
Towards a Framework for Assessing Trust-Based Admission Control in
Collaborative Ad Hoc Applications

Elizabeth Gray∗, Paul O’Connell∗, Christian Jensen†, Stefan Weber∗, Jean-Marc Seigneur∗, and Chen Yong∗
∗Distributed Systems Group, Department of Computer Science,

Trinity College, Dublin 2, Ireland
Email: {grayl, sweber, seigneuj, cheny}@tcd.ie

† Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads, Building 322, DK-2800 Kgs. Lyngby, Denmark

Email: cdj@imm.dtu.dk

Abstract
The proliferation of mobile devices and the develop-

ment of ad hoc networking technologies has introduced
the possibility of a vast, networked infrastructure of di-
verse entities partaking in collaborative applications with
each other. However, this may require interaction between
users who may be marginally or completely unknown to
each other, or interaction in situations where complete
information is unavailable.

Humans use the concept of trust to help decide the
extent to which they cooperate with others. It provides
a mechanism for lowering access barriers and enables
complex transactions between groups. Trust, however,
takes many different forms and is difficult to stringently
define or understand.

The aim of our work is to develop a trust framework
that enables access control based on trust-based admis-
sion control policies that define the trust relationship
between entities in collaborative ad hoc applications.
We do this by integrating a trust-formation element into
an admission control mechanism to manage interaction
between previously unknown users. A simple distributed
blackjack card game application implements the trust-
based admission control system to assign roles to users
according to their trust-based admission rights.

1. Introduction

The proliferation of mobile devices and development
of vast ad hoc networks introduces the possibility of
an environment where multitudes of diverse entities will
partake in collaborative applications with each other. A
mobile ad hoc network is an autonomous system of
mobile entities connected by wireless links. The entities
are free to move randomly and self-organising, so the
network is highly dynamic and subject to rapid and
unpredictable changes. As in traditional networks, access
to collaborative resources in mobile ad hoc networks
requires varying levels of control. Difficulties arise, how-

ever, when traditional access control methods are applied
in a decentralised collaborative ad hoc environment. For
example, in traditional groupware applications, access to a
group is controlled by an administrator with a predefined
list of possible group members. The administrator grants
access rights based on whether the requesting entity is
identified as meeting the appropriate criteria. However,
in a vast networked infrastructure of diverse entities
partaking in collaborative applications with one another
on an ad hoc basis, access control based on the centralised
administrator model becomes ineffective.

For example, suppose Alice takes the 8am commuter
train into the city to work every weekday morning. To
pass the time, she joins an ad hoc wireless network to see
what collaborative gaming applications are available. She
discovers an ongoing blackjack session in which Bob is
the dealer, and she requests admission to the game. To
Bob, Alice is an unknown entity, who may or may not
be trusted to behave correctly, i.e. pay her debts, if given
access to his game. In the traditional model, Bob would
be able to contact a centralised administrator to determine
if Alice should have access rights to participate in the
blackjack game. Moreover, making the traditional model
work in this scenario would require a global authorisation
structure, since Alice and Bob may live in different
countries and only be meeting by chance. This approach
does not scale to the large, dynamic, decentralised ad hoc
networks envisioned.

Trust management systems such as KeyNote [1], Pol-
icyMaker [2], Simple Public Key Infrastructure (SPKI)
[3], and Simple Distributed Security Infrastructure (SDSI)
[4] attempt to manage security in large-scale distributed
networks through the use of credentials that delegate
permissions. However, even these systems falter in ad hoc
networks where it would be virtually impossible to main-
tain any centralised record of authorisation credentials.

Moreover, neither traditional security approaches nor
trust management systems enable an independent entity
to answer one fundamental question: ‘Whydo I trust this

unknown party to perform this action?’ That is, what does
trust really consist of?

Trust has been well-researched in another kind of
massive ad hoc collaborative network infrastructure. Hu-
mans must regularly determine, with no assistance from
a trusted third party, how to interact with known and un-
known people. Trust provides a mechanism for lowering
access barriers and enables complex transactions between
groups. Humans use the concept of trust to help decide the
extent to which they cooperate with others in these types
of situations, where complete information is not available.

Human trust is a difficult concept to formalise, and
many different definitions of trust exist. We believe,
however, that, for the computing world, some definition
of trust can be formalised such that groupware is possible
in which principals are able to manage dynamic ad
hoc access to their resources by implementing a trust
formation and evaluation process. Each principal would
be provided with a mechanism that allows him to establish
a trust value for other potential group members.

State-of-the-art in dynamic trust formation is currently
too imprecise to suggest that trust could be used to decide
access rights at a low level. Instead, we propose to use
trust-based admission control together with standard role-
based access control. In this context, high level admission
control polices parallel human decision-making behaviour
in trust-based situations where complete information is
unavailable. Using a policy-based approach instead of a
traditional approach based on low level access rights maps
better to the ad hoc network environment, where access
control decisions must often be made with incomplete
information about the requesting principal.

Our work intends to map a formal application of the
human dynamic trust-formation capability to a platform
with which we can then assess trust-based admission
control in collaborative ad hoc applications. Essentially,
we aim to implement a system that allows trust formation
based on criteria that satisfy the question ‘Why is this
principal trusted to perform this action?’ while allowing
principals to implement high level trust-based security
polices to perform admission control.

The structure of the paper is as follows. Section 2
is an examination trust concepts and policy formation.
Section 3 specifies the design of the trust-based admission
control system framework. This includes the development
of a generic framework that will allow users to form,
join, and exit collaborative ad hoc groups as well as the
integration of a trust production and admission control
element. In Section 4, we outline the implementation route
and the technologies used in the system, incorporating
a simple distributed blackjack application to implement
the trust-based admission control system to assign roles

to principals according to their trust-based admission
rights. In Section 5, we present the evaluation of the
trust framework and discuss the results of the sample
application. Finally, Section 6 gives conclusions and ideas
for future work.

2. Trust Concepts and Policy Formation

Trust is an important feature in the decision-making
process that humans use every day. There are many
different definitions and views of what trust is. This leads
to difficulties in establishing a common, general definition
for trust that holds, regardless of personal dispositions or
differing situations. Our goal is to develop a generalised
trust definition in such a way that if security system is
asked, ‘Why do you trust this principal?’, it will be able
to respond with the parameters and contexts on which it
has built its trust value for that principal. Moreover, it will
then be possible to formulate admission control policies
around these trust values.

The aim of this section is to show that trust can be
formalised and produced within a framework. We discuss
the concept of trust and examine the properties and
operations that can be applied to it. Then we investigate
the use of policy formation in trust-based systems. Finally,
we summarise the key points from this section that are
relevant to the design and implementation of applications
and policy specification.

2.1. Trust
Here, we present a number of trust definitions from

various academic fields in an effort to mesh different
views of trust to give a general understanding of trust
as a whole. Next, the properties that apply to trust are
discussed. Finally, a framework for modelling trust is
explained.

2.1.1 Definitions of Trust

According to Marsh [5], who has contributed signifi-
cantly to formalising trust as a computational concept, the
majority of work on defining trust has come from the three
academic areas of sociology, psychology, and philosophy.
He identifies four research efforts as major contributions:
Morton Deutsch, Niklas Luhmann, Bernard Barber, and
Diego Gambetta.

The definition of trust given by Morton Deutsch in
1962 is the most widely accepted. Based on psychology,
Deutsch [6] defines trust as follows:

• If an individual is confronted with an ambiguous
path, a path that can lead to an event perceived to
be beneficial(V a+) or to an event perceived to be
harmful (V a−);

• He perceives that the occurrences of(V a+) or
(V a−) is contingent on the behaviour of another
person; and

• He perceives that the strength of(V a−) to be greater
than the strength of(V a+).

