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Abstract. Peer-to-peer(p2p)networkingtechnologieshavegainedpopularityas
a mechanismfor usersto sharefiles without theneedfor centralizedservers.A
p2p network provides a scalableand fault-tolerantmechanismto locatenodes
anywhere on a network without maintaininga large amountof routing state.
Thisallowsfor avarietyof applicationsbeyondsimplefile sharing.Examplesin-
cludemulticastsystems,anonymouscommunicationssystems,andwebcaches.
We survey securityissuesthatoccurin theunderlyingp2proutingprotocols,as
well asfairnessandtrust issuesthatoccurin file sharingandotherp2papplica-
tions.Wediscusshow techniques,rangingfrom cryptography, to randomnetwork
probing,to economicincentives,canbeusedto addresstheseproblems.

1 Introduction

Peer-to-peersystems,beginningwith Napster, Gnutella,andseveralotherrelatedsys-
tems,becameimmenselypopularin thepastfew years,primarily becausethey offered
a way for peopleto get musicwithout payingfor it. However, underthe hood,these
systemsrepresentaparadigmshift from theusualwebclient/servermodel,wherethere
areno“servers;”everysystemactsasapeer, andby virtueof thehugenumberof peers,
objectscanbe widely replicated,providing the opportunityfor high availability and
scalability, despitethelackof centralizedinfrastructure.

Capitalizingon this trend, researchershave definedstructuredpeer-to-peer(p2p)
overlayssuchasCAN [1], Chord[2], Pastry[3] andTapestry[4] provideaself-organizing
substratefor large-scalep2papplications.Unlike earliersystems,thesehavebeensub-
jectto moreextensiveanalysisandmorecarefuldesignto guaranteescalabilityandeffi-
ciency. Also, ratherthanbeingdesignedspecificallyfor thepurposeof sharingunlawful
music,thesesystemsprovide a powerful platform for the constructionof a variety of
decentralizedservices,including network storage,contentdistribution, web caching,
searchingandindexing, andapplication-level multicast.Structuredoverlaysallow ap-
plications to locateany object in a probabilisticallybounded,small numberof net-
work hops,while requiringper-noderoutingtableswith only asmallnumberof entries.
Moreover, thesystemsarescalable,fault-tolerantandprovideeffective loadbalancing.

Making thesesystems“secure”is asignificantchallenge[5,6]. In general,any sys-
temnotdesignedto withstandanadversaryis goingto bebrokeneasilyby one,andp2p
systemsareno exception.If p2psystemsareto bewidely deployedon theInternet(at
least,for applicationsbeyondsharing“pirate” musicfiles), they mustberobustagainst
a conspiracy of somenodes,acting in concert,to attackthe remainderof the nodes.
A maliciousnodemight give erroneousresponsesto a request,bothat theapplication



level (returningfalsedatato a query, perhapsin anattemptto censorthedata)or at the
network level (returningfalseroutes,perhapsin an attemptto partition the network).
Attackersmighthaveanumberof othergoals,includingtraffic analysisagainstsystems
thattry to provideanonymouscommunication,andcensorshipagainstsystemsthat try
to providehighavailability.

In additionto such“hard” attacks,someusersmaysimply wish to gainmorefrom
the network thanthey give backto it. Suchdisparitiescouldbe expressedin termsof
diskspace(whereanattackerwantsto storemoredataonp2pnodesthanis allowedon
theattacker’s homenode),or in termsof bandwidth(wherean attacker refusesto use
its limited network bandwidthto transmitafile, forcing therequesterto usesomeother
replica). While many p2p applicationsare explicitly designedto spreadload across
nodes,“hot-spots”canstill occur, particularlyif onenodeis responsiblefor a particu-
larly populardocument.

Furthermore,a numberof “trust” issuesoccur in p2p networks. As new p2p ap-
plicationsaredesigned,the codefor themmustbe deployed. In currentp2p systems,
thecodeto implementthep2psystemmustbetrustedto operatecorrectly;p2pservers
typically executewith full privilegesto accessthe network andharddisk. If arbitrary
usersare to createcodeto run on p2p systems,an architectureto safelyexecuteun-
trustedcodemustbe deployed. Likewise, the databeing shared,itself, might not be
trustworthy. Popularity-basedrankingsystemswill benecessaryto helpusersdiscover
documentsthatthey desire.

Of course,many other issuesexist that could be classifiedassecurityissuesthat
will notbeconsideredin thispaper. For example,onepressingproblemwith theKazaa
system,oftenusedto sharepiratedmusicandmovies,is its useof bandwidth[7], which
hasledmany ISPsanduniversitiesto eitherthrottlethebandwidthor banthesesystems
outright.Likewise,thispaperonly considerssecurityfor onehigh-levelp2papplication:
sharingfiles.Therearenumerousotherpossibleapplicationsthatcanbebuilt usingp2p
systems(e.g.,event notificationsystems[8, 9]), which would have their own security
issues.

The remainderof this paperis a survey of researchin theseareas.Section3 dis-
cussescorrectnessissuesin p2p routing.Section4 discussescorrectnessandfairness
issuesin p2pdatastorageandfile sharing.Section5 discussestrust issues.Section6
presentsrelatedwork andSection7 hasconclusions.

