Implementing a Reputation-Aware
Gnutella Servent

Fabrizio Cornelli', Ernesto Damiani®, Sabrina De Capitani di VimercatiZ,
Stefano Paraboschi®, and Pierangela Samarati!

! Dip. Tecnologie dell’Informazione,

Universita di Milano, 26013 Crema - Italy
fcornelli@crema.unimi.it,{damiani,samarati}@dti.unimi.it
% Dip. Elettronica per I’Automazione,

Universita di Brescia, 25123 Brescia - Italy
decapita@ing.unibs.it
3 Dipartimento di Elettronica e Informazione
Politecnico di Milano
20133 Milano - Italy

parabosc@elet.polimi.it

Abstract. We describe the design and implementation of a reputation-
aware servent for Gnutella-like peer-to-peer systems.

1 Introduction

Peer-to-peer (P2P) architectures have recently become the subject of consider-
able interest, both in the population of Internet users and in the research commu-
nity [6,8,12,11,15,16,21]. Internet users find in P2P applications a convenient
solution for the anonymous exchange of resources. The research community has
looked with interest to the huge success that these applications were achieving
and it has started to investigate many issues that arise in this context, like per-
formance, usability, and robustness. These architectures appear as an interesting
paradigm for the development of many novel network applications.

One of the urgent issues to be investigated is the definition of security mech-
anisms that would permit to reduce the risks that are currently faced by users
of these applications. Anonymity of the interaction is one of the major reasons
of the success of these solutions, but it usually implies that no guarantee can
be assumed on the quality of resources available on the network. In previous
work we have designed a protocol [5] that focused on this issue and offered a
mechanism that, even in the presence of anonymous participants, permits to ask
the user community an opinion on a particular node. The reputation [15] of the
node can then be the basis on which a user can assess the risk of using a resource
retrieved by the network. The protocol is designed following traditional guide-
lines for secure protocols and is robust against attacks by malicious users, who
can badmouth reputable nodes or try to build a good reputation for a tampered
with resource.

In [5] we presented the main features of the protocol. In this paper we discuss
the implementation of the protocol and its integration with a P2P application.

2 Cornelli,Damiani,De Capitani,Paraboschi,Samarati
2 P2PRep protocol

In a traditional Gnutella interchange, a servent p looking for a resource broad-
casts to all its neighbors a Query message reporting the search keywords. Each
servent receiving the Query and with resources matching the request, responds
with a QueryHit message. The QueryHit message includes the number of files
num_hits that matched the keywords, a set of triples Result containing the files’
names and related information, the speed in Kb/second of the responder, the
servent_id of the responder, a trailer with application-specific data, and the pair
(IP,port) to be used to download the files. Based on the offers’ quality (e.g.,
number of hits and declared connection speed), as well as on possible preference
criteria, p then chooses the servent from which to execute the download and
directly contacts it for the download.

Our proposal, called P2PRep, enhances this process by providing a reputation-
based protocol by which p can assess the reliability of an offerer before actually
downloading a resource from it. The basic idea is very simple. After a servent
downloads a resource from another servent, it can record whether or not the
download has completed to its satisfaction. Before downloading a resource from
another servent, a servent can poll its peers about their knowledge of the offerer,
thus assessing its reputation. If that offerer is then chosen, the downloading ser-
vent can update its local recording of both the offerer (recording whether the
downloaded resource was satisfactory or not) and the peers that expressed an
opinion on it (recording whether their opinion on the offerer matched the final
outcome — credibility).

The realization of the protocol requires some considerations. First, in order to
keep track of a servent’s reputation and credibility, identifiers’ persistency must
be assumed. In traditional Gnutella, the identifier with which a servent presents
itself can, in principle, change at every session. However, a servent wishing to es-
tablish some reputation as offerer or voter is encouraged to maintain its identifier
persistent. Note that this does not imply that the servent’s identity is disclosed,
as the declared identifier works only as a pseudonym (opaque identifier).* Second,
care must be taken to ensure confidentiality and integrity of the messages being
exchanged. To this purpose, our protocol uses public key encryption. In partic-
ular, a servent’s identifier is assumed to be the digest of a public key, obtained
using a secure hash function, and for which the servent knows the corresponding
private key. Exchanged messages are assumed to be signed with a secret key
established by the sender (when integrity must be ensured) and encrypted with
a public key established by the recipient (when message confidentiality must be
ensured). The key ring used to these purposes can be the pair associated with a
servent’s identifier or can be generated ad-hoc for the exchange (if the identifier
of the involved servent is not to be disclosed).