• If he chooses to take an ambiguous path with such
properties, I shall say he makes a trusting choice; if
he chooses not to take the path, he makes a distrustful
choice.

The repeated uses of the word ‘perceives’ in this defi-
nition implies that trust is a subjective quality individuals
place in one another. This definition also implies that
trusting decisions are based on a form of cost-benefit
analysis. Different individuals’ decisions to trust differ
with each individual’s perception of the estimated cost
(V a−) and benefit(V a+). While Deutsch broke trust
down into several different circumstances where such a
trusting choice might be made, he concentrated on the fact
that trust ‘is strongly liked to confidence in, and overall
optimism about, desirable events taking place.’ [7]

A second definition, with a sociological approach, is
given by Niklas Luhmann. [8] Luhmann suggests that the
relation of the world as a whole to all of the individual
diverse identities within is so complex that individuals
need trust as a means to reduce complexity and promote
adaptation through increasing the possibility for experi-
ence and interaction.

Next, Bernard Barber attempts to solidify a sociolog-
ical definition of trust. He views trust ‘predominantly as
a phenomenon of social structural and cultural variables
and not...as a function of individual personality variables.’
[9] This definition strays from Deutsch’s individual, sub-
jective thoughts on trust, and aligns itself more closely to
Luhmann’s ideas that trust exists at a social level.

Finally, Diego Gambetta [10] amalgamates work from
such diverse areas as biology and economics to define
trust as ‘a particular level of the subjective probability
with which an agent will perform a particular action, both
before he can monitor such action and in a context in
which it affects his own action.’ This definition again
reinforces the subjective nature of trust. The definition
also states that trust is affected by actions that we cannot
monitor. This means that in a situation where full infor-
mation is not available, the quality and meaning of the
information one can monitor will have a major effect on
his level of trust.

From Deutsch and Gambetta, then, we find definitions
for trust as a subjective quality, depending strongly on
each individual’s views of his environment. From Luh-
mann and Barber, we add to the subjective nature of trust
that trust must exist at a higher level as well, i.e. in the
context in which entities are functioning.

2.1.2 Properties of Trust

With the above definitions of trust, we can identify
properties of trust. Properties of trust include subjectivity,
ability to reduce complexity, non-transitivity, context, and
ability to be measured.

The subjective natureof trust is the property that
creates the single most difficult aspect in creating a trust
production element for a computer security model because
the parameters used for calculating trust by different
individuals varies widely.

On the other hand, we may conjecture that, though this
subjective nature of trust leads to increasingly complex
scenarios, if we can identify a trust framework to work
within, we can decrease this complexity and make use of
the property of trust that allows entities to adapt to new
contexts and interactions.

It has been shown that trust isnot implicitly transitive.
[11] The following statement gives a good example of
this: ‘If Ann trusts Bob, and Bob trusts Cathy, then Ann
trusts Cathy.’ This is in general not true. However, in any
large network of diverse entities, it is impossible for one
principal to know and trust every other principal. This
is the point where a recommendation operation comes
into play. Using a recommendation operation, the above
statement can be considered true when the following
conditions hold:

1) Bob explicitly tells Ann that he trusts Cathy. This
is an example of a recommendation.

2) Ann trusts Bob as a recommender. If Ann does not
trust Bob as a recommender then she should ignore
any information he passes her.

3) Ann has the choice of making a judgement on the
quality of Bobs recommendation.

Trust is alsocontext-specific. In order to give a recom-
mendation about a principal’s trustworthiness, the context
in which the recommendation will be used is needed. The
following statement is an example of this: ‘I trust my
brother to drive a car, but not to fly a plane.’

Finally, Dasgupta shows that, while trust has no mea-
surable units, itsvalue can be measured. [12] Trust can
therefore considered to be a commodity, like information
or knowledge. There are problems using explicit values to
represent trust. Because trust is subjective, the same value
of trust may be associated with different levels of trust by
different entities. If we use continuous values to model
trust, it reflects the continuous nature of trust and allows
for comparison of different trust frameworks. Marsh [5]
represents trust as a continuous variable over a range
scale [-1,+1]. Marsh states that trust can have threshold
values, which vary between people and situations. An
entity will have a positive threshold value, above which
that trust another entity, and a negative threshold value,

below which they will not trust a person. The continuous
value system still leaves the problem of subjectivity for
receiver of the trust information, if the framework and
parameters on which the trust value is calculated are not
understood.

2.1.3 Framework for Trust

Although the concept and operations of trust can be
well-defined, as above, a framework for quantifying trust
is needed so that unambiguous conversation may occur.
McKnight and Chervany [13] present a framework that
classifies different aspects of trust and provides a system
which shows how trust can influence behaviour. This
framework is depicted in Figure 1.

 Trusting Behaviour

Decision to Trust / Trusting Intention

Situational Trust

Dispositional
Trust

Belief Formation
Process

System Trust

Trusting Beliefs

Fig. 1. McKnight and Chervany’s Trust Framework

Here we see six integrated components, Situational
Trust, Dispositional Trust, Belief Formation Process, Sys-
tem Trust, Trusting Beliefs, and Trusting Intention, feed-
ing different aspects of trust into one actual outcome,
Trusting Behaviour.

Situational Trustdescribes the extent to which one
principal intends to depend on another, regardless of
who the other is, in a given situation. It means that this
principal has formed an intention to trust every time a
particular situation arises, irrespective of his beliefs about
the attributes of the other party in the situation.

Dispositional Trustis the extent to which a principal
consistently trusts across a broad spectrum of situations
and parties. This is an example of a cross-situational,
cross-personal construct. It is a general intention by a
person to believe that people will behave in a certain
manner and is valid over a broad spectrum of situations.
This value reflects whether an individual is optimistic or
pessimistic in their approach to new situations, and is the
part of the framework that inputs the subjective nature of
trust as defined above.

System Trustrepresents the extent to which a principal
believes that the proper impersonal structures are in place
to enable him to act in anticipation of a successful future
endeavor, regardless of the other party he must depend on.
System trust reflects that safeguards are in place to reduce
the amount of risk to which an entity must be exposed.
These safeguards may be in the form of regulations,
guarantees, or stabilising intermediaries.

The Belief Formation Processis the process by which
information and experience that have been gathered from
the environment are processed to form new trusting beliefs
about parties. It is made up of two mechanisms: categori-
sation mechanisms (unit grouping, reputation categorisa-
tion, stereotyping) which organise information into cate-
gories, each with an equivalent response; and illusionary
mechanisms, which are based on assumptions, emotions,
and levels of confidence.

Trusting Beliefsoverlaps the Belief Formation Process
and may or may not overlap Dispositional Trust. Trusting
Beliefs are described as the extent to which one principal
believes that another principal is willing and able to act
in the trusting partys best interest. The attributes that
affect the Trusting Belief include benevolence, honesty,
competence and predictability. Assessing these attributes
to form a belief is an inherently subjective process.

A Trusting Intentionis formed when one principal is
willing to depend on another party in a given situation
with a feeling of relative security, even though negative
consequences are possible. A Trusting Intention implies
that the entity has made a decision based on the various
risks and benefits of trusting.

Trusting Behaviouris the outcome of the above com-
ponents, when one principal depends on another party
in a situation with a feeling of relative security, even
though negative consequences are possible. This construct
effectively describes the act of trusting and implies the
acceptance of risk. [14]

Using this trust framework helps us clear conceptual
confusion by representing trust as a broad but coherent set
of constructs which incorporate the major definitions from
research to date. The definition of these trust types is very
beneficial, as it enables parties to apply and exchange trust
information and to agree on what they mean by a trust
value. Using the framework to identify the parameters on
which trust is based allows principals to be specific about
their trust statements. Overall, the framework enables the
use of trust-based tools such that principals might avoid
the problems associated with trust and collaboration in an
ad hoc environment.