2 Background, models and solution

In this section,we presentsomebackgroundon structuredp2poverlayprotocolslike
CAN, Chord,TapestryandPastry. Spacelimitationspreventus from giving a detailed
overview of eachprotocol. Instead,we describean abstractmodelof structuredp2p
overlaynetworksthatwe useto keepthediscussionindependentof any particularpro-
tocol. For concreteness,we alsogive anoverview of Pastryandpoint out relevantdif-
ferencesbetweenit andtheotherprotocols.Next, wedescribemodelsandassumptions
usedlater in the paperabouthow nodesmight misbehave. Finally, we definesecure
routingandoutlineoursolution.



Throughoutthispaper, mostof theanalysesandtechniquesarepresentedin termsof
this modelandshouldapplyto otherstructuredoverlaysexceptwhenotherwisenoted.
However, the securityandperformanceof our techniqueswasfully evaluatedonly in
the context of Pastry; a full evaluationof the techniquesin other protocolsis future
work.

2.1 Routing overlay model

Wedefineanabstractmodelof astructuredp2proutingoverlay, designedto capturethe
key conceptscommonto overlayssuchasCAN, Chord,TapestryandPastry.

In ourmodel,participatingnodesareassigneduniformrandomidentifiers,nodeIds,
from a large id space (e.g.,the setof 128-bit unsignedintegers).Application-specific
objectsareassigneduniqueidentifiers,calledkeys, selectedfrom the sameid space.
Eachkey is mappedby the overlay to a uniquelive node,called the key’s root. The
protocolroutesmessageswith agivenkey to its associatedroot.

To routemessagesefficiently, all nodesmaintaina routing table with thenodeIdsof
severalothernodesandtheir associatedIP addresses.Moreover, eachnodemaintains
a neighbor set, consistingof somenumberof nodeswith nodeIdsnearestitself in the
id space.SincenodeIdassignmentis random,any neighborset representsa random
sampleof all participatingnodes.

For fault tolerance,applicationobjectsarestoredatmorethanonenodein theover-
lay. A replica function mapsanobject’skey to asetof replica keys, suchthatthesetof
replica roots associatedwith thereplicakeys representsa randomsampleof participat-
ing nodesin theoverlay. Eachreplicarootstoresacopy of theobject.

Next, we discussexisting structuredp2p overlayprotocolsandhow they relateto
ourabstractmodel.

2.2 Pastry

PastrynodeIdsareassignedrandomlywith uniformdistribution from acircular128-bit
id space.Givena128-bitkey, Pastryroutesanassociatedmessagetowardthelivenode
whosenodeIdis numericallyclosestto the key. EachPastry nodekeepstrack of its
neighborsetandnotifiesapplicationsof changesin theset.
Node state: For thepurposeof routing,nodeIdsandkeys arethoughtof asa sequence
of digits in base2b (b is a configurationparameterwith typical value 4). A node’s
routingtableis organizedinto 128

�
2b rows and2b columns.The2b entriesin row r of

theroutingtablecontaintheIP addressesof nodeswhosenodeIdssharethefirst r digits
with thegivennode’snodeId;ther � 1thnodeIddigit of thenodein columnc of row r
equalsc. Thecolumnin row r thatcorrespondsto thevalueof the r � 1th digit of the
local node’snodeIdremainsempty. A routingtableentry is left emptyif no nodewith
theappropriatenodeIdprefix is known. Figure1 depictsanexampleroutingtable.

Eachnodealsomaintainsaneighborset.Theneighborsetis thesetof l nodeswith
nodeIdsthatarenumericallyclosestto a givennode’s nodeId,with l

�
2 largerandl

�
2

smallernodeIdsthanthegivennode’s id. Thevalueof l is constantfor all nodesin the
overlay, with a typical valueof approximately� 8 � log2bN � , whereN is thenumberof
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Fig. 1. Routingtableof aPastrynodewith nodeId65a1x, b � 4.Digits arein base16,x represents
anarbitrarysuffix.

expectednodesin theoverlay. Theleafsetensuresreliablemessagedeliveryandis used
to storereplicasof applicationobjects.

Message routing: At eachroutingstep,anodeseeksto forwardthemessageto a node
in therouting tablewhosenodeIdshareswith thekey a prefix that is at leastonedigit
(or b bits) longerthantheprefixthatthekey shareswith thecurrentnode’sid. If nosuch
nodecanbe found, the messageis forwardedto a nodewhosenodeIdsharesa prefix
with thekey aslong asthecurrentnode,but is numericallycloserto thekey thanthe
currentnode’s id. If no appropriatenodeexists in eitherthe routing tableor neighbor
set,thenthecurrentnodeor its immediateneighboris themessage’sfinal destination.

Figure2 shows thepathof anexamplemessage.Analysisshows that theexpected
numberof routinghopsis slightly below log2bN, with adistributionthatis tight around
themean.Moreover, simulationshows that therouting is highly resilientto crashfail-
ures.