4 The ability of changing pseudonyms at any time, makes it possible for malicious
peers to not be recognized from one interaction to another simply by changing their
identifier. This is not a problem as by changing their identifiers, such peers will start
as new, with no reputation at all, and they are therefore unlikely to be chosen.

Implementing a Reputation-Aware Gnutella Servent 3

Protocol 1 P2PRep protocol

Initiator: Servent p
Peers: Participants in the message broadcasting, among which a set O of offerers and a set V' of voters

INITIATOR
Phase 1: Resource searching
(G) 1.1 Start a search request by broadcasting a Query message
Query(search_string,min_speed)
(G) 1.2 Receive a set of offers from offerers O
QueryHit(num_hits,IP,port,speed, Result,trailer,servent_id;)
Phase 2: Polling
2.1 Select top list T C O of offerers
2.2 Generate a pair of public, secret keys (PKpo11,SKpoii)
2.3 Poll peers about the reputations of offerers T'
Poll(T,PKpa”)
2.4 Receive a set, of votes from voters V
PollReply({[(I P, port, Votes, servent_idi)|sk; , PKi) }PKpor1)
Phase 3: Vote evaluation
3.1 Remove from V voters that appear suspicious (e.g., checking IP addresses)
3.2 Select a random set V' C V of voters and check their identity by sending message
AreYou(servent_id;)
3.3 Expect back confirmation messages from each selected voter
AreYouReply(response)
Phase 4: Resource downloading
4.1 Select servent s from which download files
4.2 Generate a random string r
4.3 Send a challenge message to s
challenge(r)
4.4 Receive a response message from s containing its public key PK; and the challenge
signed with its private key sK,
response([r]SKs,PKs)
4.5 If the challenge-response exchange fails terminate the process
(G) 4.6 Download the files
4.7 Update experience and credibility repository

PEERS
Q.1 Upon receiving a search request (Query message), check if any locally stored files
match the query and if so send a QueryHit message
Q.2 Broadcast the query through the P2P network

P.1 Upon receiving a poll request (Poll message), check if know any of the servents listed in
the poll request and express an opinion on them by sending a PollReply message

P.2 Broadcast the poll request through the P2P network

P.3 Upon receiving an AreYou message confirm the identity by sending a AreYouReply

Fig. 1. Sequence of messages and operations in the P2PRep protocol

4 Cornelli,Damiani,De Capitani,Paraboschi,Samarati

Figure 1 illustrates the operations executed and the messages exchanged
in the context of a P2PRep enhanced interaction. In the figure, a “(G)” at
the beginning of a step indicates that the step pertains to traditional Gnutella
interchange; unmarked steps are peculiar to our protocol. The application of
encryption is indicated with notations [text]sk, when tezt is signed with private
key sk, and {text}pk, when tezt is encrypted with public key PK.

From the point of view of the servent looking for the resource, the proto-
col can be seen separated in four phases: 1) resource searching, 2) polling, 3)
vote evaluation, and 4) resource downloading. Resource searching works like in
a traditional Gnutella interchange. Then, in phase 2, p determines, based on
some preference criteria, a top list of offerers and broadcasts a Poll message
requesting peers to vote on them. In the message, p also includes a public key
PK,on with which voters are requested to encrypt their replies to the poll (so to
maintain the confidentiality of the votes when transiting on the network). Before
encrypting their votes with PKy.y for transmission, voters will sign them with
their secret key. This allows p to assess that votes have not been modified in
transit. Phase 3 evaluates collected votes identifying possible cliques under the
control of individual servents, discards suspicious votes, and selects a random
set of voters which are contacted directly, via the pair (IP,port) they declared,
to assess the correct origin of votes. Based on the election outcome, p can decide
the servent from which download the resources. The actual download is preceded
by a challenge-response handshake between p and the selected servent. In this
way p makes sure that it is actually talking to the servent corresponding to the
declared identity. (The challenge-response exchange exploits the fact that a ser-
vent’s identifier is a digest of its public key). After the download completes, and
based on its outcome, p updates its local repositories where it maintains its own
view of peers’ reputation and credibility.

Figure 5 also reports the operations of the other peers in the network. Peers,
beside flooding the messages to others according to the Gnutella protocol, can
originate responses by responding to queries as resource offerers (step Q.1) or to
polls as voters (steps P.1 and P.2).