2.2. Policy Specification
Generally, access control policies specify the condi-

tions under which a principal may access a particular
role or resource. Using trust concepts as the criteria
for access control is a relatively new development in
policy specification, and it is an important part of any
formal framework that defines trust relationships between
entities. In this section, we give an overview of some
of the recent research carried out in the area of policy
formation for trust-based systems. The requirements for
policy languages in trust-based systems are discussed and

three policy specification languages are considered.

2.2.1 Language Requirements

A growing body of research in the area of trust
management [15], [16], [17], [18], [19] has provided us
with several requirements of a policy language to be used
in environments where trust must be established between
strangers. A summary of these requirements taken from
Damianou et al [18] is presented as follows:
• A policy language should support security policies

for access control and delegation.
• Structuring techniques to facilitate the specification

of policies relating to large systems with millions of
objects. This implies the need for policies relating to
collections of objects rather than individual ones.

• Composite policies are necessary to allow the group-
ing of basic security and management policies re-
lating to roles, organisational units, and specific
applications. Composite policies become essential in
large enterprise information systems which have high
levels of complexity in policy administration.

• The language must allow for policy analysis, e.g.
identifying conflicts and inconsistencies in the spec-
ification or determining which policies apply to an
object and vice versa. It is believed that declarative
languages make such analysis easier.

• The language must allow extensibility to cater for
new policy types. This can be supported by inheri-
tance in an object-oriented language.

• Finally, the language must be easy to understand and
use.

2.2.2 Languages

Having determined the requirements of a policy lan-
guage for trust-based access control, we now give an
overview of three existing policy languages that are
used in environments where trust establishment between
strangers is required: Ponder, RT, and TPL.

Ponder [18] is a declarative, object-oriented language
used to provide a standard way of specifying a wide range
of policies for management and security in distributed
systems. Ponder allows for flexible policies that can map
onto various access control implementations. It includes
authorisation, delegation, information filtering, and refrain
policies that specify access control. There are also event-
driven obligation policies to specify system management
actions. Because Ponder allows for inheritance, it permits
new policy classes to be defined as sub-classes of existing
policy classes. Additionally, Ponder uses a subset of
the Object Constraint Language (OCL) to specify the
set of conditions or constraints under which a policy
is valid. This model also allows for translating policies
to structured representation languages such as XML,

which can then be used for viewing or exchanging policy
information. The language supports policy specification
for large-scale systems with millions of objects.

RT [20] is a family of role-based trust management
languages for specifying policies and credentials for
authorisation in distributed systems. Like Ponder, RT
makes use of the principles of role-based access control.
However, it also combines RBAC principles with those of
trust management systems. Using credentials, RT allows
localised authority over roles, delegation, linked roles, and
parameterised roles. This is the language Winsborough
and Li use to specify policies in their framework of
practical automated trust negotiation. While they express
RT in abstract syntax, in practice it can be represented in
various forms, e.g. XML. [21]

The Trust Policy Language (TPL) developed by
Herzberg et al [19] is an XML-based language used to
define the mapping of strangers to predefined business
roles, based on certificates issued by third parties. It ex-
tends existing role-based access control mechanisms in an
effort to cater for the trust establishment in environments
where entities do not necessarily know each other. It
uses certificates to convey ’any useful reference about the
subject, not necessarily its identity.’ Mass and Shehory
[22] use TPL as the basis for policy specification their
trust establishment framework. This framework provides
role-based access control without requiring identities by
generating trust amongst distributed agents. Based on
Public Key Infrastructure (PKI) technology [3], [23], trust
is established based on assessing agents’ certificates and
determining whether the level of trust in those certificates
meets the TPL-specified policy criteria.

2.3. Design-Relevant Trust and Policy Concepts
The aim of this review of trust and policy concepts was

to highlight areas that would be relevant to the design and
development of a trust-based admission control system
and an associated policy specification.

We find that a trust framework exists which captures
the major definitions and properties of trust. When we
design our trust-based admission control system, then,
we do so based on this comprehensive trust framework,
such that its implementation will show that unknown
entities can interact and exhibit trust production. To enable
dynamic trust-based admission control within the system,
we must also specify high level policies, keeping in
mind the requirements and examples of trust-based policy
specification.

3. Design
This section gives a general overview of the collabora-

tive ad hoc application environment, identifying the major
processes involved and the requirements of each process.

Additionally, the design of the components that provide
the required functionality is presented.

3.1. Collaborative Ad Hoc Application Processes
and Requirements

We assume that the users of our collaborative applica-
tion interact in groups in an environment where an ad hoc
networking system is in operation. Each user has a small
computer device that is capable of joining the ad hoc net-
work. It is assumed that each device has a screen, a hard
disk for storing permanent information, and networking
capability. Five major processes are necessary to allow
the users to interact: service discovery and connection,
admission request, global trust-based admission control,
local trust-based admission control, and ad hoc group
formation.

This section examines these processes and identifies
the requirements of each. Figure 2 depicts a high level
view of this environment.

2. Admission Request
User Ad hoc Collaborative Application B

Ad hoc Networking Service

Ad hoc Collaborative Application A

Ad hoc Collaborative Application B

Existing
Group

Member

1. Service Discovery &
Connection

3. GTBAC

4. LTBAC

5. Group Formation

Fig. 2. High Level View of Main Design Processes

3.1.1 Service Discovery and Connection Process

From a list of collaborative applications available in
a given ad hoc network, a user - let’s call him new
principal, Pn - selects the specific application he wishes
to join and downloads a proxy that allows his device to
communicate with the application and to initiate the join
process. The technical issues associated with application
discovery and connection may be handled by any number
of service lookup and discovery technologies, such as
the JINI lookup service, the CORBA trader service, or
JavaSpaces.

3.1.2 Admission Request Process

Having discovered what roles are available for users
within a collaborative application,Pn requests admission
to group, G, in a particular role.Pn will typically be

interested in joining the role with the most access rights.
To facilitate this,Pn is allowed to make multiple requests
to join G. When the application receives an admission
request from a user, it initiates the voting process.

3.1.3 Global Trust-Based Admission Control (GTBAC)
Process

The application initiates GTBAC process whenPn

requests admission to group, G. The application manager
will ask each principal,Pg, that is already an existing
member in G to verify thatPn has the right to join G in
the requested role. EachPg votes for or against admission
based on the results of the local trust-based admission
control process, described in the following section. The
application then accepts or rejectsPn’s request for admis-
sion to G in a particular role based on the results of the
GTBAC process.

At the end of the GTBAC process,Pn is informed
of the decision, and so is the eachPg. As a back-out
mechanism, anyPg can opt to leave the group if he does
not agree with the result of the GTBAC process.

If Pn is successful in his request to join G, he will then
register officially with the application and be included in
future GTBAC processes.

3.1.4 Local Trust-Based Admission Control (LTBAC)
Process

LTBAC incorporates trust-based policies to enable
decision-making regarding admission requests in the GT-
BAC process. LTBAC is executed at eachPg each time
the collaborative ad hoc application looks for verification
of Pn’s request for admission to the group.

All Pg are passedPn’s identifier and requested role.
This identifier and role are passed into eachPg ’s trust
engine which uses local trust-based policies to determine
whether or notPn is trusted enough to join G. IfPn meets
or does not meetPg ’s local policy criteria,Pg provides
an output to the GTBAC process accordingly.

The development of LTBAC policies for the successful
operation of this process is the main focus of this paper.

3.1.5 Group Formation Process

If Pn is successful in his admission request to join G,
an application proxy is provided to allow access to all the
functionality needed for the application.

The application will decide how the group members
will communicate. All communication between the group
may be multicast or members may unicast to each other.