To achieve self-organization,Pastrynodesmustdynamicallymaintaintheir node
state,i.e., theroutingtableandneighborset,in thepresenceof nodearrivalsandnode
failures.A newly arriving nodewith thenew nodeIdX caninitialize its stateby asking
any existing PastrynodeA to routea specialmessageusingX asthekey. Themessage
is routedto the existing nodeZ with nodeIdnumericallyclosestto X . X thenobtains
theneighborsetfrom Z andconstructsits routingtableby copying rows from therout-
ing tablesof the nodesit encounteredon the original route from A to Z. Finally, X
announcesits presenceto the initial membersof its neighborset,which in turn update
their own neighborsetsandrouting tables.Similarly, the overlaycanadaptto abrupt
nodefailure by exchanginga small numberof messages(O � log2bN � ) amonga small
numberof nodes.
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Fig. 2. Routinga messagefrom node65a1 f c with key d46a1c. The dotsdepict live nodesin
Pastry’scircularnamespace.

2.3 CAN, Chord, Tapestry

Next, we briefly describeCAN, ChordandTapestry, with an emphasison the differ-
encesrelative to Pastry.

Tapestry is very similar to Pastrybut differs in its approachto mappingkeys to
nodesandin how it managesreplication.In Tapestry, neighboringnodesin thenames-
pacearenot awareof eachother. Whena node’s routing tabledoesnot have anentry
for anodethatmatchesakey’snth digit, themessageis forwardedto thenodewith the
next highervaluein thenth digit, modulo2b, foundin theroutingtable.Thisprocedure,
calledsurrogate routing, mapskeys to a uniquelivenodeif thenoderoutingtablesare
consistent.Tapestrydoesnot have a directanalogto a neighborset,althoughonecan
think of the lowestpopulatedlevel of theTapestryroutingtableasa neighborset.For
fault tolerance,Tapestry’sreplicafunctionproducesasetof randomkeys,yieldingaset
of replicarootsat randompointsin theid space.Theexpectednumberof routinghops
in Tapestryis log2bN.

Chord usesa 160-bit circular id space.Unlike Pastry, Chord forwardsmessages
only in clockwisedirectionin thecircular id space.Insteadof theprefix-basedrouting
tablein Pastry, Chordnodesmaintaina routing tableconsistingof up to 160pointers
to otherlive nodes(calleda “finger table”). The ith entry in thefinger tableof noden
refersto thelivenodewith thesmallestnodeIdclockwisefrom n � 2i ( 1. Thefirst entry
points to n’s successor, andsubsequententriesrefer to nodesat repeatedlydoubling
distancesfrom n. Eachnodein Chordalsomaintainspointersto its predecessorandto
its n successorsin the nodeIdspace(this successorlist representsthe neighborset in
our model).Like Pastry, Chord’s replicafunctionmapsanobject’s key to thenodeIds
in the neighborsetof thekey’s root, i.e., replicasarestoredin the neighborsetof the
key’sroot for fault tolerance.Theexpectednumberof routinghopsin Chordis 1

2log2N.
CAN routesmessagesin ad-dimensionalspace,whereeachnodemaintainsa rout-

ing tablewith O � d � entriesandany nodecanbereachedin � d �
4 �)� N1* d � routinghopson



average.Theentriesin anode’sroutingtablereferto its neighborsin thed-dimensional
space.CAN’sneighbortabledualsasboththeroutingtableandtheneighborsetin our
model.Like Tapestry, CAN’s replicafunctionproducesrandomkeys for storingrepli-
casat diverselocations.Unlike Pastry, TapestryandChord,CAN’s routing tabledoes
not grow with thenetwork size,but thenumberof routinghopsgrows fasterthanlogN
in this case.

TapestryandPastryconstructtheir overlayin a Internettopology-awaremannerto
reduceroutingdelaysandnetwork utilization. In theseprotocols,routing tableentries
canbechosenarbitrarily from anentiresegmentof thenodeIdspacewithout increas-
ing theexpectednumberof routinghops.Theprotocolsexploit this by initializing the
routingtableto referto nodesthatarenearbyin thenetwork topologyandhavetheap-
propriatenodeIdprefix. This greatlyfacilitatesproximity routing[3]. However, it also
makesthesesystemsvulnerableto attackswhereanattacker canexploit his locality to
thevictim.

The choiceof entriesin CAN’s andChord’s routing tablesis tightly constrained.
TheCAN routing tableentriesrefer to specificneighboringnodesin eachdimension,
while the Chordfinger tableentriesrefer to specificpoints in the nodeIdspace.This
makesproximity routingharder, but it protectsnodesfrom attacksthatexploit attacking
nodes’proximity to their victims.

2.4 System model

The systemrunson a setof N nodesthat form an overlayusingoneof the protocols
describedin theprevioussection.We assumea bound f (0 + f , 1) on thefractionof
nodesthatmaybe faulty. Faultsaremodeledusinga constrained-collusionByzantine
failuremodel,i.e., faulty nodescanbehavearbitrarily andthey maynot all necessarily
beoperatingasa singleconspiracy. Thesetof faulty nodesis partitionedinto indepen-
dentcoalitions,which aredisjoint setswith sizeboundedby cN (1

�
N + c + f ). When

c - f , all faulty nodesmay colludewith eachotherto causethe mostdamageto the
system.We modelthe casewherefaulty nodesaregroupedinto multiple independent
coalitionsby settingc , f . Membersof a coalition canwork togetherto corrupt the
overlay but areunawareof nodesin othercoalitions.We studiedthe behavior of the
systemwith c rangingfrom 1

�
N to f to modeldifferentfailurescenarios.

