted StraSet(f), is the set F =
{f ′|f ′ º f}. f is called the generator of F .

As we discussed in section 6.1, during a trust nego-
tiation, evolvable trees give guidance on what a party
needs to disclose in the next message so that the whole
negotiation advances towards potential success. If there
is no evolvable tree, then a cautious party will choose to
end the negotiation even if the policies of the two parties
allow success. Therefore, a strategy must ensure that
the other party will have an evolvable tree when the
other party needs to make its next disclosure. The only
exception is when the strategy knows that no disclosure
tree can evolve into a full tree.

7. THE DTS FAMILY
We present the disclosure tree strategy (DTS), then

prove that DTS generates a closed family. Throughout
this section, we assume that G = (m1, . . . , mk) is a
sequence of messages such that mi 6= ∅ and R /∈ mi for
1 ≤ i ≤ k. We assume LA and LB are the local policies
of parties PA and PB respectively, and Sd =

⋃
1≤i≤k mi.

Without loss of generality, we assume PA will send the
next message to PB .

Definition 7.1. The Disclosure Tree Strategy is a
strategy DTS(G, LA, R) such that:

1) DTS(G, LA, R) = {∅} if and only if view(Sd∪LA) =
∅ or view(Sd) has no evolvable tree for PA.

2) Otherwise, DTS(G, LA, R) contains all messages m′

such that one of the following conditions holds:

• m′ = {R}, if credentials in Sd unlock R;

• m′ is a non-empty set of credentials and poli-
cies such that view(Sd ∪m′) contains at least
one evolvable tree for PB, and no non-empty
proper subset of m′ has this property.

Condition 1) tells when DTS will terminate the ne-
gotiation. Condition 2) guarantees that the other party
will have an evolvable tree, so the other party can send
a message that further evolves a tree. Thus, no fail-
ure message will be sent unless there is no disclosure
tree at all, in which case the negotiation cannot succeed
anyway. Formally, we have the following theorems:

Theorem 7.1. The set of strategies generated by DTS
is a family.

Theorem 7.2. If a strategy f and DTS are compat-
ible, then f º DTS.

We call the family generated by DTS the DTS family.
By theorems 7.1 and 7.2, we get the following corollary
immediately.

Corollary 7.1. The DTS family is closed.

As we mentioned in section 5, one advantage of a
strategy family can be the ability to adopt different
strategies from a family in different phases of the nego-
tiation. Correct interoperability is guaranteed as long
as both parties’ strategies are from the same family.

Definition 7.2. Let f1 and f2 be two strategies. A
strategy f ′ is a hybrid of f1 and f2 if ∀G, L, R, f ′(G, L, R) ⊆
f1(G, L, R) ∪ f2(G, L, R) and f ′ 6= f1 and f ′ 6= f2.

Theorem 7.3. Let f1 and f2 be strategies in the DTS
family and let f ′ be a hybrid of f1 and f2. Then f ′ is
also in the DTS family.

If a security agent adopts different DTS family strate-
gies in different phases of trust negotiation, it is equiva-
lent to adopting a hybrid of those strategies. Therefore,
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Figure 6: view(Sd) where Sd = {R ← CB1 ∧ CB2, CB1 ← CA1 ∧ CA2}

as long as both parties use strategies from the DTS fam-
ily, they can switch between different practical strate-
gies as often as they like, and trust negotiation will still
succeed whenever possible.

Although disclosure trees are a useful tool for under-
standing strategy properties, it would require exponen-
tial time and space to materialize all the disclosure trees
during a negotiation. Fortunately, many strategies in
the DTS family are quite efficient. We present two effi-
cient strategies, TrustBuilder-Simple and TrustBuilder-
Relevant, which are both in the DTS family.

TrustBuilder-Simple (figure 7(a)) puts all undisclosed
policies and unlocked credentials in the next message to
the other party. If all the policies and unlocked creden-
tials have already been disclosed, it fails.

We say a credential C is syntactically relevant to re-
source R iff C appears in R’s policy, or C appears
in the policy of a credential C′ that is relevant to R.
In contrast to TrustBuilder-Simple, the TrustBuilder-
Relevant strategy (figure 7(b)) discloses a credential C’s
policy only if C is syntactically relevant to R. Similarly,
TrustBuilder-Relevant only discloses syntactically rele-
vant unlocked credentials.

Proposition 7.1. If a credential C appears in a dis-
closure tree for R, then C is relevant to R.

Theorem 7.4. TrustBuilder-Simple and TrustBuilder-
Relevant belong to the DTS family.

Theorem 7.5. The computation costs of TrustBuilder-
Simple and TrustBuilder-Relevant in the whole process
of trust negotiation are bounded by O(nm), where n is
the total number of credentials and m is the total size
of the policies of both parties.

The worst-case behavior of TrustBuilder-Simple and
TrustBuilder-Relevant occurs when every credential be-
longing to one party appears in every policy belonging
to the other party, and each disclosure message discloses
a single credential or policy.

8. SUMMARY AND FUTURE WORK
This paper focused on guaranteeing interoperability

between different strategies. We first proposed a very
simple trust negotiation protocol for the TrustBuilder
trust negotiation architecture. Then we studied strate-
gies that adhere to this protocol. We introduced the
concepts of strategy families and closed sets of strate-
gies. If two strategies are in the same strategy family,

then they will always correctly interoperate with each
other. Closure expresses the maximality of a strategy
family, i.e., if we add another strategy to a closed family,
the resulting set of strategies is no longer a family. In
practice, we want to identify closed families of strate-
gies because they give negotiation participants maxi-
mum freedom in choosing the strategies appropriate for
them. We introduced the concept of disclosure trees
and identified the natural mapping between full disclo-
sure trees and safe credential disclosure sequences. We
then proposed the disclosure tree strategy (DTS), and
proved that all the strategies that are no more cautious
than DTS form a closed strategy family. Finally we gave
examples of practical strategies from the DTS family.

In this paper, we assume a credential’s policy is freely
available, which means it can be shown to others when-
ever requested. However, some policies contain sensitive
information that should be protected from arbitrary dis-
closure. We are currently investigating strategy families
for use in this situation and with non-propositional pol-
icy languages. We are also implementing TrustBuilder
for testbed experimentation in e-commerce applications,
and investigating more sophisticated definitions of “min-
imal” disclosure for use with practical policies.
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