3.2. System Components
Having introduced the requirements of the five major

processes necessary for the collaborative ad hoc appli-
cation, we now describe the design of the three major
components of the application. This illustrates how the

requirements identified above have been integrated into
the design of the three system components: application
management, admission protocol, and trust-based admis-
sion control.

3.2.1 Application Management

The application is designed to have two management
components, theAdmission Managerand theGroup Man-
ager. The Admission Manager manages the Admission
Request, LTBAC, and GTBAC processes. The function-
ality of the Admission Manager does not change across
different application implementations and the design can
therefore be reused. The Group Manager, on the other
hand, provides context-specific services in managing the
Group Formation Process, and therefore must be designed
for each application.

3.2.2 Admission Protocol

The Admission Request and GTBAC processes both
involve interaction betweenPn’s device and the appli-
cation. Both processes are therefore combined in the
admission protocol design.

The admission protocol allows users to form into
collaborative groups. The protocol is designed so that
every Pg gets to verify any newPn, and eachPg can
back out of G at any stage. This ensures that eachPg

is able to decline collaboration with a GTBAC-accepted
Pn by opting out of the group. The protocol allows a
decentralised group decision to be made upon receiving
Pn’s admission request. The identities of allPg are kept
hidden from thePn.

OncePn has selected an application and downloaded
a service proxy, the admission protocol will be initiated.
The protocol involves six steps which are explained below.

• Get Roles:Pn gets a list of possible roles that the
application supports.

• Admission Request:Pn requests admission to G in
the highest available role, passing on his identifier
and the requested role to the Admission Manager.

• Verify User: WhenPn’s admission request is ac-
cepted by eachPg, Pn verifies the identifiers and
current roles of allPg to confirm that they meet the
criteria set in his own admission policies. IfPn’s
admission request is rejected, he can attempt to join
in lower role.

• Officially Join: WhenPn has verified the existing
group membership, he will then officially join the
group.

• Inform All: All Pg are informed that a new user
has been granted admission. AnyPg can take this
opportunity to exit the group if he disagrees with
the GTBAC result.

3.2.3 Local Trust-Based Admission Control (LTBAC)

One of the design goals for the LTBAC component
used in the collaborative ad hoc application is to minimise
the amount of configuration that a user must perform.
The LTBAC component requires a number of support
components to gather information, manage policies, and
produce trust values. Figure 3 presents an overview of the
LTBAC component, illustrating which subcomponents are
generic and which are application-specific.

Trust Formation System

Trust System

Compliance Checker

Dynamic

Admission
Control Interaction Store

Trust Value Calculator

Interaction Monitor

Trust Result Store

Generic Subcomponents Application-Specific Subcomponents

Fig. 3. Local Trust-Based Admission Control (LTBAC)

WhenPn is requesting admission to a group, eachPg ’s
Compliance Checkerpasses inPn’s name and requested
role. The Compliance Checker then relays the results of
the GTBAC process to the Admission Manager, which
relays the result toPn. A compliance check incorporates
three main steps:

• Gather admission control policy statements that are
relevant toPn.

• Identify Pn’s trust value from the Trust Result Store.
• ComparePn’s trust value and role request to local

admission policies.

If Pn’s trust value and role request meetPg ’s policy
criteria, the Compliance Checker informsPg that Pn’s
admission request may be accepted.

TheDynamic Admission Controlsubcomponent works
with the Compliance Checker by binding a minimum
acceptable trust value to the right to access a particular
role. It achieves the flexibility and manageability of role-
based access control, as earlier discussed, by binding a
trust value to right of admission to a role. In this manner,
one statement can apply to every potentialPn, thus greatly
reducing the number of policies a principal must initially
create.

A trust-based admission control statement must contain
five pieces of information:

• Context: the name of the application to which the
policy is relevant.

• Identifier: name of the principal(s) to which the
policy applies.

• Condition: threshold that must be met byPn’s trust
value in order for the policy criteria to be met.

• Trust Value: value assigned to how muchPg trusts
Pn which is calculated based on interaction informa-
tion.

• Role: name of the rolePn will be approved for if
the trust value meets the applied condition.

The Trust Formation Systemcomponent gathers infor-
mation on interactions between users and produces trust
values based on those application-specific interactions.
This component is supported by information processed by
the Interaction Monitor and the Trust Value Calculator.

The Interaction Monitorgathers and saves information
about principals’ interactions. The Interaction Monitor
saves and updates interaction information on the user
disk. This information is application-specific, based on
principals’ interactions in a specific context.

The Trust Value Calculatorprocesses the saved in-
teraction information using linear equations to produce
principal-relevant trust values. The trust calculation algo-
rithm is customisable to a certain extent to incorporate
the subjective nature of trust. The calculator produces a
trust value, expressed as a probability, reflecting that the
higher the trust value, the more likely it is thatPn will
behave correctly. The trust value becomes asymptotic as
it approaches one or zero, reflecting that a principal can
never be completely trusted or distrusted.

When the Trust Value Calculator is executed, context-
specific trust values are stored in a Trust Results file on
the user device. Trust results are broken down into:

• Context: the name of the application to which the
result applies.

• Identifier: name of the principal to which the trust
value relates, e.g.P538.

• Trust Value.
• Date: on which the trust value was calculated.

TheTrust Result Storeand theInteraction Storeensure
that the interaction information and trust results are passed
in the correct format between the Trust System and the
Trust Formation System. When called, the Interaction
Store passes the stored interaction information to the
Interaction Monitor in the Trust Formation System. The
Interaction Monitor updates this information with current
interaction details and passes it back to the Interaction
Store to be saved. Similarly, the Trust Result Store passes
saved trust results to the Trust Value Calculator in the
Trust Formation System. The Trust Value Calculator up-
dates this trust result with a new result based on current
interaction information and passes the new trust result
back to the Trust Result Store for storage and access by
the Trust System.

4. Implementation
Having described the major processes and system

components of the collaborative ad hoc application envi-
ronment and framework, we now delineate the implemen-
tation of the framework and a sample application. We first
introduce the technologies used in the implementation.
Then, we present a high level overview of the interfaces
that make up the framework. Finally, we discuss the im-
plementation of the trust-based admission control system
(TBAC) and the sample application, the blackjack card
game.

4.1. Technologies
The Java programming language is used for the imple-

mentation of all components in this system. The imple-
mentation used two specialised technologies for certain
components, JINI and XML.

4.1.1 JINI

Out of the available service lookup and discovery
technologies, we chose JINI [24] because of its known
support for collaborative ad hoc applications.[25] JINI is
a Java-based distributed system designed for simplicity,
flexibility, and federation. The JINI architecture provides
a mechanism for devices and programs to federate into
groups, thus allowing entities to offer and share resources
within a group.

The key concept within the JINI architecture is that
of a service. A service can be downloaded and used
by any entity in the federated group. Systems provide
services to the federation by publishing them on a JINI
lookup service, using the Discovery and Join protocols.
A user of a JINI system contacts the lookup service
and downloads the service he requires. All communica-
tion within the JINI architecture employs Java Remote
Method Invocation (RMI), allowing data and code to
be transferred around the network between objects. The
JINI architecture assumes that a network for connecting
devices and services is available, and that each device has
a Java Virtual Machine installed.

4.1.2 XML

In the design of the trust-based admission control sys-
tem, we identified the the following requirement: storing
on the user’s device of admission policies, trust results,
and application interaction details. We found several
advantages to using the Extensible Mark-up Language
(XML) for this purpose. The information being stored on
file is already structured a certain way, so by using XML
we are able to maintain that structure. The saved files are
easier to understand by users because the structure of the
information is identified in the file. Additionally, XML
files can easily be parsed and converted into Java objects.

Finally, information stored in this manner can be easily
extracted for user profiling purposes.