Weassumethateverynodein thep2poverlayhasastaticIP addressatwhich it can
be contacted.In this paper, we ignorenodeswith dynamicallyassignedIP addresses,
aswell asnodesbehindnetwork addresstranslationboxesor firewalls.While p2pover-
layscanbeextendedto addresstheseconcerns,this paperfocuseson moretraditional
network hosts.

All nodescommunicateover normalInternetconnections.We distinguishbetween
two typesof communication:network-level, wherenodescommunicatedirectly with-
out routingthroughtheoverlay, andoverlay-level, wheremessagesareroutedthrough
theoverlayusingoneof theprotocolsdiscussedin theprevioussection.We usecryp-
tographictechniquesto preventadversariesfrom observingor modifyingnetwork-level
communicationbetweenlegitimate nodes.An adversaryhas completecontrol over
network-levelcommunicationto andfromnodesthatit controls.Thisgivesanadversary
anopportunityto observe andeitherdiscardor misroutetraffic throughfaulty nodesit



controls.If themessagesareprotectedby appropriatecryptography, thenmodifications
to themshouldbedetected.Somemessages,suchasroutingupdates,maynotbeeasily
amenableto theapplicationof cryptographictechniques.

3 Routing in p2p systems

Theroutingprimitivesimplementedby currentstructuredp2poverlaysprovide a best-
effort serviceto deliver a messageto a replica root associatedwith a given key. As
discussedabove,a maliciousoverlaynodehasampleopportunitiesto corruptoverlay-
level communication.Therefore,theseprimitivesarenot sufficient to constructsecure
applications.For example,wheninsertinganobject,anapplicationcannotensurethat
the replicasareplacedon legitimate,diversereplicarootsasopposedto faulty nodes
that impersonatereplicaroots.Even if applicationsusecryptographicmethodsto au-
thenticateobjects,maliciousnodesmay still corrupt,delete,deny accessto or supply
stalecopiesof all replicasof anobject.

To addressthisproblem,wemustcreateasecureroutingprimitive.The secure rout-
ing primitive ensures that when a non-faulty node sends a message to a key k, the
message reaches all non-faulty members in the set of replica roots Rk with very high
probability. Rk is definedasthesetof nodesthatcontains,for eachmemberof theset
of replicakeysassociatedwith k, a liverootnodethatis responsiblefor thatreplicakey.
In Pastry, for instance,Rk is simplyasetof livenodeswith nodeIdsnumericallyclosest
to thekey. Secureroutingensuresthat (1) themessageis eventuallydelivered,despite
nodesthatmaycorrupt,dropor misroutethemessage;and(2) themessageis delivered
to all legitimatereplicarootsfor thekey, despitenodesthatmayattemptto impersonate
a replicaroot.

Secureroutingcanbecombinedwith existingsecuritytechniquesto safelymaintain
statein a structuredp2poverlay. For instance,self-certifying data canbestoredon the
replica roots,or a Byzantine-fault-tolerantreplicationalgorithm [10] can be usedto
maintainthe replicatedstate.Securerouting guaranteesthat the replicasare initially
placedon legitimatereplicaroots,andthata lookup messagereachesa replicaif one
exists. Similarly, securerouting can be usedto build other secureservices,suchas
maintainingfile metadataanduserquotasin a distributedstorageutility. Thedetailsof
suchservicesarebeyondthescopeof this paper.

Implementingthesecureroutingprimitive requiresthesolutionof threeproblems:
securelyassigningnodeIdsto nodes,securelymaintainingthe routing tables,andse-
curelyforwardingmessages.SecurenodeIdassignmentensuresthatanattackercannot
choosethe valueof nodeIdsassignedto the nodesthat the attacker controls.Without
it, theattacker couldarrangeto controlall replicasof a givenobject,or to mediateall
traffic to andfrom a victim node.

Securerouting tablemaintenanceensuresthat the fractionof faulty nodesthatap-
pearin theroutingtablesof correctnodesdoesnot exceed,on average,thefractionof
faultynodesin theentireoverlay. Without it, anattackercouldpreventcorrectmessage
delivery, givenonly a relatively smallnumberof faulty nodes.Finally, securemessage
forwardingensuresthatat leastonecopy of amessagesentto akey reacheseachcorrect



replicaroot for thekey with highprobability. Thesetechniquesaredescribedin greater
detail in Castroet al. [5], but areoutlinedhere.

3.1 Secure nodeId assignment

In the original designof Pastry, and in many otherp2p systems,nodeIdsarechosen
at randomfrom thespaceof all identifiers(i.e., for Pastry, a randomlychosen128-bit
number).The problemwith sucha systemis that a nodemight chooseits identifier
maliciously. A coalitionof maliciousnodesthatwishesto censora specificdocument
couldeasilyallocateitself acollectionof nodeIdscloserto thatdocument’skey thanany
existing nodesin the system.This would allow the coalition to control all the replica
rootsfor thatdocument,giving themtheability to censorthe documentfrom the net-
work. Likewise,a coalitioncouldsimilarly choosenodeIdsto maximizeits chancesof
appearingin a victim node’s routing tables.If all the outgoingroutesfrom a victim
point to nodescontrolledby thecoalition,thenall of thevictim’saccessto theoverlay
network is mediated(andpossiblycensored)by thecoalition.It’s necessary, therefore,
to guaranteethatnodeIdsareassignedrandomly.