P2PRep was designed to be robust against most well-known security threats
posed to reputation-based systems on anonymous P2P networks. Pseudo-spoofing
and shilling are two typical attacks to reputations, both exploiting the fact that
on a P2P network peers’ identities are not certified by any global authority. In
pseudo-spoofing attacks, a malicious peer alleges that many witnesses are ready
to vouch for its reputation, and produces a false witness list by forging the witness
identities. In shilling attacks, a malicious peer actually creates and activates a
number of false witnesses, ready to vouch for it. Recently, the term sybil attacks[7]
has been proposed to designate all attacks of this kind. Our approach does not
try to prevent all sybil attacks completely; rather, P2PRep tries to prevent
pseudo-spoofing and increase the cost of shilling. Pseudo-spoofing prevention is
obtained by checking the IP addresses of part of the peers that voted in favour
of a servent: if a voter is not on line, its vote is eliminated from the poll. On
the other hand, the choice of the IP addresses to be checked is not random,

Implementing a Reputation-Aware Gnutella Servent 5

» HTTP o
¥l dient/Server [

Resource
File Locat or Quer
DB T 4
\
\

Y

\ GRout er
AY
~-—-P R
777 =
Pol |
Reputation [™77°77 g
Manager [S
- 7y G5iiin
Experi ence “Extract H vslr ?Py :
DB Updat e *KeyGen !
i Crypt o User

Fig. 2. Typical component-based structure of a Gnutella servent

but relies on an evaluation of their heterogeneity[20]. While our technique can
indeed be beaten, doing so would require a malicious peer to incur in the cost
of setting up false witnesses having highly heterogeneous IP addresses. Increases
in IP address reliability may make this task potentially very difficult.

3 Design and implementation of a P2PRep enhanced
servent

Component-based techniques are widely used for designing and implementing
distributed software systems. We relied on component-based design both to re-
verse engineer and complement the internal structure of a Gnutella servent to
support reputations.

3.1 P2PRep Extensions to Gnutella servents

Figure 2 shows the modular structure of a Gnutella servent; the dotted line
encloses three additional components that are not present in ordinary servents
but are needed to support the P2PRep protocol.

— The Reputation Manager manages all the new messages needed to send and
receive reputation values.

— The Experience DB manages a repository (see Section 3.2) storing the ex-
perience values accumulated during past interactions with respect to repu-
tations and credibilities.

— The Crypto Agent implements all encryption functions used in the proto-
col. This component must generate the key pair used in the asymmetric
protocol.?

% In our current prototype we use RSA with 512 bits keys. This key can be encoded
in 128 bytes, substituting 8 bits with two bytes in the set: (0 — 9, A — F'). This

6 Cornelli,Damiani,De Capitani,Paraboschi,Samarati

User Manager GRouter Reputation Manager NET HTTP Client/Server

Search(criteria)
Query(message)

QueryHit(replymessage)

ChooseServents(replies)

Poll(servents)

Poll(Servents)

PollReply(votes)

_PollReply(votes) N

AreY ou(servent)

AreY ou(servent)

{AreY ouReply()

. AreYowReoly() |]

GoodServents()

SearchReply()

Fig. 3. UML Sequence diagram of a search session

Besides adding the auxiliary software components listed above, some minor
changes to existing components must be introduced in order to manage reputation-
related messages. Message routing in itself requires no changes: reputation-
related messages can be routed as usual, because they are piggybacked on cur-
rently defined messages (Section 3.3). However, the part of GRouter that unpacks
incoming messages should now recognize new unicast and multicast messages.
This modification can be done quite easily in most current implementations.
The method invocations’ sequence of a file search is summarized in Figure 3.
The User Manager sends a Query message to the GRouter containing the search
criteria. The GRouter recognizes the incoming message as a multicast one and
spreads it on the Gnutella network. When replies arrive, a standard Gnutella
servent would pass them on to the User Manager component, which is responsi-
ble to show them to the user. In our prototype, GRouter selects a subset of the
servents listed in the reply set; choice criteria are the servents’ connection speeds,
the extra information included in some version of the protocol,® and the con-
tent of Experience DB, which is queried using the servent identifier ServentID
as key. The Reputation Manager uses the record extracted from Experience
DB to decide whether to trust the corresponding servent or not. After a set of
reliable servents has been chosen, a poll message is broadcast by the GRouter.
Replies to the poll request are forwarded to the Reputation Manager. The last

substitution is done whenever the field is a null-terminated string. The MD5 digest
algorithm is used, producing signatures of 128 bits, encodable in 16 or 32 bytes.