4.2. Framework Interface
During the design phase, we identified the components

that must interact according to a standard procedure,
regardless of which collaborative ad hoc application is
being used. In order to create a standard framework, the
interaction between the various components is defined and
implemented through a number of interfaces.

4.2.1 Admission Protocol Interfaces

The Admission Protocol involves the Admission Man-
ager andPn’s client software. Each implements a standard
interface to allow the other to invoke remote method calls.
Using the Ad hoc Service Interface and the Ad hoc Client
Interface, the application publishes a service proxy on the
lookup service.Pn’s software will be pre-programmed to
look for that type of service proxy when attempting to
discover collaborative applications on the network.

4.2.2 Service Manager Interface

The Service Manager Interface enables the Group
Manager to take over control of the application once
the Admission Manager has completed the Admission
Protocol. It also provides a standard mechanism forPn

to get access to an object that implements the application
proxy.

4.2.3 Application Proxy Interfaces

When the application proxy is initialised, the Trust
Value Production System connects to the Trust System.
The Interaction and Trust Results are accessed and up-
dated. In the sample application described below, the
application proxy also implements the graphical user
interface.

At this stage,Pn has finished the Admission Request
Process and has been admitted to the group. Now con-
sidered part of group, G, this principal,Pg, is returned a
reference to the application Group Manager.Pg will use
this reference to request access to a role-based GUI from
the Group Manager. The Service Manager Interface and
GUI Interface allow any client to request and be given
access to a role-specific GUI.

The GUI provides the Trust Value Production system
to Pg. There are two possible configurations that allowPg

to graphically interface with the application. In the first
configuration, GUI code would be stored onPg ’s device
and initialised whenPg is admitted to the application.
In the second scenario, GUI code would be stored with
the application and downloaded byPg whenever the
application is used.

We have implemented the second design option in our
system, as it allows the application developer to make

upgrades to the GUI and still ensure that all users have
the most current version. However, the main issue with
this option is that the code must be downloaded every
time a user gains admittance to the application. We foresee
that as mobile networking technology advances, download
delays will significantly decrease.

Accessing the GUI entails the following steps:

• Pn completes the admission request and is given a
reference to the Group manager. Having successfully
joined group G,Pn is now a member of G, thus,Pg.

• Pg calls on the Group Manager to provide a GUI
object and downloads the GUI Factory.

• Pg makes a call to the GUI Factory, passing his role,
a reference to the local trust system, and a reference
to the remote Group Manager.

• The GUI Factory produces a role-specific GUI for
Pg.

• The role-specific GUI contacts the Group Manager.

4.2.4 Trust and Policy Management Interfaces

The Trust and Policy Management Interfaces are
implemented by Pg ’s trust system. They allow the
application-based Trust Value Production System to ac-
cess and store the relevant trust and policy files onPg ’s
machine. As a session proceeds, the Interaction Monitor
updates these files. At the end of a session, the Interaction
Monitor writes the details toPg ’s files after calling
the Trust Value Calculator to update Trust Management
Result Store.

4.3. Local Trust-Based Admission Control (LT-
BAC) Implementation

This section explores the implementation of the LT-
BAC system, concentrating on admission policy, trust
management, and the client-side trust system. The design
of this system requires that the Admission Policy Result
and Trust Management Result statements should be uni-
form for all principals and applications.

4.3.1 Admission Policy Result Object

In the Dynamic Admission Control segment of the
design phase, we identified five key pieces of information
to be stored in the admission control statement: context,
identifier, condition, trust value, and role. This informa-
tion and its associated functionality is implemented in the
Admission Policy Result object, as seen in Figure 4.

Initially, the implementation of this object in the sys-
tem allowedPg to choose between two approaches. In
the first approach,Pg could put in a specific identifier,
thus binding an admission policy directly to a particular
identity, similar to the mechanism used in traditional
access control lists. Alternatively, a second approach
is to state that the policy applies to all principals, as

noted by inputting an asterisk in the identifier field. For
the purposes of producing useful correlations between
admission policies and trust values, we concentrated on
the second, more generic approach. Thus, in the current
implementation,Pg may choose only between three speci-
fied generic policy pairs based on the nature of trust: High
Trust, Medium Trust, Low Trust.

 Admission Policy Result

- context: String
- name: String
- condition: String
- trustvalue: double
- role: Role

+ toXML(): String
+ verifyUser(trustvalue: double, role:Role) : boolean

Fig. 4. Admission Policy Result Object

The Admission Policy Result object allowsPg to get
and set the data held in the five data fields based on criteria
associated with a high, medium, or low level of trust.
The object also implements a method that determines if
Pn’s trust value and requested role meet the conditions
specified in the admission policy. Moreover, the object
implements an XML conversion function to support the
storage of the admission policy information onPg ’s
disk. Figure 5 presents the generic XML storage format
overlaid by a specific case.

<permission>
<context>application_name</context>
<appliesTo>identifier</appliesTo>
<condition>condition</condition>
<trustvalue>trust_value</trustvalue>
<role>role</role>

</permission>

<permission>
<context>blackjack</context>
<appliesTo>*</appliesTo>
<condition>greater_than_or_equal_to</condition>
<trustvalue>.25</trustvalue>
<role>dealer</role>

</permission>

Fig. 5. Admission Policy Result stored as XML

4.3.2 Trust Management Result Object

Similarly, the Trust Management Result object is used
to store trust and interaction information about other
principals. The Trust Management Result object has four
fields that can be accessed and modified. The object will
also produce an XML string for the purposes of storage.
We see the generic XML storage format overlaid by a
specific case in Figure 6.

<result>
<appliesTo>identifier</appliesTo>
<context>application_name</context>
<lastupdate>date</lastupdate>
<trustvalue>trust_value</trustvalue>

</result> <result>
<appliesTo>Alice</appliesTo>
<context>blackjack</context>
<lastupdate>10/10/2002</lastupdate>
<trustvalue>.97</trustvalue>

</result>

Fig. 6. Trust Management Result stored as XML

4.3.3 Client-side Trust System Implementation

The client-side trust system design proposed above is
implemented in the client-side software. An overview of
this system is shown in Figure 7. WhenPg ’s software is
initialised, the Trust Management Result and Admission
Policy Result are parsed and their respective objects
are stored in the Trust Management Result Store and
Admission Policy Store. ShouldPg need to decide on the
validity of Pn’s admission request, his software would
call the Compliance Checker. The Compliance Checker
calls the two stores to gather the relevant policy pairs and
trust values. A trust value for thePn requesting admission
to the application is, along with thePn’s requested role,
compared toPg ’s admission policy pair to see if the
admission request should be confirmed or rejected. It is
important to note here that a principal can never be fully
trusted or untrusted. Therefore the trust value upper and
lower bounds are .99 and .01 respectively.

Admission ProtocolClient Software

Compliance Checker

Trust Mgt.
Result Store

Trust XML
Parser

Trust Mgt.
Result

Admission
Policy Result

Policy XML
Parser

Admission
Policy Store

Fig. 7. Trust System Implementation

4.4. Sample Application
We implemented the blackjack card game as a sample

application to demonstrate trust-based admission control

in ad hoc collaborative environments. Blackjack is a
popular card game in which players gamble with a dealer
over the value of a set of cards. This application was
chosen due to the ingrained use of trust in the way players
join the game, thus allowing for a comparison between the
human and computer trust models.

In blackjack, there are two distinct roles: dealer and
player. The role a principal has in the game has a major
impact on the willingness of others to join the game.
Because in blackjack, the dealer’s odds of winning are
more favorable than the odds of the player, the principal
holding the dealer role must be considered trustworthy
by other players. Looking at this from another angle, the
right to assume the advantageous dealer role can be seen
as a privilege earned through fair, trustworthy playing of
the game.