Thesimplestdesignto performsecurenodeIdassignmentsis to have a centralized
authority that producescryptographicnodeIdcertificates,a straightforward extension
to standardcryptographictechniques:ratherthanbindingane-mailaddressto a public
key, thesecertificatesinsteadbinda nodeId,chosenrandomlyby theserver, to apublic
key generatedby theclientmachine.Theserver is only consultedwhennew nodesjoin
andis otherwiseuninvolved in the actionsof the p2p system.As such,sucha server
would haveno impacton thescalabilityor reliability of thep2poverlay.

Regardless,to make sucha designwork, we mustconcernourselveswith Sybil at-
tacks[11], whereina hostilenodeor coalitionof nodesmight try to geta largenumber
of nodeIds.Evenif thosenodeIdsarerandom,a largeenoughcollectionof themwould
still give theattackersdisproportionatecontrolover thenetwork. Thebestsolutionwe
currentlyhave to this problemis to moderatethe rate at which nodeIdsaregivenout.
Possiblesolutionsincludecharging money in returnfor certificatesor requiringsome
form of externalauthentication.While it maybepossibleto usesomeform of crypto-
graphicpuzzles[12], thesestill allow attackerswith largecomputationalresourcesto
geta disproportionatenumberof nodeIds.

An openproblemis assigningrandomnodeIdswithout needinga centralizedau-
thority. We considereda numberof possibilities,includingvariationson cryptographic
puzzlesandmulti-partybit-commitmentschemes.Unfortunately, all suchschemesap-
pearto openthe possibility that an attacker can rejoin the network, repeatedly, and
eventuallygainanadvantage.

3.2 Robust routing primitives

Even with perfectnodeIdassignment,when an attacker controlsa fraction f of the
nodesin thep2pnetwork, wewouldexpectthateachentryin everyroutingtablewould
have a probability of f of pointing to a maliciousnode.If a desiredrouteconsumes
h hops,thenthe oddsof a completeroutebeingfree of maliciousnodesis � 1 . f � h.
In practice,with Pastry, if 50%of nodesaremalicious,thentheprobabilityof a route



reachingthecorrectdestinationrangesbetweenabout50%for overlaynetworkswith
1000nodes,to about25% for overlaynetworks with 1000000nodes.Theseoddsas-
sume,however, that an adversarycannotincreaseits probability of beingon a given
route.However, if the adversarycould take advantageof its locality to a givenvictim
nodeto getmoreentriesin thatnode’s routingtable,thentheadversarycouldincrease
its oddsof controllingany givenroutethatusesthevictim node.

To prevent locality-basedattacks,we introduceda techniquecalled constrained
routing, which tradesoff locality vs. performance.WherePastrynormally tries to fill
theroutingtablewith “local” nodes(i.e., low latency, high bandwidth)having thenec-
essarynodeIds,aconstrainedroutingtableinsistsonhaving theclosestnodes,in nodeId
space,to keyswhich havethenecessaryprefix andthesamesuffix asthenodeitself.

Next, we would like to increasetheoddsof a messagereachingthedesiredreplica
rootsbeyond the � 1 . f � h, describedabove. To do this, we canattemptmultiple, re-
dundantroutesfrom thesourceto thedestination.In Pastry, we do this by sendingthe
messagefromthesourcenodeto all of its neighborsin thep2poverlay.BecausenodeIds
arerandom,theneighborsshouldrepresentarandom,geographicallydiverse,sampling
of thenodesin thep2poverlay. Fromthere,eachneighbornodeforwardsthemessage
toward the targetnode.If at leastoneof theneighborscanachieve a successfulroute,
thenthemessageis consideredsuccessfullydelivered.Basedon modelingandcorrob-
oratedwith simulations,we havemeasuredthatthis operationcanbesuccessfulwith a
99/ 9%probability, aslongas f + 30%.

3.3 Ejecting misbehaving nodes

Our existingmodelsandsimulationsshow Pastrycanroutesuccessfullywhenasmany
as30% of the nodesin the p2p overlaynetwork aremalicious.However, it would be
preferableto have mechanismsto actively remove maliciousnodeswhenthey arede-
tected.An interestingopenproblemis how to removea maliciousnodefrom theover-
lay. While all p2poverlaysmusthave provisionsfor recoveringwhena nodefails,we
would like thesemechanismsto beinvocablewhenanodeis still aliveandfunctioning.
Whenonenodeaccusesanotherof cheating,thereneedsto be someway that it can
prove its accusation,in orderto convinceothernodesto ejectthemaliciousnodefrom
thenetwork.

While sucha proof may be generatedat the applicationlayer (seethe discussion
in Section4.2), it’s not clearhow sucha proof couldbegeneratedat therouting layer.
If a nodeis simply droppingmessageswith someprobabilityor is pretendingthatper-
fectly valid nodesdo not exist, suchbehavior couldalsobeexplainedby failuresin the
underlyingInternetfabric.Addressingthis, in general,is aninterestingopenproblem.