6 For instance OpenData [20] allows servent to store the speed of their last 10 uploads,
if they have succesfully uploaded at least one file, if they are busy, and also if their
connection is firewalled.

Implementing a Reputation-Aware Gnutella Servent 7

NET GRouter Resource Locator Reputation Manager Experience DB | | HTTP Client/Server
Query(message)
SearchFiles(criteri
| Offerfiles
. QueryHit(files) _
Poll(servents)
Poll(servents)

About(servents)

Reputation(servents)

PollReply(votes)

PollReply(votes)

AreY ou(servent)

AreY ouReply()

Fig. 4. UML Sequence diagram of a reply session

step of P2PRep requires this component to verify votes through a direct connec-
tion. The percentage of servents that are actually contacted is a configuration
parameter that is set by the user.

Once verification has been completed, the Resource Locator can associate,
with each servent, the sum of all positive votes about it.” Votes given by servents
that are considered not trustable by the credibility repository are ignored, and
the best servent is chosen for download via HTTP Client/Server.

After downloading, the user may cast a vote about the resource. This binary
vote is used to update Experience DB, and properly changing the reputation of
the servent that provided the resource and those who voted for it.

At the receiving end, the method invocation sequence is summarized in Fig-
ure 4. Incoming queries are unpacked by GRouter and sent to Resource Locator
which is responsible of checking in the file repository if there are files that match
that criteria. The information on these files is sent to GRouter that just send
it back, in a QueryHit message. When the corresponding Poll reply arrives, it
is sent to the Reputation Manager which checks if there are records about the
servents listed in the message. If this is the case, it passes the encrypted infor-
mation about them to the GRouter. The latter then sends a Pol1Hit message.
Note that IP verification messages come directly to the HTTP Client/Server
component, that is able to reply correctly.

3.2 Repository Schema

Several schema and data model solutions can be adopted for the reputations’
repository managed by the Experience DB component. In our current implemen-

T Our current implementation considers binary votes, where 1 represents a positive
vote (in favor of the servent) and 0 a negative vote.

8 Cornelli,Damiani,De Capitani,Paraboschi,Samarati

tation, the reputations’ repository consists of two tables, namely experience_repository
and credibility.repository. The digest of each servent’s public key is used

to compute the ServentID, which is the primary key of both tables. The tables’
schemata are summarized below:

— experience_repository: (ServentID,num_plus,num minus,timestamp)
— credibility_repository: (ServentID,num_agree,num notagree,timestamp)

In the above schemata, num_plus and num minus respectively store the ser-
vent’s positive and negative experiences with the peer having servent identifier
ServentID, while num agree and num notagree contain the number of times
that the vote expressed by ServentID was confirmed or not by the servent’s
experience. ServentID is 16 bytes long while the remaining fields are 4 bytes
each. The purpose of the timestamp is supporting an experience and credibility
lifecycle, allowing for filtering out entries unused for a long time. Each entry of
the experience table is 28 bytes long, this means that less than 700Kb are needed
for 25.000 servents; therefore, a relatively limited amount of storage should be
enough to keep trace of both experience and credibility of all relevant servents. It
is worth noticing that P2P applications are typically used to exchange resources
of considerable size and the space required, even by an extensive repository,
should be quite manageable.

3.3 Additional protocol messages

The implementation of P2PRep requires two additional protocol messages: Poll
and PollHit. Since interoperability with the existing Gnutella network is of
paramount importance, new messages introduced by our extension should be
routable via standard servents. Our implementation satisfies these requirements
by piggybacking the additional messages on standard Query and QueryHit Gnutella
messages. Namely, Poll messages are implemented using the field search criteria
of standard Query messages. As described before, Pol1l messages carry a servent
list and a session public key. In order to identify the message and its encoding
correctly, the payload starts with the string REP:poll:HEX as shown in Fig-
ure 5, followed by a list of the ServentIDs of all servents whose reputation is
being checked. At the end of the message there is the public key of the polling
session. Standard Gnutella servents will process piggybacked queries as ordinary
ones that do not match any file. In turn, Pol1Hit messages are realized piggy-
backing QueryHit Gnutella messages. The first file entry contains zeros both as
index and size, and the string REP:phit :HEX is specified as filename. We use the
private data field in the trailer (introduced by version v1.3.0 of the BearShare
servent), to store the encrypted payload and its signature. The payload, en-
crypted with RSA(512), begins with the servent’s IP and Port. A sequence of
index-vote pairs follows, where index is a two bytes field specifying the position
of the ServentID in the Poll message, while vote is encoded in one byte. The
payload ends with the Servent public key. A 64 bytes long signature for the
whole message is appended. It is computed as follows: a digest of the plaintext