The trustworthiness of anyPn is calculated based on
three parameters: the number of sessions played, the num-
ber of days since the last session of interaction, and the
amount of cumulative debt owing. The perceived benefit
of maintaining a satisfactory trust value (one that is high
enough to gain admission to a game when compared to
other users’ admission policies) is the ability to continue
gaining admission to desirable ad hoc blackjack ”tables”.

4.4.1 Blackjack Group Formation

WhenPn has successfully been admitted to a group in
a requested role, the group formation process begins. In
this implementation, all players are required to connect
directly to the user who has the dealer role.

When the Blackjack Dealer GUI is initialised, it will
register with the Group Manager, which implements the
Blackjack Manager Interface. The Blackjack Manager
Interface allows the dealer to register his proxy in central
well-known location. Players can then ask the Group
Manager to pass them a reference to the dealer. When
the Blackjack Player GUI is initialised, it connects to
the Group Manager, gets a reference to the dealer of the
group, and registers himself to start a game.

Two further interfaces enable the smooth running of
the game. The Blackjack Dealer Interface implements two
methods allowing players to join and leave a blackjack
game and remaining methods for game execution. The
Blackjack Player Interface allows a player to receive
updates and commands about the game from the dealer.

4.4.2 Blackjack Local Trust-Based Admission Control
(LTBAC)

The LTBAC system for the collaborative ad hoc black-
jack application implements some specific functionality
for the purposes of evaluating admission control and trust
management.

In this implementation of the blackjack application,
the Admission Policy Result object allowsPg to generate
one of three generalised policy pairs: High Trust, Medium
Trust, Low Trust. These three policy pairs are based on
criteria associated with a high, medium, or low level of
trust, depending on whetherPg is of a disposition to
be highly trusting, moderate, or highly distrusting in the
context of blackjack. An example of a High Trust Policy
pair follows:
• High Trust Policy Pair

– Context: blackjack
Applies To:∗
Condition:≥
Trust Value: .25
Role: dealer

– Context: blackjack
Applies To:∗
Condition:≥
Trust Value: .10
Role: player

From this, we see that the only variants in admission
control are associated with a trust value and role request.

The Trust Management Result object is used to store
trust and interaction information about other principals, as
explained in the LTBAC implementation section above.

After each session, the Interaction Monitor updates
the values of the monitored parameters associated with
a principal. In blackjack, these parameters are: Session
Number1, Days Since Last Session, and Cumulative Debt.
The Trust Calculator uses linear equations within the trust
engine code to calculate these partial results so as to
produce an overall trust value. As with the overall trust
value, each partial result has an upper bound of .99 and
a lower bound of .01. The value of each of the partial
trust values is measured against a limit set by the player.
The Session Number is compared to the Session Limit
variable. If the Session Limit is 10, it will take 10 times
of playing for a partial trust level to reach its maximum of
.99. Therefore the session-related trust value increases as
the Session Number value increases. The other two partial
trust levels are calculated with inverse proportions, i.e. as
Cumulative Debt or Days Since Last Session increase with
respect to set limits, their respective partial trust results
decrease.

The same set of partial trust parameters is monitored
for each principal, although, as we have just seen, scaling
is possible within the context of the application by setting
the parameter limits at different levels. One implementa-
tion of this blackjack application allowsPg to customise
his trust calculator by defining his own limits for each

1Session Number: number of interactions one principal has had with
another.

parameter, thus demonstrating the subjective nature of
trust, asPg1 might put more emphasis on debt whilePg2

considers session number to be more important to trust.
A second blackjack implementation pegged parameter
values to the admission control trust dispositions (high,
medium, or low). For the purposes of this discussion,
however, we have set the scaling factors to the same limits
for all principals, such that data resulting from testing is
uniform for our evaluations.

When a trust value is required forPn, the trust level of
each stored interaction parameter is calculated. The three
partial trust levels are then fed into the trust engine to
output a final trust value. This value is then stored as a
Trust Management Result.

5. Evaluation

Our main goal is to assess the TBAC system to find out
if it produces usable, relevant trust values in a way that
can be used for role-based admission control in a collabo-
rative ad hoc application environment. Our assessment of
this system is performed through a controlled sequence
of blackjack outcomes, whereby we can evaluate both
admission policy strategies as well as trust production
parameters. First, we delineate the test parameters. Then
we provide the test results and analysis.

5.1. Test Parameters
To keep the gaming environment controlled, we kept

it as simple as possible. In each group, or gaming table,
there are two roles, one dealer and one player. Each
principal sets his trust level to high, medium, or low,
depending on his trusting disposition in the context of
blackjack. This affects his admission control policy. If the
trust level is set to high (H), the principal uses a policy
pair whereby admission to the role of dealer requires a
trust value, T, of .25 and admission to the role of player
requires T = .10. Alternatively, if the trust level is set to
medium (M), the principal uses a policy pair whereby
admission to the role of dealer requires T = .50 and
admission to the role of player requires T = .25. Finally, if
the trust level is set to low (L), the principal uses a policy
pair whereby admission to the role of dealer requires T
= .75 and admission to the role of player requires T =
.50. Admission policies are not enforced the first time
a principal requests admission to the group, i.e. before
interaction behaviour can be evaluatedTPn is assumed to
be .50, which is high enough to enter as a player in any
game.

Additionally, each principal employs a debt repayment
strategy, based on concepts from Axelrod’sEvolution of
Cooperation. [26] A principal will Always Pay (AP),
Never Pay (NP), or Random Pay (RP). The randomness of

payment/non-payment for the RP strategy was generated
with a random numbers generator. [random.org]

Combining admission control policy with debt repay-
ment strategy gives us a set of principals whereby each
principal ∈ {HAP, HNP, HRP, MAP, MNP, MRP, LAP,
LNP, LRP}. Each principal in the set is tested in both the
role of dealer and the role of player.

The principal in the role of player loses $1 per game
for 20 games, so that we can assess that principal’s
trustworthiness after each game, based on trust value and
debt repayment behaviour. The trust level parameter limits
for all principals in all games are static: Session Limit =
10, Day Limit = 1, and Debt Limit = 10. These values
were chosen at the more restrictive end of the scale so as
to promote small steps in trust increments/decrements.

5.2. Results and Analysis
Every principal in the role of dealer,Pd, was matched

against every other principal in the role of player,Pp, for
20 blackjack games, withPp losing each match. As each
game was played, we recordedPd’s Trust Management
Result for Pp. BecausePd wins each game, his debt
repayment strategy is not relevant. Therefore, the effects
on trust are generalised by grouping together all possible
Pd per trust category, high, medium, or low: Hxx ={HAP,
HNP, HRP}; Mxx = {MAP, MNP, MRP}; Lxx = {LAP,
LNP, LRP}.

Similarly, the admission control policy ofPp is not
important in our trials since the dealer,Pd, is the only
principal performing admission control. Therefore, we
generalised allPp per debt repayment strategy: xAP =
{HAP, MAP, LAP}; xNP = {HNP, MNP, LNP}; xRP =
{HRP, MRP, LRP}.

By performing all rounds of games on the same day,
we were able to remove the effect of the Days Since Last
Played parameter, so as to isolate the effect of Cumulative
Debt and Session Number on overall trust values.

The value of Session Number in each round moves
in one-step increments from 1 - 20. Because the Session
Limit is set at 10, we note that the Session Number partial
trust result visibly affects overall trust in games 1 - 10 as
Session Number is advancing towards Session Limit, after
which the Session Number partial trust result levels off at
0.99. Therefore, we can separate out two types of results:
(1) the effect of Cumulative Debt onTPp

in games 1 - 10
when Cumulative Debt and Session Number both affect
overall trust; as distinct from (2) the effect of Cumulative
Debt in games 11 - 20 when Cumulative Debt may or may
not have reached the Debt Limit and Session Number is
no longer affecting a rise or decline inTPp

. Once this
is done, we describe how trust-based admission control
policies are affected.