4 Storage

In thefollowing, we describehow applicationscansecurelymaintainstatewhile min-
imizing theuseof secureroutingfor performancereasons.A commonapproachto re-
ducerelianceon securerouting,whenreadinganobject,is to storeself-certifying data
in theoverlay. For example,CFS[13] usesa cryptographichashof a file’s contentsas



the key during insertionandlookup of the file, andPAST [14] insertssignedcontent
into theoverlay. Thisallowstheclient to useinsecure,moreefficient routingto retrieve
a copy of a file for reading.Whenthe client receivesa copy of the file, it checksits
integrity. If the client fails to receive a copy of the file or if the integrity checkfails,
thentheclient canusesecureroutingto retrievea (hopefully)correctcopy or to verify
thatthefile is simplyunavailablein theoverlay. Of course,it is importantto usesecure
routingfor any objectinsertionsbecause,otherwise,all replicasof thenew versionmay
bestoredon faultynodes.

Self-certifyingdatais a usefulsolutiononly whenthe client knows a hashfor the
documentit’s looking for. Evenwith self-certifyingpathnames[15], or otherformsof
Merklehashtrees[12] wheretheuserhasasecurehashof thedocumentbeingrequested
beforeit is loaded,the usermust trust the origin of that securehash.If the user is
usingsomekind of searchengine,cryptographictechniquescannotpreventundesirable
documentsappearingin the list of searchresults.And, no amountof cryptographic
integrity checkingcanpreventdenialof serviceattacks.

However, oncetheseproblemsareconsidered,theissueof incentives emergesasthe
predominantproblemfor multipleuserssharingtheirdiskspacewith oneanother. Why
shouldonecomputeruserallow her disk spaceandnetwork bandwidthto be usedby
anotheruser, somewhereelse?If possible,shemightpreferto contributenothingfor the
commongood,andconsumeothers’resourceswithout payingthem.To preventsucha
tragedy of the commons, thesystemmustbedesignedto limit how muchremotespace
onecanconsumewithoutproviding a suitableamountof storagefor theuseof others.

4.1 Quota Architectures

In theFarsitestudy[16], theauthorsnotedthatharddrivesareoftenrelatively empty.
As harddrivesgrow largerandlarger, this trendseemslikely to continue.If the goal
is to createa distributedstoragesystemusingthis emptyspace,an interestingfairness
issueoccurs.A maliciousnodemightchooseto claimits storageis full, whenit actually
hasfreespace.Or, moregenerally, it mightwishto usemorestoragefrom remotenodes
thanit providesfor the useof othersin the p2p system.Our goal is to createa quota
systemthatguaranteesequitablesharingof theseresources.

As with nodeIdassignment,a simplesolutionis to requiretheuseof a universally
trustedquotaauthority. However, in thenodeIdassignmentproblem,thenodeIdauthor-
ity needonly be consultedwhena new nodewishesto acquirea nodeId.Otherwise,
the nodeIdauthorityneednot be involved in the activity of the p2p network. With a
centralizedquotaauthority, every requestto storea documentwould requirea queryto
thequotaauthority. This would createa hugebottleneckasthesizeof thep2poverlay
scaledup.

To distribute this authority, the original designof PAST [14] hypothesizedthat a
smartcardwould be attachedto eachnodeof the network. The smartcardswould be
responsiblefor trackingeachnode’s useof remoteresourcesandwould issuedigitally
signedtickets,allowing the local nodeto prove to a remotenodethat it was under
its quota.Of course,it may not be practicalto issuesmartcardsto millions of nodes.
Furthermore,if p2puserscancompromisethekey materialinsidetheirsmartcards,they
would gaineffectively unlimitedstoragewithin thep2poverlay.



An alternativearchitecturewouldbeto askanode’sneighborsto actasquota man-
agers onbehalfof thenode.Collectively, anode’sneighborscanacttogetherto endorse
anode’srequestto storeadocumentin thesamewayasthelocal smartcardmight.The
quotainformationwouldbedistributedandreplicatedamongtheneighborsin precisely
the samewasasany otherdatain PAST. Themainweaknesswith this schemeis that
the quotamanagersdo not have any particularincentive to participatein maintaining
the quotainformation.It would be cheaperto track nothingandalwaysendorsea re-
quest.Ideally, we would like to createa systemwherenodeshave a naturaleconomic
incentive to keeptrackof eachother’sdisk storage.This is aninstanceof a problemin
distributedalgorithmmechanismdesign[17].

4.2 Distributed Auditing

We can look at disk spaceas a commodity, and the sharingof disk spacein a p2p
overlaynetwork asa bartereconomyof disk space.Nodestradethe useof their local
storagefor the useof othernodes’remotestorage.What mechanismscanbe usedto
implementsuchan economy?We are currently studyingthe useof auditing. In our
system,eachnodepublishes,anddigitally signs,two logs:thelocal list of files thatthe
local nodeis storingon behalfof remotenodes,andthe remote list of files thatother
nodesarestoringon behalfof thelocal node.Eachentryin thelogscontainsthename
of the remotenoderesponsibleandthesizeof theobjectbeingstored.Also, the local
list containstheamountof freespaceavailableon thelocal node.