Implementing a Reputation-Aware Gnutella Servent 9

Query
‘ minimum sp%d‘ search criteria \0
1
QueryHit
‘ header ‘ result set ‘ trailer ‘ Servent|D ‘
16
header
‘number of hits‘ port ‘ ip address ‘ speed ‘
1 2 4 4
result set
‘fileindex filesize filename \0‘ fileindex: filesize filename ‘
4 4
trailer
‘vendor code‘ open datasize open data ‘ private data ‘
4 1
Poll
‘minimumspeed"'REP:poIl:HEX" ServentID : ServentID ‘ public key \0‘
1 12 32 32 128
PollReply
‘ header ‘O 0 “REP:phit:HEX"‘ trailer ‘ Servent|D ‘
4 4 12 16
trailer
‘vendor code‘ open datasize‘ open data ‘ encrypted payload ‘ signature ‘
4 1 64
encrypted payload
‘ IP ‘ Port ‘ Servent Index vote‘ Servent Index : vote ‘Servent Public Key‘
4 4 2 1 2 1 64

Fig. 5. Extensions to Gnutella messages in P2PRep

payload (MD5) is encrypted (using RSA) with the private key associated to the
servent public key. Finally, some of the incoming Pol1Hit messages are chosen
for vote checking and IP addresses listed in the messages are checked via a direct
connection. The message used to this purpose has the form AreYou(ServentID),
where ServentID is encoded in 32 bytes.

3.4 Performance

The P2Prep protocol requires a greater number of message exchanges for every
successful request. A limited impact on the performance of the P2P network is a
critical success factor for the protocol. The protocol additional exchanges can be
distinguished in broadcast and direct messages. It is reasonable to assume that
the major load of the protocol on network performance is due to broadcast mes-
sages. Direct communication requires the exchange of a limited number of quick

10 Cornelli,Damiani,De Capitani,Paraboschi,Samarati

of responders|# of reachable servents
Mean 785.7 343474.2
Standard Error 45.0 21095.6
Median 679 342000
Range 2213 946000
Minimum 71 16000
Maximum 2284 962000
95% CI min 696.3 301599.7
95% CI max 875.1 385348.7

Table 1. Statistical measures obtained by 100 experimental sessions

messages. For instance direct connections are used to implement the AreYou
message, which is a call to the HTTP Client/Server module. This exchange is
very quick, as the message contains only few bytes and it is directed to a few
of the nodes that expressed their votes on a servent. Indeed, most performance
models of P2P networks stress as a limiting factor the aggregate bandwidth
required by the exchange of broadcast messages.

To evaluate the impact that the broadcast Poll messages could have on
the P2P network, we ran a few experiments that returned a few quantitative
measures, on which a preliminary analysis was based.

A first series of experiments was dedicated to identify the regularity on the
behavior of the network, in terms of number of reachable hosts and number of
answers to a query.

The experiments were realized connecting our client to 10 fast servents. Each
session lasted 10 minutes and at the end of the session we recorded the number
of hosts that were signaled as reachable by the protocol. We repeated this ex-
periment 100 times in two days and the results are shown in Table 1. After 5
minutes in each session we started a search for a common file (5 minutes are in
our experience sufficient to reach a stable horizon, with a fast Internet connec-
tion as the one we were using). The node waited for results of the search for 5
minutes, until the end of the session.

The results we obtained indicate a relative stability of the network configura-
tion. Both the number of reachable hosts and the number of replies to the search
request exhibit a limited variation interval for the 95% of the measures. Also,
the number of hosts that are reachable is relatively high and this guarantees
that a sizable portion of the Gnutella network is within the horizon. It is then
reasonable to assume that the protocol will be able to find an adequate reputa-
tion support for the nodes which have offered, for a period, quality resources on
the network.