5.2.1 Effects of Debt and Session Number on Trust

Figure 8 depicts how trust is generally affected by
Session Number and Cumulative Debt, without specific
reference to admission control policies. We break our
analysis down into two segments: effects onTPp

in games
1 - 10, and effects onTPp

in games 11 - 20. In the

Effect of Debt and Session Number on Trust Levels

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session Number

Tr
us

t V
al

ue vs. xAP
vs. xNP
vs. xRP

Session Number
reaches Session Limit

Fig. 8. Effects of Debt and Session Number on Trust Levels

first 10 games, the Always Pay debt repayment strategy
(xAP) results inTPp(xAP) increasing in sharp even steps
due to the fact that the Session Number is increasing
consistently towards the Session Limit and no debt is
being accumulated. After the Session Limit is reached
in game 10,TPp(xAP) plateaus at 0.97.2 From this point
on, a principal who has reached the Session Limit and
continues to pay all debt in full will maintain this high
level of trust.3

The line plotting trust value for a principal using
the Never Pay debt repayment strategy (xNP) curves
gradually up and then down during the the first 10 games.
The increase inTPp(xNP) here is due to the fact that
Cumulative Debt is relatively small in the first 5 games,
while the Session Number is steadily increasing towards
the Session Limit. By game 6, however, Cumulative Debt
is so big (and still increasing) thatTPp(xNP) starts to
gradually fall. Once the Session Number reaches the
Session Limit, this parameter can no longer mitigate
the damage to trust being done by an ever-increasing
Cumulative Debt. In fact, by game 10, Cumulative Debt
has reached the Debt Limit, and levels off at a partial trust
result of 0.10. This is reflected byTPp(xNP) in games 10
- 20, which plateaus at 0.10, a very low level of trust.

Finally, TPp(xRP) , where a random debt repayment
strategy is used, increases in steps throughout games 1

2All trust values are rounded to 2 decimal points.
3As earlier mentioned, a trust value is also dependent on a third

parameter, Days Since Last Session, which is not measured in these
trials. Should the trials be performed over a number of days, however,
the Days Since Last Session parameter would affect trust behaviour:
as Days Since Last Session increases with respect to set limits, the
associated partial trust results decrease, thus affecting overall the overall
trust value.

- 10, as Cumulative Debt never grows high enough to
counterbalance the increase in the session-related partial
trust value. When debt is unpaid, trust does not decrease,
but the line does not advance as steeply as when debt is
paid. After game 10, though, a descent in trust commences
because there is no longer an increase in the session-
related partial trust value to keep debt-related trust from
pulling down the overall trust value. When dept is unpaid,
trust drops. Even when debt is paid, the overall trust value
plateaus, as shown on the graph at games 10 - 11, 12 - 13,
and 15 - 19. Eventually, when Cumulative Debt reaches
the Debt Limit, the line plotting trust value would fall to
the lowest possible level, 0.10.

These results show increases and decreases in trust
in a collaborative ad hoc application environment that
follow closely the way human trust rises and falls based
on number of interactions and debt repayment. When
interactions increase, trust grows, unless the interactions
become increasingly tainted by incorrect behaviour, i.e.
not paying one’s debts.

5.2.2 Effects of Debt and Session Number on Trust-Based
Admission Control Policies

Figure 9 again depicts the rise and fall of trust due to
Debt and Session Number. This chart also highlights the
trust-based admission control policy pair values, i.e. the
minimum amount a principal must be trusted in order to
enter the role of dealer or player when high, medium, and
low trust-based admission control policies are enforced.

As mentioned above, admission policies are not en-
forced the first time a principal requests admission to
the group becauseTPp is assumed to be .50, which is
high enough to enter as a player in any game and as
a dealer in groups wherePd employs high or medium
trust-based admission control policies. After completing
one interaction, however,Pp’s trust value is calculated
as a product of the three partial trust results. With the
current, restrictive Session Limit, Date Limit, and Debt
Limit settings,TPp

remains low throughout the first three
interactions, regardless of debt repayment strategy. Any
Pp looking to join a group after having had only one
interaction withPd would only ever be admitted in the
role of player byPd employing a high trust admission
policy.

Once interactions begin to accrue, though, we find that
the LTBAC policies are appropriate. ForPp(xAP) who
consistently pays all debt over time,TPp(xAP) remains at
a level wherePp can always enter in the highest role to
collaborate with an entity employing the most restrictive
of LTBAC policies. A Pp(xRP) that sometimes pays debt
gets multiple chances to increaseTPp(xRP) . While this
Pp(xRP) is barred from accessing the highest role in a
game against a principal invoking the most restrictive trust

Effect of Debt and Session Number
on Trust-Based Admission Control Policies

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session Number

Tr
us

t V
al

ue vs. xAP
vs. xNP
vs. xRP

Low Trust: Dealer

Medium Trust: DealerLow Trust: Player

Medium Trust: Player High Trust: Dealer

High Trust: Player

Fig. 9. Effects of Debt and Session Number on LTBAC Policies

policy, he is nevertheless able to enter into a lower role in
the most restrictive environment. Still following a parallel
with the human trust model, once debt accrues to a point
whereTPp(xRP) slowly decreases,Pp(xRP) is allowed only
into games wherePd uses medium and high trust policies.
Unless Cumulative Debt is paid off,Pp(xRP) is relegated
to requesting admission to the lowest role against only
high trust principals. Finally, principalPp(xNP) who never
pays debt can only ever enter games in lowest role against
principals who have high trust policies. This illustrates
that our application not only produces trust results in a
manner very similar to human trust calculation, but also
that the admission control policy pairs permit access to
resources using a range of human-like restrictions.

5.2.3 Implementation of Trust Framework and LTBAC
Policies

Based on the above experiments, we see that we have
only partially implemented McKnight and Chervany’s
trust framework:

• The Situational Trustaspect is implemented by in-
cluding the concept of contexts for trust production.

• Similarly, the subjectivity ofDispositional Trustis
present by allowing a principal to shift his admission
criteria between different trust-based policy pairs as
well as to set the limit parameters according to which
parameter matters most to him.

• The act ofBelief Formationis only partially repli-
cated in our implementation, in as much as an
entity observes trust production and forms ‘beliefs’,
or applies policy, accordingly. In order to extend
this, we feel that incorporating a recommendation
or reputation component is necessary, and we will
explore this area in future work.

• System Trustis represented in our implementation
through the belief of a given user that the system
is working to ensure that only trusted entities are
admitted to the collaborative application, while en-

tities that behave incorrectly are punished by denial
of access.

• Trusting Beliefs are made generic by specifying only
three policy levels. However, in our implementation,
Trusting Beliefsinclude the aspect of context rather
than remaining apart from it. In order to simulate
a human trust framework more closely, it may be
necessary to extend the policy specification and
separate out the element of context.

• The Trusting Intentionis represented by the process
of comparing Trust Management Results with LT-
BAC Policies.

• Finally, Trusting Behaviouris exhibited whenPg

admits Pn to the group based on the result of the
GTBAC process. However, we mentioned above that
Trusting Behaviour also implies the acceptance of
risk. In this implementation of the framework, we
do not analyse the element of risk, which should
feed into Trusting Behaviour. With future work we
hope to incorporate a risk-analysis component such
that overall risk may be assumed or rejected, which
will bear on the final decision to perform Trusting
Behaviour or not.

Taking all of this on board, the framework we have
implemented as compared to McKnight’s is depicted in
Figure 10, with the areas requiring further work shaded
in grey.