This now createsa nicely balancedsystem.If a node,A wishesto storea file on
B, thenB needonly readA’s logs to make surethatA is usinglessresourcesthanit is
providing.

In general,whenB is storinga file on behalfof A, B hasan incentive to audit A
to make surethat A is “paying” for its storage.If A doesnot list the file in its remote
list, thenit’s not “paying” anything to B; B shouldthereforefeel freeto deletethefile.
Likewise,A hasanincentive to auditB, to make surethatB is actuallystoringthefile,
versusquietlydroppingthefile andperhapsrelyingontheotherreplicasto maintainthe
file. If A queriesB for randomportionsof its file (while first alertingany otherreplicas
thatanaudit is underway) andB cannotanswer, thenA canremoveB from its remote
list; there’sno reasonfor A to payfor serviceit’snot using.

But, whatif A wishesto lie to B, feedingit a log thatunderstatesits remotestorage
usage?To addressthis, we needanonymouscommunication.Luckily, many architec-
turesareavailableto do this. In particular, Crowds [18] mapsvery easilyonto a p2p
overlaynetwork.Solongasauditsaretimedrandomly, whereA doesnotknow whether
thenodecheckingon it is B or perhapssomeothernodewith which it’sdonebusiness,
thenA cannotcustomizeits logs to presentitself in a betterlight to B. Or, if it did, the
signedlog formsadigital “confession”of its misbehavior whencomparedwith thelogs
it sendsto othernodes.

Of particularinterest,oncewe’ve createdthis disk economy, is that we now have
mechanismssuitablefor applyingpeerpressure.FehrandGachter[19] haveshown that
peopleare willing to spendmoney to eject cheatersfrom an economy, allowing the
economyto quickly reacha stablestate,freeof cheaters.This auditingsystemallows
for nodesto “spend”diskspacesimplyby increasingthesizeof theremotelist, thereby



“paying” for somebodyto be ejected.Combiningthat with any “confessions”from
misbehaving nodes,andthesystemappearsto providestrongdisincentivesto cheaters.

Oneremainingissueis what we call “cheatingchains.” It’s possiblefor onenode
to pushits deficitsoff its own booksby conspiringwith othernodes.A canclaim it is
storingalargefile onbehalfof B. SolongasB claimsit’sstoringthefile onA, theaudit
logscheckout. If A andB areconspiringtogether, thenno actualfiles needbestored.
Furthermore,imaginethat B claimsits storinga file on behalfof C, andC claimsit’s
storinga file on behalfof D. Again,whenthey’reall conspiring,nobodyneedactually
storeany files, andthe only way somebodymight detectthat A werecheatingwould
be to audit A, thenB, thenC, andfinally D beforedetecting,perhaps,that D’s books
wereout of balance.The bestsolutionwe have to this problemis for all nodesin the
p2poverlayto performrandom audits, choosingakey, atrandom,andauditingthenode
with theclosestnodeId,comparingthatnode’slogsto thelogsof everynodewith which
it claimsit’s sharing.If everynodechoosesanothernodeat random,on aregularbasis,
thenevery nodewill be auditedwith a very high probability. Our currentsimulations
show that the costof this auditingis quite reasonable,consumingan aggregateband-
width of only 100-200bits/second,evenin largep2poverlays,althoughthisbandwidth
doesincreasewith thesizeof thelogs.

4.3 Other Forms of Fairness

This paperhas focusedprimarily on fair sharingof disk space,but thereare many
otheraspectsto fair sharing.In particular, we would like to guaranteefair sharingof
network bandwidth.In currentp2pnetworks,nodescaneasilyfind themselveshosting
a hugeamountof traffic on behalfof othernodes,evenwhile makingvery little useof
the network on their own behalf.With the Kazaasystem,in particular, thebandwidth
generatedby somenodeshasbeenenoughto force many universitiesto use traffic
shapingtechnologiesto preventstudentmachines,runningKazaa,from overwhelming
thecampus’s limited bandwidthto theInternet.

Oneconceivablesolutionwould requirethe useof micropaymentsystems.When
a userwishesto query the p2p overlay, that would requirespendinga token. When
the user’s machinereceivesa query, it alsoreceivesa token that it canuselater. If a
given machinehasmoretokensthanit needs,perhapsit would refuseto serviceany
queries.Unfortunately, it’s not clearwhetherany currentmicropaymentschemesscale
to supportsomany nodesmakingsomany smallqueriesof eachother. While it mightbe
possibleto addthesebandwidthtokensontotheaudit logsdescribedabove,thecostof
evaluatingwhethera tokenis valid couldbesignificantlygreaterthansimply servicing
therequestwithoutcheckingthetoken’svalidity.

Anotherissue,assumingthetokenschemecanbemadeto work, would besuitably
redesigningfile sharingto preserve the availability of data.In effect, we would allow
nodesto deliberatelyfail to servicerequestsbecausethey had no more needfor to-
kens.To compensatefor this,datawill needto bemuchmorewidely replicatedthanin
traditionalp2poverlays.



5 Trust in p2p overlays

P2psystemsgenerallyrequirea remarkableamountof trust from their participants.A
nodemust trust that other nodesimplementthe sameprotocolsand will respectthe
goalsof the system.In previoussections,we have discussedhow mechanismscanbe
developedto work arounda certainpercentof the nodesviolating the rules,but there
aremany otheraspectswheretrustissuesarise.