We now estimate the size of the messages required to evaluate the reputation
of servents offering a resource. First, we observe that many servents can be
polled with a single Poll message. The size of Poll message is proportional
to the number of servents to inquire. As most implementations drop messages

Implementing a Reputation-Aware Gnutella Servent 11

|Class||Speed|# of servents|% over tota1|

Cell 0 361,804 3.32%
14 14 55,293 0.51%
28 28 715,546 6.56%

56K 53 460,544 4.22%

ISDN 128 1,665,283 15.27%
Cable 384 3,351,010 30.73%

DSL 768 1,151,967 10.56%
T1 1500 1,508,287 13.83%
T3 | >1500 1,634,979 14.99%

Total 10,904,713 100%

Table 2. Speed of servents that responded to queries

bigger than 64k bytes [19], a Po11 message can carry up to around 4,000 different
ServentID. We assume that it will not be necessary to ask on the reputation
of so many servents. Instead, we assume that when a resource is offered by
many servents, the client could select a subset of the servents to inquire, using
as selection parameters the bandwidth that servents offer (faster is better) and
heterogeneity in the IP address. Assuming to choose only 10 to 20 servents, the
impact of the polling phase becomes comparable to an additional query delivered
onto the network. To evaluate the distribution of network bandwidth among the
servents, we ran another series of experiments. For a total of 32 hours a Gnutella
node logged all the QueryHit traffic. The speed of the servents is distributed as
shown in Table 2. We can see that most of the servents declare a high bandwidth,
it is then reasonable to assume that a restriction only to servents offering a high
bandwidth will not pose a limit on the number of servents that could offer the
resource.

Several optimizations can reduce the impact of P2PRep on network perfor-
mance. For instance, reputations can be cached on the nodes, and servents that
have already been voted as reliable following a search, can keep the reputation
for the remainder of the session. Reputations may be kept across sessions, fur-
ther reducing the number of polling requests (at the expense of an increase in
the storage requirements and a decrease in the responsiveness of the network to
node misbehavior).

4 Handling resource-based reputation

The solution described in this paper considered reputations associated with ser-
vents. An alternative (or complementary) solution consists in associating repu-
tations with resources themselves. Intuitively, each resource can be associated
with a digest computed applying a secure hash function to the resource’s con-
tent. When a servent downloads a resource, it can record whether the resource
(identified by its digest) is satisfactory or not. Then, it can share this opinion

12 Cornelli,Damiani,De Capitani,Paraboschi,Samarati

QueryHit
‘ header ‘ result set ‘ trailer ‘ServentlD‘
16
header
‘ number of hits ‘ port ‘ ip address ‘ speed ‘
1 2 4 4
result set
‘fileinda(filesize filename \0‘ fileindex: filesize filename ‘ ‘
4 4
XPoll
minimum speed ‘ "XREP:poll:HEX"MD5 : MD5 ‘ public key ‘
1 12 32 32 256
XPollReply
‘ header ‘ 0 0 | "XREP:phit:HEX" ‘ trailer ‘ServentlD‘
4 4 12 16
trailer
‘vendorcode‘ opmdatasjze‘ open data ‘ fileindex : vote ‘
4 1 2 1

Fig. 6. Extensions to Gnutella messages in XP2PRep

with others by responding to Poll requests broadcasted by a protocol’s initia-
tor to enquire about resource reputations (in contrast to servent’s reputations).
With respect to message exchanges, the resource-based reputation solution works
essentially in the same way as the servent-based one. The messages content is
adapted to support references to resources as illustrated in Figure 6.

Also, experience repository will need to refer to resources. Unlike with ser-
vents it is sufficient to maintain just a record stating whether the resource is
reliable or not (there is no need to maintain good and bad records). The reposi-
tory has then three fields: digest, vote, and timestamp. With a digest 16-bytes
long, a vote 1-byte long, and timestamp 4-bytes long, we can store up to 50,000
entries in 1 Mb. Therefore, while the number of resources is expected to be much
greater than the number of servents, the storage requirements appear not to be
a problem.

5 Conclusions and Future Work

We have presented the design and implementation of a reputation-aware Gnutella
servent. The overall rationale and some specific choices of our design were dis-
cussed. Our experience shows that introducing reputations does not require ex-
tensive re-engineering either of existing clients or of the Gnutella protocol itself.
The additional performance burden of managing and exchanging reputation data
does not seem to significantly degrade Gnutella’s performance. The piggybacking
technique adopted in our implementation allows our reputation-aware servents

Implementing a Reputation-Aware Gnutella Servent 13

to take advantage of the evolution of the standard Gnutella protocol.® In our
opinion, P2PRep performance impact is potentially well counterbalanced by the
overall increase in P2P network security that could result from its large scale
adoption.