 Trusting Behaviour

Decision to Trust / Trusting Intention

Situational Trust

Dispositional
Trust

Belief Formation
Process

Trusting Beliefs

(Recommendation
Aspect of

Belief Formation)

System Trust

Fig. 10. Implementation of Trust Framework

Policy specification within the TBAC framework is
promising, considering that even a simple XML-based
approach showed good results. More complicated LTBAC
policies, particularly those that allow for more complex
interaction, such as passing recommendation certificates,
will most certainly prove too difficult to specify directly
in XML. Therefore, we foresee the requirement of a more
complex policy specification in future implementations.

5.3. Summary
Testing and analysis of the trust-based admission con-

trol system prove that it reacts correctly to changes
in a principal’s behaviour, i.e. adjusts trust value and
implements admission control policies. The system and
policies match very closely with the human trust model,

although we believe there is still a need to change the
system to better emulate the human model. In this regard,
we will start by changing the LTBAC system so that the
partial trust results are combined to produce some trust
element that is added or subtracted fromTPn . By doing
so,TPn

will rise and fall more naturally from a start value
of 0.50, rather than having to crawl its way up from 0.10,
as it did in the presented trials.

Another interesting result is that once trust slips down-
wards, it becomes impossible to regain unless one of two
events occur: 1)Pn pays all Cumulative Debt that is
accrued, or 2)Pg cancels any debt owing, wiping the
slate clean forPn. In both scenarios, Current Debt is
eliminated, which, in the current environment, would push
TPn

right up to the highest possible admission rights.
We plan to do further research into this area, examining
what human nature would be in these scenarios, e.g.
how much debt is one willing to eliminate and how debt
cancellation might affect future interactions. Moreover, a
further issue arises of how much information must be
stored and updated by each principal so that admission
policies may be refined correctly on a dynamic basis.
Also along these lines, we plan to integrate more debt
repayment strategies to see if trust production follows
Axelrod’s cooperation production trials.

Finally, we were able to implement the majority of
the trust framework described in Section 2. With future
work, the remaining components of this framework can
be implemented, which may require the specification of
a complete certificate-based policy language.

6. Conclusions and Future Work

We identified that principals wishing to join ad hoc col-
laborative applications currently have no way of directly
establishing trust in one another. There is a reliance on
perceived trust or recommendations, which is too vague
when security issues are being considered. Thus, we sug-
gested that a trust-based admission control system using
high-level trust-based security policies be implemented to
provide a solution to the problem of establishing trust in
open, diverse systems.

Our survey into trust and policy formation provided
us with a framework for trust-based admission control
as well as identifying areas of research into trust-based
policy specification. Having investigated the state-of-the-
art, we then designed and developed a collaborative ad hoc
application framework and trust-based admission control
system for the purposes of testing trust-based admission
control. We have shown that a policy-based approach,
centred around simple XML specifications, allows us to
specify high-level trust-based admission control policies
that are simple to use and have predictable results.

Based on our trials, we see that the trust-based ad-
mission control system reacts correctly to changes in a
principal’s behaviour, i.e. adjusts trust value and imple-
ments admission policies. We have noted areas of the
framework that are not fully implemented and are subject
to future work, i.e. a recommendation component and
a risk component. We also found three issues with the
current LTBAC system that we intend to develop further:
reworking the trust engine to calculate a trust element that
can be added or subtracted from the overall trust value;
exploring more debt repayment strategies and appropriate
policy responses to these strategies; and using high level
policies to specify the linear equations used to calculate
trust values rather than implementing these equations
within the program code.

Acknowledgements
The authors wish to acknowledge the support provided

by the SECURE project (IST-2001-32486), a part of the
EU FET Global Computing initiative.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The
KeyNote Trust-management System, version 2,” IETF, RFC 2704,
September 1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust
Management,” inIEEE Symposium on Security and Privacy. Los
Alamos: IEEE Computer Society Press, 1996.

[3] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen, “SPKI Certificate Theory,” IETF, RFC 2693, September
1999.

[4] R. Rivest and B. Lampson, “SDSI - A SimpleDistributed Security
Infrastructure,” October 1996.

[5] S. Marsh, “Formalising Trust as a Computational Concept,” Ph.D.
dissertation, University of Stirling, Department of Computer Sci-
ence and Mathematics, 1994.

[6] M. Deutsch, “Cooperation and Trust: Some theoretical notes,” in
Nebraska Symposium on Motivation, M. R. Jones, Ed. Nebrask
University Press, 1962.

[7] R. Golembiewski and M. McConkie,The Centrality of Interper-
sonal Trust in Group Processes. Wiley, 1975, ch. 7, pp. 131–185.

[8] N. Luhman,Trust and Power. Wiley, 1979.
[9] B. Barber, Logic and Limits of Trust. New Jersey: Rutgers

University Press, 1983.
[10] D. Gambetta,Can We Trust Trust?Dept. of Sociology, University

of Oxford, 2000, ch. 13, pp. 213–237.
[11] B. Christianson and W. Harbison, “Why Isn’t Trust Transitive?”

in Security Protocols Workshop, 1996, pp. 171–176.
[12] P. Dasgupta,Trust as a Commodity. Dept. of Sociology, University

of Oxford, 2000, ch. 4, pp. 49–72.
[13] D. McKnight and N. Chervany, “The Meanings of Trust,” Univer-

sity of Minnesota, Management Informations Systems Research
Center, University of Minnesota, MISRC 96-04, 1996.

[14] D. Povey, “Developing Electronic Trust Policies using a Risk
Management model,” inCQRE [Secure] Congress, November
1999.

[15] K. Seamons, M. Winslett, and T. Yu, “Limiting the Disclosure of
Access Control Policies During Automated Trust Negotiation,” in
Proceedings of the Symposium on Network and Distributed System
Security, February 2001.

[16] W. Winsborough, K. Seamons, and V. Jones, “Automated Trust
Negotiation,” inDARPA Information Survivability Conference and
Exposition. IEEE Computer Society Press, January 2000.

[17] M. W. T. Yu and K. Seamons, “Interoperable Strategies in Auto-
mated Trust Negotiation,” inProceedings of the 8th ACM Confer-
ence on Computer and Communications Security, November 2001.

[18] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder
Policy Specification Language,” inProceedings of the Interna-
tional Workshop on Policies for Distributed Systems and Networks
(POLICY), ser. LNCS 1995. Bristol, UK: Springer-Verlag,
January 2001.

[19] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access
Control meets Public Key Infrastructure, or: Assigning Roles to
Strangers,” inIEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2000, pp. 2–14.

[20] N. Li, J. Mitchell, and W. Winsborough, “Design of a Role-based
Trust-management Framework,” inIEEE Symposium on Security
and Privacy, Oakland, May 2002.

[21] W. Winsborough and N. Li, “Towards Practical Automated Trust
Negotiation,” inProceedings of the Third International Workshop
on Policies for Distributed Systems and Networks. IEEE Computer
Society Press, June 2002.

[22] Y. Mass and O. Shehory, “Distributed Trust in open Multi-
agent systems,” inTrust in Cyber-societies, ser. Lecture Notes in
Computer Science, M. S. R. Falcone and Y.-H. Tan, Eds., vol.
2246. Springer, 2001.

[23] X. P. K. I. documents, http://www.ietf.org/ids.by.wg/pkix.html.
[24] S. Microsystems,JINI Architecture Specification, Revision 1.0.

[25] C. Jensen and M. Haahr, “Towards a Security Framework for Ad
Hoc Applications,” inProc. of the 2nd Workshop in Distributed
Object Security, In Association with the OOPSLA’99 Conference
on Object-Oriented Programming, Applications and Systems, Den-
ver, Colorado.

[26] R. Axelrod, The Evolution of Cooperation. New York: Basic
Books, 1984.