Popularity Whendocumentsarerequestedbasedonkeywords,ratherthancryptograph-
ically stronghashes,it becomespossiblefor an adversaryto spoof the results.The
recordingindustry, in particular, hasapparentlybeendeploying “decoy” musicfiles in
p2pnetworksthathavethesamenameasmusicfilesby popularartists.Thedecoy files
have approximatelythe correctlength,but do not containthe desiredmusic.Similar
issueshave traditionallyhurt searchengines,whereany pagewith a givensearchterm
inside it hadan equalchanceof appearinghighly on the searchresults.The bestso-
lution to the searchengineproblem,asusedby Google’s PageRanktechnology, has
beento form a notionof popularity. For Google,pagesthatarelinkedfrom “popular”
pagesarethemselvesmorepopular. An interestingissueis how to addsucha notionof
popularityinto ap2pstoragesystem.It mightbepossibleto extendtheauditlogs,from
Section4.2,to allow nodesto indicatethevalue,or lack thereof,of agivenfile. If users
canthenrankeachothersrankings,thiscouldpotentiallyallow thecreationof asystem
comparableto Google’sPageRank.

Code Fundamentally, p2psystemsrequiretheuserto install a programon their com-
puter that will work with otherp2p nodesto implementthe system.Sincemany ap-
plicationscanbe built on a genericp2p substrate,an interestingissuebecomeshow
to distribute the codeto supportthesep2p applications.Usersshouldnot necessarily
trustarbitraryprograms,writtenby third parties,to runontheirsystem.Recently, some
commercialp2p systemswere discoveredto redirectsalescommissionsfrom online
purchasesto the p2p developers[20] andmight alsosell the useof CPU cycleson a
user’s computerto third parties,without theusergettingany reimbursement[21]. Why
shoulda userarbitrarily grantsuchprivilegesto p2pcode?In many respects,this same
problemoccurredwith active networks [22], except, in thosesystems,the computa-
tionalmodelcouldberestricted[23]. For p2psystems,whereapplicationscanperform
significantcomputationsandconsumevastamountsof disk storage,it would appear
thata general-purposemobilecodesecurityarchitecture[24] is necessary.

6 Related work

P2p systemshave beendesignedin the pastto addressnumeroussecurityconcerns,
providing anonymouscommunication,censorshipresistance,andotherfeatures.Many
suchsystems,includingonionrouting[25], Crowds[18], Publius[26], andTangler[27],
fundamentallyassumea relatively small numberof nodesin the network, all well-
known to eachother. To scaleto larger numbersof nodes,whereit is not possible
to maintaina canonicallist of the nodesin the network, additionalmechanismsare



necessary. Somerecentp2p systemshave alsobeendevelopedto supportcensorship
resistance[28] andanonymity [29,30].

Sit and Morris [6] presenta framework for performingsecurityanalysesof p2p
networks.Their adversarialmodelallows for nodesto generatepacketswith arbitrary
contents,but assumesthat nodescannotinterceptarbitrary traffic. They thenpresent
a taxonomyof possibleattacks.At the routing layer, they identify nodelookup, rout-
ing tablemaintenance,andnetwork partitioning/ virtualizationassecurityrisks.They
alsodiscussissuesin higher-level protocols,suchasfile storage,wherenodesmaynot
necessarilymaintainthenecessaryinvariants,suchasstoragereplication.Finally, they
discussvariousclassesof denial-of-serviceattacks,includingrapidly joining andleav-
ing thenetwork, or arrangingfor othernodesto sendbulk volumesof datato overload
a victim’snetwork connection(i.e.,distributeddenialof serviceattacks).

Dingledineet al. [31] andDouceur[11] discussaddressspoofingattacks.With a
largenumberof potentiallymaliciousnodesin thesystemandwithouta trustedcentral
authorityto certify nodeidentities,it becomesvery difficult to know whetheryou can
trust the claimedidentity of somebodywith whom you have never beforecommuni-
cated.Dingledineproposesto addressthis with variousschemes,including the useof
micro-cash,thatallow nodesto build up reputations.

Bellovin [32] identifiesanumberof issueswith NapsterandGnutella.Hediscusses
how difficult it might beto limit NapsterandGnutellausevia firewalls, andhow they
canleakinformationthatusersmight considerprivate,suchasthesearchqueriesthey
issueto the network. Bellovin alsoexpressesconcernover Gnutella’s “push” feature,
intendedto work aroundfirewalls, which might beusefulfor distributeddenialof ser-
vice attacks.He considersNapster’s centralizedarchitectureto bemoresecureagainst
suchattacks,althoughit requiresall usersto trustthecentralserver.

7 Conclusions

This paperhassurveyed somesecurityissuesthat occur in peer-to-peeroverlay net-
works, both at the network layer and at the applicationlayer. We have shown how
techniquesrangingfrom cryptographythroughredundantrouting to economicmeth-
odscanbe appliedto increasethe security, fairness,andtrust for applicationson the
p2p network. Becauseof the diversity of how p2p systemsareused,therewill be a
correspondingdiversityof securitysolutionsappliedto theproblems.
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