In the long run, reputation-based protocols may even allow P2P systems to
preserve anonymity without the need of costly central agencies for managing
identities [7]. We are well aware that servent self-regulation alone cannot guar-
antee identity persistence; however, cooperative solutions like P2PRep encourage
servents that want to act as distribution points to keep a single, trusted identity.

P2P applications are evolving very quickly and many of the results we present
in the paper will have to be adapted to the architectures that are now going to be
implemented (e.g., architectures with ultra-peers, as the architecture on which
the last version of the Gnutella protocol is based). Also, our future implemen-
tations will rely on richer query support provided by sophisticated Gnutella
servents. Limewire, for instance, implements a new XML-based encoding for
Gnutella queries. With respect to Gnutella 0.4 queries [20], the Limewire for-
mat uses an additional section, located after the ordinary query, to contain the
extended query. A valid extended query has to comply with an XML schema
specified via a Uniform Resource Identifier (URI). Several standard URIs have
already been defined, but other XML schemata can be added. By defining a suit-
able XML schema, meta-information could be added to our protocol messages,
enabling P2PRep aware servents to exchange semantically richer information
about other servents and resources.

References

1. E. Adar and B. Huberman. Free riding on gnutella. Technical report, Xerox PARC,
August 2000.

2. P.C. van Oorschot A.J. Menezes and S.A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

3. S. Bellovin. Security aspects of Napster and Gnutella. In Proc. of USENIX 2001,
Boston, June 2001.

4. 1. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Proc. of the ICSI Workshop on Design
Issues in Anonymity and Unobservability, Berkeley, CA, July 2000.

5. F. Cornelli, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Sama-
rati. Choosing reputable servents in a P2P network. In Proc. of the Eleventh
International World Wide Web Conference, Honolulu, Hawaii, May 2002. To ap-
pear.

6. R. Dingledine, M.J. Freedman, and D. Molnar. The free haven project: Dis-
tributed anonymous storage service. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, California, USA, July 2000.

7. John R. Douceur. The sybil attack. In Proc. of the IPTPS02 Workshop, Cambridge,
MA (USA), March 2002.

8 For example, LimeWire’s Ping messages are not routed as usual multicast messages,
but cached. This solution could be used also for ServentID, fostering reduction of
the length of Pol1Hit messages.

14

10.

11.

12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

Cornelli,Damiani,De Capitani,Paraboschi,Samarati

. P. Druschel and A. Rowstron. Past: A large-scale persistent peer-to-peer storage

utility. In Proc. of the Eight IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Schoss Elmau, Germany, May 2001.

Carl Ellison. SPKI certificate documentation.
http://www.pobox.com/~cme/html/spki.html.

B. Gladman, C. Ellison, and N. Bohm. Digital signatures, certificates and electronic
commerce. http://citeseer.nj.nec.com/277887.html.

P. Golle and K. Leyton-Brown. Incentives for sharing in peer-to-peer networks.
In Proc. of the Third ACM Conference on Electronic Commerce, Tampa, Florida,
USA, October 2001.

L. Gong. JXTA: A network programming environment. IEEE Internet Computing,
5(3):88-95, May/June 2001.

Napster. http://www.napster.com.

Openprivacy. http://www.openprivacy.org.

A. Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly & Associates, March 2001.

M. Parameswaran, A. Susarla, and A.B. Whinston. P2P networking: An
information-sharing alternative. IEEE Computer, 34(7):31-38, July 2001.

M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. Technical
Report TR-2001-26, University of Chicago, Department of Computer Science, July
2001.

S. Saroiu, P.K. Gummadi, and S.D. Gribble. A measurement study of peer-to-peer
file sharing systems. In Proc. of the Multimedia Computing and Networking, San
Jose, CA, January 2002.

S. Thadani. Free riding on gnutella. Technical report, LimeWire LLC, 2001.
http://www.limewire.org.

The Gnutella Protocol Specification v0.4 (Document Revision 1.2), June 2001.
http://www.clip2.com/GnutellaProtocol04.pdf.

B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems. In Proc. of
the 27th International Conference on Very Large Data Bases, Rome, Italy, Septem-
ber 2001.

